用户名: 密码: 验证码:
超声波磁流变复合抛光关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学技术的飞速发展对光学系统提出了许多新要求,促使光学系统中越来越多的采用非球面镜。非球面镜能够矫正多种像差,改善仪器成像质量,简化系统结构,在军事、航空航天、电子工业等领域的应用越来越广泛。现有的光学加工方法大多受到加工条件的限制而不能应用于具有小曲率半径的凹非球曲面光学元件的加工,因此具有小曲率半径的凹非球曲面光学元件的超精密加工是目前光学加工所面临的难题。开发新型的适用于小曲率半径非球面及自由曲面光学元件的超精密加工方法对光学加工业有着重要的意义。
     本文提出的超声波磁流变复合抛光技术是针对小曲率半径的凹非球曲面和自由曲面光学元件进行超精密抛光加工而提出的新方法,在国内外属于首创。本文对超声波磁流变复合抛光的关键技术进行了研究,具体的研究内容包括:
     第一,综述了国内外非球面光学抛光技术的研究现状,尤其是磁流变抛光技术的发展,为研究超声波磁流变复合抛光技术提供借鉴。
     第二,对超声波磁流变复合抛光方法的原理及抛光作用机制进行了研究。在超声波磁流变复合抛光中,首先在磁场作用下形成磁流变抛光工具头,施加超声作用后,超声对磁场无影响,超声能够增强抛光的机械作用和化学作用,从而提高了抛光效率,改善了抛光去除特性。经实验验证,超声波磁流变复合抛光的表面质量略低于普通磁流变抛光,但是其材料去除率是磁流变抛光的3.1倍,超声与磁场共同作用实现了材料的抛光去除。
     第三,在超声波磁流变复合抛光原理及作用机制研究基础上,参考Preston方程,通过分析工件所受的超声压力、磁场压力和流体动压力,分别建立了工件静止、转动和抛光工具头倾斜时超声波磁流变复合抛光材料去除数学模型,并通过实验验证了模型的正确性,为计算机控制抛光时,面形误差的修正奠定了理论基础。
     第四,在超声波磁流变复合抛光理论分析基础上,自行研制了超声波磁流变复合抛光实验装置。研究了磁场的分布形式对抛光加工的影响,研制了旋转超声发生装置和磁流变液循环装及粘度控制系统,为后续的超声波磁流变复合抛光工艺实验等研究奠定了基础。
     第五,在自行研制的超声波磁流变复合抛光实验装置上,通过大量的工艺实验,初步研究了超声波磁流变复合抛光主要工艺参数,包括磁感应强度、超声振幅、工件与抛光工具头之间的间隙、抛光工具头转速和工件转速等对材料去除率与表面粗糙度的影响,得出了超声波磁流变复合抛光光学玻璃取得较好效果的工艺参数组合范围,为超声波磁流变复合抛光技术的推广应用奠定了基础。
With the rapid development of modern optical technology, more and more aspheric lens have been applied for many new requirements of the optical systems presented. Aspheric lens can adjust many kinds of aberrations, improve the image quality of the instruments and simplify the structure of the system. Aspheric lens have been widely applied in many fields, such as military, aeronautics and aviation, electronics and so on. Most existing technologies for optical fabrication can not be applied in the machining of concave aspheres with small radius for the restriction of their machining conditions. The ultraprecision machining technology for concave aspheric elements with small radius is the great puzzle facing with optical fabrication. Therefore, it is urgent for the optical fabrication field to explore new ultraprecision machining technology suitable for aspheres with small radius and freeform surfaces.
     Ultrasonic-magnetorheological compound finishing (UMC finishing), which is first presented by the dissertation in both domestics and overseas, is a new kind of polishing technology for the ultraprecision machining of concave aspheres with small radius and freeform surfaces. The key technologies of UMC finishing are studied in the dissertation. The main aspects of the study are including:
     First, the general status of optical polishing technology for aspheres, especially magnetorheological finishing (MRF) in both domestic and overseas is reviewed. The review could be used as references for the study of UMC finishing technology.
     Second, the principle and the mechanism of UMC finishing method are studied. The magnetorheological polishing head is formed by the magnetic field, and the ultrasonic acts on it in UMC finishing. The magnetic field is not affected by the ultrasonic. The ultrasonic in UMC finishing can increase both the mechanical action and the chemical action in polishing, therefore, not only the polishing efficiency is increased, but also the material removal characteristic is reformed. The experimental results show that the material removal efficiency in UMC finishing is 3.1 times higher than that of in MRF, although the surface quality in UMC finishing is a little less than that of in MRF. The experiment also testifies that the material is removed by the coaction of the ultrasonic and the magnetic field in the process of UMC finishing.
     Third, the mathematical material removal models in UMC finishing when the workpiece is stationary, the workpiece is rotatory and the polishing head is oblique are established respectively. The mathematical models are established based on the study of the principle and the mechanism of UMC finishing. The mathematical models are got by the analysis of the ultrasonic stress, the magnetic stress and the hydrokinetic stress on the workpiece in the polishing zone according to the Preston empirical equation. The validity of the models is examined by the experimental results. The model established will be the theoeretical basis for the surface shape figuring in computer-controlled UMC finishing.
     Fourth, the experimental set-up of UMC finishing is developed independently based on the theoretical analysis of UMC finishing. The effect of the distribution forms of the magnetic field on the polishing results are studied in UMC finishing. The rotary ultrasonic equipment and the circulating and the viscosity-controlling system for magnetorheological fluid are developed. The experimental set-up of UMC finishing is the basis for further processing experiments.
     Fifth, many processing experiments are carried out on the experimental set-up of UMC finishing. The effects on both the material removal rate and the surface roughness in UMC finishing by the main processing parameters, such as the magnetic flux density, the ultrasonic vibration amplitude, the gap between the polishing head and the workpiece, the rotational speed of polishing head and the rotational speed of the workpiece are studied preliminarily. The processing parameters combination is achieved to get better polishing result in UMC finishing optical glass. The study will be the basis for the further application of UMC finishing technology.
引文
1 史光辉. 含有三个非球面的卡塞格林光学系统设计. 光子学报. 1998, 18(2):238-241
    2 潘君骅. 非球面光学系统设计、加工及检验的综合考虑. 光学技术. 2001, 27(6):566-567
    3 常军, 姜会林, 翁志诚, 丛小杰, 金英姬. 大视场、长焦距空间光学系的设计. 兵工学报. 2003, 24(1):42-44
    4 潘君骅. 光学非球面的设计、加工与检验. 科学出版社, 1994:8-9, 168
    5 程灏波, 王英伟. 纳米精度非球面研磨、抛光技术. 航空精密制造技术. 2004, 40(1):6-9
    6 张忠玉, 张学军, 牛海燕. 中小口径非球面元件加工技术的探讨. 光学技术. 2001, 27(6):524-525
    7 阎纪旺, 于骏一. 脆性光学材料超精密加工技术. 物理. 1994, 23(2):97-102
    8 江涛, 晓晨. 功能性光学材料的超精密加工. 激光与光电子学进展. 2000, 4:11-13
    9 蔡立, 田守信. 光学零件加工技术. 华中工学院出版社, 1987:1-6, 91-97
    10 曹天宁, 周鹏飞. 光学零件制造工艺学. 机械工业出版社, 1981:3-5
    11 高宏刚, 曹健林, 朱镛, 陈创天. 超光滑表面及其制造技术的发展. 物理, 2000, 29(10):610-614
    12 陈杨, 陈建清, 陈志刚. 超光滑表面抛光技术. 江苏大学学报(自然科学版), 2003, 24(5):55-59
    13 R. Dietz, J. Bennet. Bowl Feed Technique for Producing Supersmooth Optical Surfaces. Appllied Optics. 1966, 5(5):881-884
    14 A. J. Leistner. Teflon Polisher: Their Manufacture and Use. Applied Optics. 1976, 15:293-297
    15 A. J. Leistner, J. M. Bennett. Polishing Study Using Teflon and Pitch Laps to Produce Flat and Super Smooth Surfaces. Applied Optics. 1992,31:1472-1482
    16 庞滔. 超精密加工技术. 国防工业出版社, 2000:166-170
    17 R. B. Mclntosh, R. A. Paquin. Chemical-mechanical Polishing of Low Scatter Optical Surfaces. Applied Optics. 1980, 19(14):2329-2331
    18 H. J. Kim, H. Y. Kim, H. D. Jeong, E. S. Lee, Y. J. Shin. Friction and Thermal Phenomena in Chemical Mechanical Polishing. Journal of Materials Processing Technology. 2002, 130-131:334-338
    19 J. L. Yuan, B. H. Lu, X. Lin, L. B. Zhang. Research on Abrasives in the Chemical-mechanical Polishing Process for Silicon Nitride Balls. Journal of Materials Processing Technology. 2002, 129:171-175
    20 雷红, 雒建斌, 张朝辉. 化学机械抛光技术的研究进展. 上海大学学报(自然科学版). 2003, 9(6):495-502
    21 B. G. Ko, H. C. Yoo, J. G. Park. Effects of Pattern Density on CMP Removal Rate and Uniformity. Journal of the Korean Physical Society. 2001. 39
    22. V. H. Nguyen, F. G. Shi. Modeling of the Removal Rate in Chemical Mechanical Polishing. SPIE. 2000, 4181:161-167
    23 W. J. Rupp. The Development of Optical Surfaces during the Grinding Process. Applied Optics. 1965, 6(4):190-193
    24 辛企明. 近代光学制造技术. 国防工业出版社, 1997:40-55
    25 杨力. 先进光学制造技术. 科学出版社, 2001:62-79
    26 王权陡. 计算机控制离轴非球面制造技术研究. 中国科学院长春光学精密机械与物理研究所博士学位论文. 2001:10-11
    27 程灏波. 大口径离轴非球面制造技术——研磨、抛光技术. 光机电信息. 2003, 2:19-23
    28 L. Jacob, N. Jerry. Stressed-lap Polishing of 3.6m f/1.5 and f/1.0 Mirror. SPIE. 1991, 1531:260-269
    29 杨力, 郑耀, 曾志革, 姜文汉, 袁家虎, 伍凡. 大型非球面反射镜的柔性光学制造技术. 光学技术. 2001, 27(6):490-492
    30 T. W. Drueding, T. G. Bifano, S. C. Fawcettl. Contouring Algorithm for Ion Figuring. Precision Engineering. 1995, 17 (1):10-21
    31 高波, 姚英学, 谢大纲, 袁哲俊, 刘妍. 气囊抛光工具的研制及特性测试. 现代制造工程. 2004, 10:52-54
    32 R. G. Bingham, D. D. Walker and et al.. oval Automated Process for Aspheric Surfaces. SPIE. 2000, 4093:445-450
    33 D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, S. W. Kim. The 'Precessions' Tooling for Polishing and Figuring Flat, Spherical and Aspheric Surfaces. Optics Express. 2003, 11(8):958-964
    34 S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, W. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, V. W. Kordonski. Magnetorheological Finishing: a Deterministic Process for Optics Manufacturing. SPIE. 1995, 2576:372-382
    35 A. Shorey, W. Kordonski, M. Tricard. Magnetorheological Finishing and Sub-aperture Stitching Interferometry of Large and Lightweight Optics. SPIE. 2004, 5494:81-90
    36 Y. Tain, K. Kawata. Development of High-efficiency Fine Finishing Process Using Magnetic Fluid. Annals of the CIRP. 1984, 33:217-220
    37 N. Umehara, M. Kawauchi. Fundamental Polishing Properties of Frozen Magnetic Fluid Grinding. Journal of Magnetism and Magnetic Materials. 1999, 201:364-367
    38 K. Shimada, Y. Wu, Y. C. Wong. Effect of Magnetic Cluster and Magnetic Field on Polishing Using Magnetic Compound Fluid (MCF). Journal of Magnetism and Magnetic Materials. 2003, 262:242-247
    39 H. Yamaguchi, T. Shinmura. Internal Finishing Process for Alumina Ceramic Components by a Magnetic Field Assisted Finishing Process. Precision Engineering. 2004, 28:135-142
    40 N. Umehara. Magnetic Polishing. Journal of Magnetism and Magnetic Materials. 2002, 252:341-343
    41 T. Kurobe, O. Imanaka. Magnetic Field-assisted Fine Finishing. Precision Engineering. 1984, 6(3):119-124
    42 Y. Suzuki, S. Kodera, S. Hara, H. Matsungga, T. Kurobe. Magnetic Field-assisted Polishing: Application to a Curved Surface. Precision Engineering. 1989, 4:197-202
    43 T. Kuriyagawa, M. Saeki, K. Syoji. Electrorheological Fluid-assisted Ultra-precision Polishing for Small Three-dimensional Parts. Precision Engineering. 2002, 26:370-380
    44 王琪民, 徐国梁, 金建峰. 磁流变液的流变性能及其工程应用. 中国机械工程. 2002,l3(3):267~270
    45 I. V. Prokhorov, W. I. Kordonski, L. K. Gleb, G. R. Gorodkin, M. L. Levin. New High-Precision Magnetorheological Instrument-based Method of Polishing Optics. OSA OF&T Worhshop Digest. 1992, 24:134-136
    46 W. I. Kordonski. Magnetorheological Effect as a Base of New Devices and Technologies. Journal of Magnetism and Magnetic Materials. 1993, 122:395-398
    47 D. Golini, W. I. Kordonski. Magnetorheological Finishing (MRF) in Commercial Precision Optics Manufacturing. SPIE. 1999, 3782:80-91
    48 D. Golini, S. D. Jacobs, W. Kordonski. Fabrication of Glass Aspheres Using Deterministic Microgrinding and Magnetorheological Finishing. SPIE. 1995, 2536:208-211
    49 W . I. Kordonski, S. D. Jacobs. Magnetorheological Finishing. International Journal of Modern Physics B. 1996, 10:2837-2848
    50 W. I. Kordonski, D. Golini. Progress Update in Magnetorheological Finishing. International Journal of Modern Physics B. 1999, 13:2205-2212
    51 W. I. Kordonski, D. Golini. Fundamentals of Magnetorheological Fluid Utilization in High Precision Finishing. Journal of Intelligent Material Systems and Structures. 1999, 10:683-689
    52 A. B. Shorey, L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova,J. Hubregsen, S. D. Jacobs. Study of Material Removal during Magnetorheological Finishing (MRF). SPIE. 1999, 3782:101-111
    53 D. Golini, M. DeMarco, W. Kordonski, J. Bruning. MRF Polishes Calcium Fluoride to High Quality. Optoelectronics World. 2001:5-9
    54 D. Golini, Precision Optics Manufacturing Using Magnetorheological Finishing (MRF). SPIE. 1999, 3739:78-85
    55 J. Ruckman, E. Fess, D. V. Gee. Recent Advances in Aspheric and Conformal Grinding at the Center for Optics Manufacturing. SPIE. 1999, 3782:2-10
    56 S. D. Jacobs, A. B. Shorey. Magnetorheological Finishing: New Fluids for New Materials. Optical Society of America. 2000:142-144
    57 I. Korzhinova, S. Jacobs, S. Arrasmith, L. Gregg. Corrosion in Aqueous Cerium Oxide Magnetorheological Fluids. Optical Society of America. 2000:151-154
    58 J. E. DeGrootea, H. J. Romanofskya, I. A. Kozhinova, J. M. Schoena, S. D. Jacobs. Polishing PMMA and other Optical Polymers with Magnetorheological Finishing. SPIE. 2003, 5180:123-134
    59 H. M. Pollicove, Innovations in Deterministic Optical Manufacturing Processes. SPIE. 2002, 4921:16-19
    60 J. A. Menapacea, B. Penetrantea, D. Golinib, A. Slombac, P. E. Millera, T. Parham, M. Nicholsa, J. Petersona. Combined Advanced Finishing and UV-laser Conditioning for Producing UV-damage-resistant Fused Silica Optics. SPIE. 2002, 4679:56-68
    61 A. Shorey, W. Kordonski, M. Tricard. Magnetorheological Finishing of Large and Lightweight Optics. SPIE. 2004, 5533:99-107
    62 N. A. Zhuravskii, D. E. Polesskii, I. V. Prokhorov. Rheodynamic Precision Surface Treatment Controlled by a Magnetic Field. Journal of Engineering Physics and Thermophysics. 2002, 75(2):390-395
    63 S. N. Lee, J. I. Lee, W. B. Kim, J. G. Yook, Y. J. Kim, S. J. Lee. Conductor-loss Reduction for High-frequency Transmission Lines Based on the Magnetorheological-fluid Polishing Method. Microwave and Optical Technology Letters. 2004, 42(5): 405-407
    64 S. D. Jacobs. International Innovations in Optical Finishing. SPIE. 2004, 5523:264-272
    65 B. Hallock, P. Dumas, A. Shorey, M. Tricard. Recent Advances in Deterministic Low-cost Finishing of Sapphire Windows. SPIE. 2005, 5786:154-163
    66 R. K. Heilmann, M. Akilian, C. H. Chang, and et al.. Shaping of Thin Grazing-incidence Reflection Grating Substrates via Magnetorheological Finishing. SPIE. 2005, 5900:5900091-5900097
    67 J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, P. E. Miller. Utilization of Magnetorheological Finishing as a Diagnostic Tool for Investigating the Three-dimensional Structure of Fractures in Fused Silica. SPIE. 2005, 5991:5991021-59910213
    68 M. Tricard, A. Shorey, P. Dumas, M. Demarco. Extending the Application of Subaperture Finishing. SPIE. 2006, 6150:61501K1-61501K8
    69 M. Schinhaerl, A. Geiss, R. Rascher, P. Sperber, and et al.. Coherences between Influence Function Size, Polishing Quality, and Process Time in Magnetorheological Finishing. SPIE. 2006, 6288:62880Q1-62880Q9
    70 C. Supranowitz, C. Hall, P. Dumas, B. Hallock. Improving Surface Figure and Microroughness of IR Materials and Diamond Turned Surfaces with Magnetorheological Finishing (MRF). SPIE. 2007, 6545:65450S1-65450S 11
    71 B. Hallock, B. Messner, C. Hall, C. Supranowitz. Improvements in Large Window and Optics Production. SPIE. 2007, 6545:6545191-65451912
    72 W. Messner, C. Hall, P. Dumas, B. Hallock, M. Tricard, and et al.. Manufacturing Meter-scale Aspheric Optics. SPIE. 2007, 6671:6671061- 6671068
    73 J. Seok, Y. J. Kim, K. I. Jang, B. K. Min, S. J. Lee. A study on the Fabrication of Curved Surfaces using Magnetorheological Fluid Finishing. International Journal of Machine Tools & Manufacture. 2007, 47(14):2077-2090
    74 P. Dumas, C. Hall, B. Hallock, M. Tricard. Complete Sub-aperture Pre-polishing and Finishing Solution to Improve Speed and Determinism in Asphere Manufacture. SPIE. 2007, 6671:6671111-66711111
    75 S. N. Shafrir, J. C. Lambropoulos, S. D. Jacobs. A magnetorheological Polishing-based Approach for Studying Precision Microground Surfaces of Tungsten Carbides. Precision Engineering. 2007, 31(2):83-93
    76 E. Pitschke, P. Sperber, R. Stamp, R. Rascher, L. Smith, M. Smith, M. Schinhaerl. Prediction of MRF Polishing by Classification of the Initial Error with Zernike Polynomials. SPIE. 2003, 5180:115-122
    77 V. Bagnoud, M. J. Guardaben, J. Puth and et al.. High-energy, High-average-power Laser with Nd: YLF Rods Corrected by Magnetorheological Finishing. Applied Optics. 2005, 44(2):282-288
    78 C. H. Lim, Y. J. Kim, S. H. Lee, W. B. Kim, S. J. Lee. Polishing of the Three Dimensional Surfaces of Micro Structure by Magnetorheological Fluid. The 5th Korean MEMS Conference. 2003:185-190
    79 林 偉民, 大森 整, 渡邉 裕, 森田 晋也, 尹 韶輝. 磁性流体研磨法(MRF)による ELID 研削面の超精密仕上げ. 2004 年度精密工学会春季大会学術講演会講演論文集. 2004:181-182
    80 S. Jha, V. K. Jain. Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process. International Journal of Machine Tools & Manufacture. 2004, 44:1019-1029
    81 S. Jha, V. K. Jain. Evaluation of Rheological Properties of Magnetorheological Polishing Fluid and Their Effect on Surface Finish in Ultra Precision Finishing Processes. Proceedings of the World Tribology Congress III. 2005:843-844
    82 S. Jha, V. K. Jain. Modeling and Simulation of Surface Roughness in Magnetorheological Abrasive Flow Finishing (MRAFF) Process. Wear. 2006, 261(7-8):856-866
    83 M. Das, V. K. Jain, P. S. Ghoshdastidar. Analysis of Magnetorheological Abrasive Flow Finishing (MRAFF) Process. International Journal of Advanced Manufacturing Technology. DOI: 10.1007/s00170-007-1095-8
    84 S. Jha, V. K. Jain, R. Koamanduri. Effect of Extrusion Pressure and Number of Finishing Cycles on Surface Roughness in Magnetorheological Abrasive Flow Finishing (MRAFF) Process. International Journal of Advanced Manufacturing Technology. 2007, 33(7-8):725-729
    85 W. I. Kordonski, A. Shorey, A. Sekeres. New Magnetically Assisted Finishing Method: Material Removal with Magnetorheological Fluid Jet, SPIE. 2003, 5180:107-114
    86 M. Tricard, W. I. Kordonski, A. B. Shorey, C. Evans. Magnetorheological Jet Finishing of Conformal, Freeform and Steep Concave Optics. CIRP Annals-Manufacturing Technology. 2006, 55(1):309-312
    87 W. I. Kordonski, A. Shorey, M. Tricard. Magnetorheological Jet (MR Jet) Finishing Technology. Journal of Fluid Engineering. 2006, 128:20-26
    88 张峰, 余景池, 张学军. 磁流变抛光技术. 光学精密工程. 1999, 7(5):1-8
    89 张峰, 张学军, 余景池. 磁流变抛光数学模型的建立. 光学技术. 2000, 26(2):190-192
    90 张峰, 余景池, 张学军, 谭庆昌. 对磁流变抛光技术中磁场的分析. 仪器仪表学报. 2001, 22(1):42-44, 48
    91 仇中军. 光学玻璃磁流变抛光技术的研究. 哈尔滨工业大学博士学位论文. 2003:19-29
    92 F. H. Zhang, Z. J. Qiu, G. W. Kang. Research on Magnetorheological Finishing of Optical Glass, Chinese Journal of Mechanical Engineering. 2002, 15:175-177
    93 F. H. Zhang, G. W. Kang, Z. J. Qiu, S. Dong. MagnetorheologicalFinishing of Glass Ceramic. Key Engineering Materials. 2003, 257-258:511-514
    94 G. W. Kang, F. H. Zhang, S. Dong. Precision Finishing Combined with ELID and MRF. Materials Science Forum. 2004, 471-472:317-320
    95 康桂文. 磁流变抛光硬脆材料去除特性及面形控制技术研究. 哈尔滨工业大学博士学位论文. 2005:47-48, 60-74
    96 孙希威. 磁流变抛光机床数控系统关键技术研究. 哈尔滨工业大学博士学位论文. 2006:70-92
    97 张云, 冯之敬, 赵广木. 磁流变抛光工具及其去除函数. 清华大学学报(自然科学版). 2004, 44(2):190-193
    98 程灏波, 王英伟, 冯之敬. 永磁流变抛光纳米精度非球面技术研究. 光学技术. 2005, 31(1):52-54
    99 彭小强, 戴一帆, 李圣怡. 磁流变抛光中的磁场与磁流变液缎带成型分析. 高技术通讯. 2004, 4:58-60
    100 曹凤国. 超声加工技术. 化学工业出版社, 2004:149-151
    101 周忆, 米林, 廖强, 梁德沛. 基于超声研磨的超精密加工. 航空精密制 造技术. 2003, 39(1):1-4
    102 周忆, 梁德沛. 超声研磨硬脆材料的去除模型研究. 中国机械工程. 2005, 16(8):664-666
    103 A. R. Jones, J. B. Hull. Ultrasonic Flow Polishing. Ultrasonics. 1998, 36:97-101
    104 J. Zhao, J. M. Zhan, R. C. Jin and M. Z. Tao. An Oblique Ultrasonic Polishing Method by Robot for Free-form Surface. International Journal of Machine Tools & Manufacture. 2000, 40:795-808
    105 H. Hocheng, K. L. Kuo. Fundamental Study of Ultrasonic Polishing of Mold Steel. International Journal of Maching Tools & Manufacture. 2002, 42:7-13
    106 H. Suzuki, T. Moriwaki, T. Okino, Y. Ando. Development of Ultrasonic Vibration Assisted Polishing Machine for Micro Aspheric Die and Mold.CIRP Annals-Manufacturing Technology. 2006, 55(1):385-388
    107 P. S. Pa. Electrode Form Design of Large Holes of Die Material in Ultrasonic Electrochemical Finishing. Journal of Materials Processing Technology. 2007, 192-193:470-477
    108 袁松梅, 赵万生, 刘维东, 栾英艳. 超声电火花复合加工的研究进展. 航空精密制造技术. 1998, 34(6):17-20
    109 杨大春, 云乃彰, 严德荣. 硬脆金属的超声电解复合加工研究. 电加工模具. 2002, 2:31-33
    110 查立豫, 林鸿海. 光学零件工艺学. 兵器工业出版社, 1987:80-96
    111 袁哲俊, 王先逵. 精密和超精密加工技术. 机械工业出版社, 1999:148-151
    112 T. Kasai. Polishing to Reveal Micro-defects on Glass. Journal of Non-crystalline Solids. 1994:397-404
    113 宛德福, 罗世华. 磁性物理. 电子工业出版社, 1987:13-33
    114 M. B. 维诺格拉多娃, O. B. 鲁登科, A. П. 苏哈鲁柯夫 著, 王珊 译. 波动理论. 复旦大学出版社, 1995.1-6
    115 冯若, 姚锦钟, 关立勋. 超声手册. 南京大学出版社, 1999:26-27
    116 金长善. 超声工程. 哈尔滨工业大学出版社, 1989:57
    117 泉谷徹郎 著. 杨淑清 译. 光学玻璃与激光玻璃开发. 兵器工业出版社, 1996:109-113
    118 L. M. Cook. Chemical Process in Glass Polishing. Journal of Non-crystalline Solids. 1990:152-171
    119 李廷盛, 尹其光. 超声化学. 科学出版社, 1995:32-40
    120 K. Makino, M. M. Mossoba, P. Rietz. Chemical Effects of Ultrasound on Aqueous Solutions. Formation of Hydroxyl Radicals and Hydrogen Atoms. Journal of Physical Chemistry. 1983, 87:1369-1377
    121 宋后定. 常用永磁材料及其应用知识讲座. 磁性材料及器件. 2007, 38(3):65-68
    122 司鹄. 磁流变体的力学机理研究. 重庆大学博士学位论文. 2003:5-6
    123 K. L. Johnson 著. 徐秉业, 罗学富, 刘信声, 宋国华, 孙学伟 译. 接触 力学.高等教育出版社, 1992:103-118
    124 臼井英治, 白樫高洋 著. 金属加工力学. 廉元国, 徐东安, 陈振孟 译. 任世钟 校. 国防工业出版, 1984:168-186
    125 邱景辉, 李在清, 王宏, 王欣. 电磁场与电磁波. 哈尔滨工业大学出版 社, 2001:49-53
    126 池长青, 王之珊, 赵丕智. 铁磁流体力学. 北京航空航天大学出版社, 1993: 55-70
    127 杨沛然. 流体润滑数值分析. 国防工业出版社, 1998:9-19
    128 林书玉. 超声换能器的原理及设计. 科学出版社, 2004:91-97
    129 朱一锟. 流体力学基础. 北京航空航天大学出版社, 1989:81-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700