用户名: 密码: 验证码:
空基辐射源非合作探测系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用空基辐射源照射的非合作探测系统能够实现对空中或地面目标的探测。它具有结构简单、成本较低、探测范围广、战场隐蔽性高及对隐身目标的探测能力等诸多优点,但是非合作空基辐射源的位置、速度、天线波束指向、脉冲发射时间等因素均未知且不可控制,使得该系统在具有诸多优势的同时存在着一系列需要解决的技术问题。本文从系统设计与分析、杂波建模、目标信号检测、多目标定位与数据关联等方面开展了非合作探测系统的理论和仿真研究,旨在从理论上解决该背景下无源探测系统所面临的主要问题,为非合作无源探测系统的发展与完善提供一定参考和借鉴。
     论文第二章在分析空基辐射源特点的基础上,选择预警机雷达信号作为外辐射源信号,并且以某一型号预警机为例进行了具体讨论,给出了系统设计思路和基本结构,通过理论分析来预测系统所能达到的主要技术指标,阐明系统的实用性和可行性。针对空基辐射源波束照地形成的强地杂波现象建立了地杂波的数学模型,分析了地杂波的空-时-频特性,分析结果表明地杂波与目标回波信号在时-频域不可分,但在更高维的空-时-频域上可分,为杂波环境下的目标检测奠定了基础。
     论文第三章分析了非合作目标检测中长时间相干积累带来的“距离门走动”问题,给出了基于参考信号距离拉伸的时延补偿方法,仿真结果表明该方法能够有效地解决相干积累时间内的时延补偿问题,有效地聚集多个脉冲回波信号的能量,提高输出信噪比。针对地杂波对运动目标检测的影响,提出了基于混合积滤波的非合作目标检测方法。该方法利用杂波与目标在空-时-频域的可分性,采用阵列天线接收方式采集目标及杂波的方位信息,借鉴双基地STAP方法的基本思路,将非合作领域中一般的时-频检测方法推广为时域混合积数据的空域-频域二维联合滤波,仿真结果表明当目标信号与杂波信号在空-时-频域不出现重合时,该方法能够有效地抑制杂波和接收机噪声,实现地杂波背景下的动目标检测。另外,基于混合积滤波的非合作目标检测方法中存在着双基地STAP距离独立性补偿的难点。针对现有的基于映射的距离独立性补偿方法中存在的不足,提出了基于变换域的距离独立性补偿方法,克服了原有方法中处理过程复杂、引入误差项过多的缺点,提高了估计的准确性。针对中、高重频条件下的距离模糊现象,提出了基于数据分离的距离独立性补偿方法,该方法通过将数据在频域上先分离后合并的手段来实现存在多个模糊距离门时的杂波协方差矩阵估计,仿真结果表明该方法能够有效地改善存在距离模糊时的估计效果。
     论文第四章在分析静态阈值随机共振和双稳态随机共振现象的基础上,讨论了随机共振方法在非合作目标检测中的应用。分别从非周期信号随机共振和周期信号随机共振两个角度给出了相应的非合作目标检测方法,并对两种方法进行了比较。基于非周期信号随机共振和基于周期信号随机共振的非合作目标检测方法将非合作检测与非线性模型相结合,利用非线性系统中的随机共振现象,通过系统、输入信号及噪声的协同来增强输出信噪比,达到提高目标检测性能的目的。另外,在静态阈值模型的基础上进一步提出了一种渐进最优的阵列静态阈值随机共振模型,该模型利用多个静态阈值模型的组合以及多参数的调节到达提高弱目标信号检测性能的目的。
     论文第五章对空基非合作照射中系统的目标定位问题进行了研究。根据空基非合作照射的结构特点分别提出两种目标定位方案:基于运动辐射源的三站定位方案和四站定位方案,给出每种方案下对应的多目标数据关联方法。时差定位精度的仿真结果表明两种定位方案都能够实现对主要观测区域的高精度定位,其中三站定位方案的定位精度分布会受到辐射源位置的影响,而四站定位方案的定位精度分布则主要取决于地面站的位置。为了进一步提高定位精度,提出了一种基于约束总体最小二乘的定位解算方法,该方法由于考虑了误差因素对系数矩阵的影响,并对此进行了最小化处理使得解算后的误差要小于直接由解析方法求解产生的误差。
Non-cooperative bistatic radar systems based on Spacial Motorial Emitter can detect wide distance targets in the ground or in the air. They have the advantages that the receivers are potentially simple and cheap. Bistatic radar may have a counter-stealth capability, since target shaping to reduce monostatic RCS (Radar Cross Section) will in general not reduce the bistatic RCS. In spite of those advantages, they have to face much difficulty such as unknown Emitter’s position and velocity and antenna beam direction. All of these make the target detection become hardness and should be solved by corresponding technology approachs. This dissertation includes system design, clutter analyses, target detection, target location and data association. It aims to overcome the interrelated technology difficulties on this spacial non-cooperative background. All of research content may be the reference for the development of Non-cooperative bistatic radar systems.
     In Chapter 2, AEW (air early warnning) radar signal is chosen to be the emitter. The system design and framework are present on this background. Its performance is analyzed base on certain radar parameters, results reveal the practicability and feasibility of system. At the same time, ground clutter’s space-time-frequency characteristic is studied; the result shows that it is not divisible between ground clutter and targets in the time-frequency fields, while they are divisible in the space-time-frequency union fields.
     In Chapter 3, the algorithm of long-time coherent integration is researched when the range migrations exist in the echo signal. A method of drawing or pulling reference signal is proposed, simulation result shows the method can assemble multi-pulses energy and improve signal-noise-ratio. In order to realizing target detection in clutter and noise background, a target detection algorithm based on mixing product filtering is pointed; it spreads the traditional time-frequency detection to the space-time-frequency union filter. Simulation result shows the effectiveness of the method on the conditional of target signal without covering by clutter in space-time-frequency union fields. In addition, mixing product filtering target detection algorithm relates to a difficulty about range-dependence compensation for bistatic STAP. Because of the RBRDC’s (Registration Based Range Dependence Compensation) defect, a method named range-dependence compensation method based on transformation (RBTRC) is proposed. RBTRC omits needless transformation process, reduces the estimate errors and improves operation efficiency. Aim at the existing compensation method’s deficiency on the condition of range ambiguity, a new method named range-dependence compensation based on data separation was proposed. Data simulation shows that the new method has the better signal-to-noise upgrading performance for range ambiguity radar signal.
     In Chapter 4, the application of stochastic resonance (SR) theory in non-cooperative signal detection field is discussed. Fistly, static threshold system and dynamical bistable system’s SR phenomena are studied; secondly non-cooperative target detection methods using periodic stochastic resonance or aperiodic stochastic resonance are proposed. Unlike traditional non-cooperative detection, SR can achieve high-point output SNR by harmonizing the nonlinear system, signal and noise.
     In Chapter 5, the target location about non-cooperative bistatic radar systems is researched. Two location schemes using TDOA (time difference of arrival) are proposed; one is composed of three receiving stations and emitter, the other is composed of four receiving stations. Their multi-target measurement data association methods are also offered. The simulation result shows target location precision is affected by the position of the emitter in the first method, while target location precision is independent of the position of the emitter in the second method. In addition, a restricted total least squares (RTLS) algorithm based on TDOA is applied to multi-station passive location in order to reduce the target position errors. This algorithm takes into account coefficient matrix errors in the process of calculations, so it has better performance than analytical arithmetic.
引文
[1]宋杰,何友,蔡复青等.基于非合作雷达辐射源的无源雷达技术综述[J].系统工程与电子技术.2009, 31(9):2151-2154.
    [2]王俊,张守宏,保铮.基于外辐射源的无源相干雷达系统及其关键问题[J].现代雷达.2005, 27(4):19-22.
    [3]王小谟,吴曼青,王政.未来战争中的“沉默哨兵”-外辐射源目标探测与跟踪雷达[J].现代军事.2000(10):10-12.
    [4]严明.利用电视调频广播载波信号的双(多)基地雷达系统[J].现代雷达.2000, 22(4):19-24.
    [5]赵洪立.基于调频广播的无源雷达系统中微弱目标检测技术的研究[D].西安:西安电子科技大学,2006.
    [6] Griffiths H D, Long N R W. Television-based bistatic radar [J]. IEE Proceedings part F. 1986, 133(7): 649-657.
    [7] He X, Zeng T, Cherniakov M. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter [J]. IEE Proc. Radar Sonar Naving. 2005, 152(3): 124-132.
    [8]王雄才.基于数字卫星信号的无源雷达关键技术研究[D].南京:南京理工大学, 2004.
    [9]杨进佩.基于GPS的无源雷达技术研究[D].南京:南京理工大学,2006.
    [10] Griffiths H D, Garnett A J. Bistatic radar using satellite-borne illuminators of opportunity [C]. Proc. Radar-92 Conference, 276-279.
    [11] Hawkins J M. An opportunistic bistatic radar [C]. California, US: IEE Radar-97, 318-322.
    [12] A P. Instruments of darkness-the strggle for radar supremacy [J]. William Kimber and Co.ltd.1967:216-218.
    [13]王红梅,胡念英.基于PCL技术的定位系统概述[J].现代雷达.2005, 27(8):18-23.
    [14] Griffiths H D, Baker C J, Ghaleb. Measurement and analysis of ambiguity functions of off-air signals for passive coherent location [J]. Electronics Letter. 2003, 39(13):1005-1007.
    [15]陶然,王越,单涛等.分布式无源检测信息系统研究进展[J].深圳大学学报(理工版).2004, 21(2):101-106.
    [16] Schonenberger J G, Forrest J R. Principles of independent recerivers for use with cooperative radar transmitters [J]. The Radar and Electronic Engineer. 1982, 52(4): 93-101.
    [17] Y B. Dynamic Programming Solution for Detecting Dim Moving Targets [J].IEEE Transactions on AES. 1985, 21(1): 144-156.
    [18] Lightfoot. Television-based bistatic radar location study [J]. IEE Proceedings part F. 1986, 133(7): 649-657.
    [19] Bruce D N. Silent Sentry: A New Type of Radar [J]. Aviation Week&Space Technology. 1998: 70-72.
    [20]周一宇,黄知涛,姜文利.基于非合作照射的目标探测[J].航天电子对抗.2004(2):10-14.
    [21]夏明革,唐小明,何友.基于机会发射的无源雷达系统发展评述[J].现代雷达. 2002, 24(2):1-6.
    [22]李硕.利用外辐射源探测目标若干问题研究[D].北京:北京理工大学,2004.
    [23]杨振起,张永顺,骆永军.双多基地雷达系统[M].北京:国防工业出版社,1998.
    [24] YS. A method of self-recovering equalizaion for multilevel amplitude-mudulation systems [J]. IEEE Trans 23(11): 679-682.
    [25]张兴国.复杂背景中目标检测与定位技术[D].西安:西安电子科技大学,2006:14-21.
    [26] Richard J C, Schniter P, Thomas J E. Blind equalization using the constant modulus criterioin: A review [J]. Proceeding of the IEEE.1998, 86(10):927-950.
    [27] Macchi O, Jaidane M, Saidane. Stability of adaptive recursive filters [C]. New York: IEEE International Conference on Acoustics Speech and Signal Processing, 1503-1505.
    [28] Hatzinakos D, Nikias C L. Blind equalization using a tricepstrum based algorithm [J]. IEEE Trans on Commun.1991, 39:669-682.
    [29] Fiori S, Uncini A, Piazza F. Blind decovolution by modified Bussgang algorithm [J]. ISCAS99, Processing of the 1999 IEEE (3):1-4.
    [30] Hong W, Shentang L, Zhigang W. The Implementation of Adaptive LMS Clutter Cancellation based on FM Broadcast [C]. Proceedings of the First International Conference on Innovation Computing, Information and Control, 2006.
    [31] Wojciech M Z, Karlowicz P, Jurkiewicz J. Adaptive cancellation of harmonic interferences in transcranial Doppler signal [J]. Photonic Applications in Astronomy, Comunications, Industry, and High-Energy Physics Experiments. 2004(3):584-588.
    [32]徐世友.基于非合作辐射源的空间目标探测技术研究[D].长沙:国防科学技术大学,2008.
    [33] Knapp C H, Carter G C. The generalized correlation method for estimation of time delay [J]. IEEE Trans. on ASSP.1976, 24(3):320-327.
    [34]唐小明.无源相干定位雷达技术研究[D].武汉:海军工程大学,2004.
    [35] Nikias C L, Pan R. Time delay estimation in unknown Gaussian spatiallycorrelated noise [J]. IEEE Trans. on ASSP.1988, 36:1706-1714.
    [36] Tugnait J K. On time delay estimation with unknown spatially correlated Gaussian noise using fourth-order cumulants and cross cumulants [J]. IEEE Trans. On SP.1991, 39:1258-1267.
    [37] Gardner W A, Chen C K. Signal-selective time-difference-of arrival estimation for passive location of man-made signal source in highly corruptive environments [J]. Part I: Theory and method. IEEE Trans. on SP.1992, 40:1185-1197.
    [38]许德刚,朱子平,洪一.自适应滤波在无源探测中对杂波抑制的应用[J].系统工程与电子技术.2006, 28(2):202-206.
    [39]王俊,水鹏朗,保铮等.基于分数迟延估计的外辐射源雷达杂波相消算法[J].西安电子科技大学学报.2005, 32(3):378-385.
    [40]刘志强,马红光,杨利锋.基于混合模型的强直达波与多径杂波消除[J].现代雷达.2008, 30(6):57-64.
    [41] Elliott D F. Handbook of digital signal process [M].Academic Press,1987: 789-855.
    [42]孙水发,郑胜,万均力.非周期随机共振信号处理物理机制研究[C].杭州:第九届全国振动理论及应用学术会议,40-44.
    [43]段江海,宋爱国,王一清.随机共振理论在微弱信号检测中的应用研究[J].信号处理.2003, 19(6):570-573.
    [44] Benzi R, Srutera A, Vulpiani A. The mechanism of stochastic resonance [J]. Phys A. 1981, 14(11): 453-457.
    [45] Fauve S, Heslot F. Stochastic resonance in a bistable system [J]. Phy Lett A. 1983, 97(12): 5-9.
    [46] Dykman M I, Luchinsky D G. Stochastic resonance: Linear response theory and giant nonlinearity [J]. J Stat Phys. 1993, 70(12): 463-479.
    [47] Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Phys Rev lett. 1990, 64(11): 1196-1199.
    [48] Pecora L M, Carroll T L. Synchronization in chaotic sytems [J]. Phys Rev Lett. 1990, 64(8): 821-824.
    [49] Carroll T L, Pecora L M. Synchronization chaotic circuits [J]. IEEE Trans on Circuits and System. 1991, 39(4): 453-456.
    [50]王冠宇,陈大军,林建亚.Duffing振子微弱信号检测方法的统计特性研究[J].电子学报.1998, 26(10):38-44.
    [51] Duan J H, Song A G, Wang Y Q. Stochastic resonance in a single bistable neuron and its application [J]. IEEE Int Conf on Neural Network and Signal Processing: 193-196.
    [52] Barbay S, Giacomelli G, Marin F. Experimental evidence of binary aperiodicstochastic resonance [J].Phys Rev Lett.2000, 85(22):4652-4655.
    [53] Barbay S, Giacomelli G, Marin F. Noise-assisted transmission of binary information: Theory and Experiment [J]. Phys Rev E.2001, 63(5):105-113.
    [54] Duan J H, Song G A, Wang Y Q. Aperiodic Stochastic Resonance in the Schmit Trigger [J]. J of Southeast University. 2003, 19(2): 114-116.
    [55]刘立,吴大进.随机共振研究新进展[J].大学物理.2009,28(9):46-50.
    [56] Grossberg S. Nonlinear neural networks: Principles, mechanisms and architectures [J]. Neural Networks.1988,1:17-61.
    [57]梁军利,杨树元,唐志峰.基于随机共振的微弱信号检测[J].电子与信息学报. 2006, 28(6):1068-1072.
    [58]刘锋力.参数调节随机共振与二进制基带数字信号传输[D].杭州:浙江大学, 2004.
    [59]胡茑庆,温熙森,陈敏.随机共振原理在强噪声背景信号检测中的应用[J].国防科技大学学报.2001, 23(4):40-44.
    [60] Dmitrii G L, Riccardo M and Peter V E. Stochastic Resonance in Electrical Ciruits-I: Conventional Stochastic Resonance [J]. IEEE Trans on Circiuts and System-II: Analog and Digtal Signal Processing.1999, 46(9).
    [61] Mcnamara B, Wiesenfeld K. Theory of Stochastic Resonance [J]. Phys Rev A. 1989, 39:4854-4870.
    [62]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].长沙:国防科学技术大学,2004.
    [63]张雷,宋爱国.随机共振在信号处理中应用研究的回顾与展望[J].电子学报. 2009, 37(4):811-816.
    [64] F D, F C, D A. Theory of Array stochastic resonance in a parallel array of nonlinear dynamical elements [J]. Physics Letters A. 2008, 372(13): 2159-2166.
    [65]段江海,宋爱国,王一清.双稳系统中非周期随机共振的数值仿真[J].电路与系统学报.2004,2(4):234-237.
    [66] Stocks N G. Suprathreshold stochastic resonance: an exact result for uniformly distributed signal and noise [J]. Physics letters A. 2001, A 279: 308-312.
    [67] Asdi A S, Tewfik A H. Detection of weak signals using adaptive stochastic resonance [J]. Proc of the 1995 IEEE Int Conf on Acoustics, Speech and Signal Processing: 1332-1335.
    [68]赵文礼,郭丽红.随机共振及其微弱信号的自适应检测[J].电子测量与仪器学报. 2006, 20(5):21-25.
    [69]黄文静.系统随机共振的最佳耦合矩阵[D].长沙:湖南师范大学,2008.
    [70]段法兵.参数调节随机共振在数字信号传输中的应用[D].杭州:浙江大学,2002.
    [71] Xu B, Jiang Z, Wu X. Theoretical Analysis of Image Processing UsingParameter-Tuning Stochastic Resonance Technique [J]. Proceedings of the 2007 American Control Conferencea.2007:1747-1752.
    [72]胡岗.随机力与非线性系统[M].上海:上海科技教育出版社,1994.
    [73] Ott E, Grebogi C, Yorke J A. Conrolling chaos [J]. Phys Rev letter.1990,64(11): 1196-1199.
    [74] Smith J O, Abel J S. Closed-form least-squares source location estimation from range-difference measurements [J]. IEEE Trans. Acoust, Speech, Signal Processing. 1987, 35(11): 1661-1669.
    [75] Chan Y T, Ho K C. A simple and efficient estimator for hyperbolic location [J]. IEEE Trans on Signal Processing.1994, 42(8):1905-1915.
    [76] Chan Y T, Pak-Chung C. Exact and Approximate Maximum Likelihood Localization Algorithms [J]. IEEE Trans on VTC. 2006, 55(1): 10-16.
    [77] Petre S, Jian L. Source Localization from Range-Difference Measurements [J]. IEEE Signal Processing magazine. 2006, 63(11): 63-65.
    [78] Chan Y T, Tower J J. Sequential localization of a radiating source by Doppler-shifted frequency measurements [J]. IEEE Trans on AES.1992,28(4).
    [79] K C H, Y T C. Geolocaion of a known altitude object from TDOA and FDOA measurements [J]. IEEE Trans on AES. 1997, 33(3):770-783.
    [80] K C H, Wenwei X. An accurate algebraic solution for moving source location using TDOA and FDOA measurements [J]. IEEE Trans on Signal Processing. 2004, 52(9): 2453-2463.
    [81] Griffiths H D, Baker C J. Passive coherent location radar systems. Part 1: Performance predication. [J]. IEE Proc. Radar Sonar Naving. 2005, 152(3):13-16.
    [82] Yardley H J. Bistatic radar based on DAB illuminators: the evolution of a practical system [J]. IEEE Aerospace and Electronic Systems Magazine. 2007, 22(11):13-16.
    [83]王君,高晓光.多雷达站组合三角定位算法研究[J].系统工程与电子技术.2008, 30(11).
    [84]张正明.辐射源无源定位研究[D].西安:西安电子科技大学,2000.
    [85]吴建新.机载雷达运动目标检测的杂波抑制方法[D].西安:西安电子科技大学,2006.
    [86]王明阳.非合作超宽带冲激无线电信号检测技术研究[D].长沙:国防科技大学, 2006.
    [87]台风. E-2"鹰眼"预警机的前世今生[J].海空力量.2005(6):73-78.
    [88]徐永胜,张红兵.E-2C"鹰眼"预警机的现状与发展[J].电讯技术.2005(3):21-25.
    [89]丁鹭飞,耿富录.雷达原理[M].西安电子科技大学出版社,2004.
    [90] Seymour S. Algorithms for Ambiguity Function Processing [J]. IEEETransactions on Acoustics, Speech and Signal Processing. 1981, 29(3):71-104.
    [91]黄巍.相关检测在宽带雷达信号处理中的应用[J].现代雷达.2005, 27(2):36-39.
    [92]陈华敏,师学明,李大心.二维相干技术在微弱信号检测中的应用[J].西安工业学院学报.2004, 24(2):118-123.
    [93]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社,1996.
    [94]向敬成,张明友.雷达系统[M].北京:电子工业出版社, 2001.
    [95]高志文,陶然.外辐射源雷达的相干积累增益计算及性能分析[J].电子学报.2008, 36(6):1227-1230.
    [96]王俊,张守宏,保铮.基于外照射的无源相干雷达系统及其关键问题[J].电波科学学报.2005, 20(6):381-386.
    [97]丁鹭飞,张平.雷达系统[M].西安:西北电讯工程学院出版社,1984.
    [98]张长隆,王展,周良柱.线性调频脉冲压缩雷达杂波统计模型分析[J].电波科学学报.2004, 19(2).
    [99]吴洪,王永良.双基地机载预警雷达杂波建模与分析[J].电子学报.2006(12): 2210-2213.
    [100]王超,王永良.外辐射源机载预警雷达系统的信杂比[J].雷达科学与技术.2006, 4(4): 202-208.
    [101] Long M W. Radar Reflectivity of Land and Sea [D]. Artech House, 1991.
    [102] Pearson F, Borsari G. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars [D]. ASAP Symp. Lexington, MA: 2001.
    [103] Chan H C. Radar sea-clutter at low grazing angles [J]. Proc IEE.2004, 137(2): 102-112.
    [104]林海滨.基于外辐射源的雷达系统的研究[D].航天科工集团第二研究院,2002.
    [105]苏卫民,顾红,张先义.基于外辐射源的雷达目标探测与跟踪技术研究[J].现代雷达.2005, 27(4):19-22.
    [106]于立.外辐射源雷达目标检测技术研究[D].南京:南京理工大学,2007.
    [107]焦健.基于外辐射源雷达系统中的数据处理[D].南京:南京理工大学,2004.
    [108]王清华.微弱动目标回波信号的检测与参数估计[D].电子科技大学,2005.
    [109]王根源,保铮.逆合成孔径雷达运动补偿中包络对齐新方法[J].电子学报.1998, 22(8):5-9.
    [110]陈远征,朱永锋,赵宏钟.基于包络插值移位补偿的高速运动目标积累检测算法研究[J].信号处理.2004, 20(4):25-29.
    [111]王俊,张守宏.微弱目标积累检测的包络移动补偿方法[J].电子学报.2000,28(12):59-86.
    [112] Zhu D Y, Li Y, Zhu Z D. A keystone transform without interpolation for SAR ground moving-target imaging [J]. IEEE Geosci. Remote Sens.letts.2007, 4(1): 18-22.
    [113]王远模,马君国,付强.高速运动目标的积累检测研究[J].现代雷达.2006, 28(3): 75-79.
    [114]吴海洲.数字电视辐射源雷达直达波干扰抑制技术研究[D].北京:北京理工大学,2009.
    [115]王永良,魏进武,陈建文.双基地机载预警雷达空时二维杂波建模及杂波特性分析[J].电子学报.2001, 29(12A):1940-1943.
    [116]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000.
    [117] Gurran P R, Goodman N A. Spectral-Domain Covariance Estimation with A priori knowledge [J]. IEEE Transactions on Aerospace and Electronic system. 2006, 42(3):122-127.
    [118] Borsari G. Mitigating effects on STAP processing caused by an inclined array [Z]. IEEE Radar Conf Dallas, Tx, 135-140.
    [119] Wang H, Cai L. On Adaptive Spatial-Temporal Processing for Airborne Surverllance Radar Systems [J]. IEEE Transctions on AES. 1994, 30(3): 660-670.
    [120] Brennan L E. Theory of Adaptive Radar [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. 1973, AES-9(2): 237-252.
    [121] Borsari G. Mitigating effects on STAP processing caused by an inclined array [C]. Dallas: IEEE Radar Conf, 2006:1233-1237.
    [122]刘福声,罗鹏飞.统计信号处理[M].长沙:国防科技大学出版社,1999.
    [123]范钦珊.数学手册[M].北京:高等教育出版社,2001.
    [124] Pearson F, Borsari G. Simulation and analysis of adaptive interference suppression for bistatic surveillance radar [D]. In Proceeding of 2001 ASAP Symposium, Lexington, MA: 2001.
    [125]黄雪梅.基于外辐射源的目标回波参数估计算法研究[D].成都:电子科技大学, 2007.
    [126] Himed B, Zhang Y, Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars [C]. Long Beach, Calif, USA: IEEE National Radar Conference 2003: 311-317.
    [127] Lapierre F D, Verly J G, Droogenbroeck M V. New solutions to the problem of range dependence in bistatic STAP radars [C]. Ala, USA: IEEE National Radar Conference Huntsville, 452-455.
    [128] Prashanth R, Gurran Nathan, Goodman A. Spectral-Domain Covariance Estimation with A priori knowledgevol [J].IEEE Transactions on Aerospace andElectronic system. 2006, 42(3).
    [129] Pearson F, Borsari G. Analysis of adaptive interference suppression for bistatic survellance radar [J].Proceedings of 2003 ASAP Symposium Ala USA.2003: 320-335.
    [130] Himed B, Zhang Y, Hajjari A. STAP with Angle-Doppler Compensation for Bistatic Airborne Radars [J]. IEEE. 2002: 311-317.
    [131] Li-Juan H, Zhu-Ming C, Rui D. Modeling of Varying Geometrical Scenarios of Bistatic Radar[C]. Xiamen, China: Proceeding of 2007 Internatianal Symposium on Intelligent Signal Processing and Communication Systems, 354-359.
    [132] Lapierre F D, Verly J G.“Registration-based solutions to the range-dependence problem in STAP radars”[D]. MIT Lincoln Laboratory, Lexington, Mass, USA: 2003.
    [133] Lapierre F D, Verly J G. Registration-Based Range-Dependence Compensation for Bistatic STAP Radars [C]. EURASIP Journal on Applied Signal Processing: 78-88.
    [134] Wart L M. Radar Reflectivity of Land and Sea [M]. Norwood MA, Artech House, 1991.
    [135]杨保国.基于随机共振现象的微弱信号检测[D].哈尔滨:哈尔滨工程大学,2009.
    [136]段江海.混沌、随机共振在信号检测中的应用[D].南京:东南大学,2004.
    [137]冷永刚,王太勇,郭焱等.基于双稳类随机共振的信息检测[J].电子与信息学报. 2005,27(5):734-739.
    [138]康艳梅,徐健学,谢勇.双稳杜芬振子的随机共振及其动力学机制[J].力学学报. 2004,36(2):247-252.
    [139]林敏,黄咏梅.基于振动共振的随机共振控制[J].物理学报.2007,56(11): 6173-6177.
    [140]冷永刚,王太勇,郭焱.双稳随机共振参数特性的研究[J].物理学报.2007,56(1): 30-35.
    [141]叶青华,黄海宁,张春华.用于微弱信号检测的随机共振系统设计[J].电子学报. 2009, 37(1):216-220.
    [142] Xu B, Duan F, Ronghao B. Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing [J]. Chaos, Solitons and Fractals. 2002, 13: 633-644.
    [143] Collins J J, Chow C C. Stochastic resonance without tuning [J]. Nature. 1995, 376: 236-238.
    [144]杨伟.阈值系统中的随机共振研究[D].燕山:燕山大学,2007.
    [145] Francois C. Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel [J]. Physical Review E.1997, 55(2):2016-2020.
    [146]蒋国军.高斯背景干扰下瞬态信号检测[D].哈尔滨:哈尔滨工程大学,2005.
    [147]张宁,林春生.基于非高斯AR模型微弱信号双谱分析[J].武汉理工大学学报(交通科学与工程版), 2008, 32(1):126-129.
    [148]雷卫延.基于随机共振的微弱信号检测技术研究[D].广州:中山大学,2005.
    [149] Kay S M. Fundamentals of Statistical Signal Processing,vol II Detection Theory[M]. Prentice Hall PTR, 1998.
    [150]曾建奎,何子述,刘红明.一种基于改进Hough变换的雷达检测方法[J].电波科学学报.2008, 23(5):838-904.
    [151]王建钢,花兴来,赵国林.基于相位变化率的单站EKF定位算法研究[J].电子信息对抗技术.2006, 21(1):26-31.
    [152]吴乐南,张晓冬.基于民用广播、电视信号的被动定位方法研究[J].东南大学学报(自然科学版). 2002, 32(6):853-857.
    [153]王成,李少洪,王鑫全.测时差被动定位算法研究[J].系统工程与电子技术.2001, 23(11): 9-12.
    [154]李华.多站差分多普勒定位技术[J].电子对抗技术.1998, 13(6):15-23.
    [155]王超锋.基于外辐射源雷达目标定位技术的研究[D].南京:南京电子技术研究所,2005.
    [156]王永诚,张令坤.多站时差定位技术研究[J].现代雷达.2003, 25(2):1-4.
    [157]丁玉成,闫世强.四站时差定位测高精度的仿真研究[J].空军雷达学院学报. 2005, 19(3):18-20.
    [158]陈永光,李昌锦,李修和.三站时差定位的精度分析与推算模型[J].电子学报. 2004, 32(9):1452-1455.
    [159]辛云宏,杨万海.被动多站多目标的测量数据关联算法研究[J].宇航学报.2005, 26(6):748-752.
    [160]周莉,张维华,何友.三站无源定位系统数据关联算法[J].系统工程.2006, 24(4): 118-122.
    [161]杨林,孙仲康,周一宇等.信号互相关实现密集脉冲配对[J].电子学报.1999, 27(3): 52-55.
    [162]王成,李少洪,黄槐.多站被动雷达系统的多目标测量数据关联[J].电子学报. 2002, 30(12):1857-1960.
    [163]王成,李少洪,黄槐.测向交叉定位系统的多目标测量数据关联[J].系统工程与电子技术.2002, 24(9):104-107.
    [164]修建娟,何友,王国宏等.被动定位系统中的方位数据关联[J].系统工程与电子技术.2003, 25(3):280-283.
    [165]丁卫华,陈京平,吴才广.无源雷达布站形式对目标定位精度的影响[J].空军雷达学院学报.2003, 7(4):16-19.
    [166]易岷.时延及相关参数估计技术研究[D].成都:电子科技大学,2004.
    [167] Foy W H. Position-location solutions by Taylor series estimation [J].IEEE Trans on AES. 1976, 12(3): 187-194.
    [168] Abatzoglou T J, Mendel J M. Constrained total least squares [J].IEEE ICASSP TX: Dallas. 1987: 1485-1488.
    [169] Abatzoglou T J, Mendel J M, Harada G A. The constrained total least squares technique and its applicaions to harmonic supersolution [J].IEEE Trans on Signal Processing. 1991, SP-39: 1070-1087.
    [170]赵瑞安,吴方.非线性最优化理论和方法[M].杭州:浙江科学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700