用户名: 密码: 验证码:
人参水提果胶的结构及其在细胞壁中的分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C. A. Meyer)作为名贵中药在我国已有4000多年的应用历史。人参中含有多种有效成分,如人参皂甙、多肽、挥发油、寡糖和人参多糖等。人参多糖主要是由人参淀粉和人参果胶两部分组成。人参淀粉是淀粉样葡聚糖,来源于造粉体;人参果胶为含有半乳糖醛酸(GalA)的一大类多糖分子,来源于人参根细胞壁。研究表明人参果胶具有调节免疫、抗辐射、抑制肿瘤细胞迁移、促进细胞凋亡等活性。但目前对人参果胶在细胞壁中的分布情况以及精细结构缺少全面系统的研究。本论文通过免疫组化的方法,利用抗体作为探针对植物细胞壁多糖的分布进行了研究。然后提取分离人参多糖,在本实验室前期研究的基础上,进一步利用酶水解、离子交换和凝胶层析等组合方法制备人参果胶分子的各种结构域,研究其分子的精细结构。研究结果如下:
     利用细胞壁多糖抗体,采用免疫组化的方法,结合碱处理和酶作用研究了结晶化纤维素、半纤维素、果胶和蛋白聚糖这些细胞壁多糖或蛋白多糖在人参根中的分布和含量。人参根初级细胞壁多糖组成为:结晶化的纤维素、木葡聚糖、甘露聚糖、I型聚鼠李半乳糖醛酸(RG-I)型果胶结构域、阿拉伯半乳聚糖蛋白(AGP)以及高度甲酯化的同聚半乳糖醛酸(HG)结构域。次级细胞壁主要含有木聚糖、extensin以及未甲酯化和乙酰化的HG型果胶。AGP蛋白聚糖分布比较广泛,分布于人参根中的三个部位:淀粉粒表面,初级细胞壁以及树脂道中。经研究证明在人参根中HG能够掩盖一些多糖的抗原表位,这种现象广泛存在于植物体中。HG能够掩盖半纤维素的抗原表位证明了HG和半纤维素之间存在某种方式的连接;HG能够掩盖阿拉伯聚糖和AGP糖基的抗原表位,但是不能掩盖半乳聚糖的抗原表位,进一步表明了在植物体中果胶分子组建成为高级结构时HG和半乳聚糖装配于高级结构的表面,而阿拉伯聚糖和阿拉伯半乳聚糖包裹于高级结构的内部。
     根据本实验室系统分级人参多糖的方法,制备出人参多糖的五个级分WGPA-H、WGPA-1、WGPA-2、WGPA-3和WGPA-4,再根据分子量分布用凝胶层析将WGPA-1~WGPA-4进一步分级得到WGPA-1-HG~WGPA-4-HG四个HG结构域和WGPA-1-RG~WGPA-4-RG四个RG结构域。为制备非HG型结构域,将人参果胶WGPA用果胶酶水解除去其中的HG结构域,然后采用DEAE-Sepharose Fast Flow离子交换柱,以0、0.07、0.16、0.22和0.3 M的NaCl水溶液分步洗脱,得到相应的五个级分WGPA-UD1、WGPA-UD2、WGPA-UD3、WGPA-UD4和WGPA-UD5。根据分子量大小的不同,用凝胶柱层析将WGPA-UD2~WGPA-UD5进一步纯化得到RG-I-1、RG-I-2、RG-I-3A、RG-I-3B和RG-I-4五个RG-I级分以及AG1、AG2两个AG级分和HM-HG一个HG级分。
     通过酶学方法、酶联免疫吸附法、高效液相色谱、13C-核磁共振(13C NMR)分析测定人参果胶多糖各级分的结构特征。结果表明WGPA-1-HG和WGPA-2-HG主要含有甲酯化和乙酰化的HG,另外还有少量的RG-I型果胶,其侧链为II型阿拉伯半乳聚糖(AG II)。WGPA-3-HG是甲酯化非常高的HG,WGPA-4-HG是未酯化的HG型果胶,在这两个级分中也存在短的AG II。RG-I-2、RG-I-3A、RG-I-3B和RG-I-4都是带有RG-I型和聚GalA片段的结构域的多糖分子。RG-I-2和RG-I-3B的分子量较小,为5 Kd,GalA的含量远远高于鼠李糖(Rha)含量。通过NMR结果显示RG-I-2和RG-I-3B的甲酯化和乙酰化度比较高,说明这两个级分中含有长的甲酯化或者乙酰化的聚GalA片段。这两个级份的侧链比较复杂,有阿拉伯半乳聚糖。RG-I-3A和RG-I-4的分子量大于50 Kd,在这两个级分中Rha/GalA的比例分别为0.34和0.64,它们的乙酰化度近于100%,说明这两个级分中都含有高乙酰化的聚GalA片段,其侧链为阿拉伯半乳聚糖,半乳聚糖和少量的阿拉伯聚糖。应用细胞壁抗体检测这些果胶中含有的抗原表位,发现在树脂道中结合的抗体与这些RG-I果胶结构域都有很强的结合,而在树脂道中没有结合的抗体也不能与这些RG-I果胶结构域结合,由此推测人参水提果胶多糖来源于人参根的树脂道以及组成树脂道的上皮细胞。
     RG-I-3A和RG-I-4两个级分经过各种与果胶相关的酶进一步水解或者部分酸水解处理之后,再采用13C NMR和酶联免疫吸附法分析得到的多糖分子,以便探讨RG-I-3A和RG-I-4的精细结构。结果表明RG-I-4具有较长的高度乙酰化的聚GalA片段。RG-I-4的主链以α-(1→4)–GalpA构成的HG型结构域作为“平滑区”,以[→4)-α-GalpA-(1→2)-α-Rhap-(1→]构成的RG-I型结构域连接较多侧链形成的“毛发区”。RG-I-3A的主链由两部分组成,四糖结构域[→4)-α-GalpA-(1→4)-α-GalpA(1→4)-α-GalpA-(1→2)-α-Rhap-(1→]n以及二糖结构域[→4)-α-GalpA-(1→2)-α-Rhap-(1→]n。RG-I-3A和RG-I-4的GalA全部在O-2或者O-3被乙酰基取代。
     由13C NMR和酶联免疫吸附法的结果也推测RG-I-3A和RG-I-4的侧链相似,侧链多且较短,RG-I-3A的侧链取代度为71%,RG-I-4的取代度为67%,侧链有以下种形式:[α-1,5-Araf]5-7,[α-1,5-Araf]1-4,含量较低,更多的Ara处于非还原末端;少量的[β-1,4-Galp]4-6,80%以上的[β-1,4-Galp]1-4;非常少量的[β-1,3/1,6-Galp]1-2,其中[β-1,3/1,6-Galp]1-2通过Rha的C-4连接到主链。
Panax ginseng C. A. Meyer (P. ginseng) has been used in China as traditional medicine for more than 4,000 years. P. ginseng contains many active components including ginsenosides, ginseng peptide, oliogosaccharides and ginseng polysaccharides. Ginseng polysaccharides are composed of starch-like glucans and ginseng pectic polysaccharides. Ginseng pectic polysaccharides are one of the three main components of ginseng root cell walls. Ginseng pectic polysaccharides have a wide range of pharmacological and therapeutically actions. They act on the central nervous system, cardiovascular system and endocrine secretion, promote immune function and metabolism, possess bio-modulation action and also have anti-stress and anti-ageing activities. However, little is known about the distribution of ginseng pectin polysaccharides in cell walls and their fine structures. We have undertaken an immunochemical study of ginseng polysaccharides. Antibodies directed to cell wall polysaccharide epitopes are important tools for the immunochemical analysis of polysaccharides in situ and they can also be useful to identify structural features present in isolated polysaccharide fractions. A combination of enzyme treatment, anion-exchange and size-exclusion chromatographies are used to fractionate different pectic polysaccharide domains; then the structures of the isolated pectic polysaccharide domains were studied by enzymolysis, ELISA, chemical methods and instrumental analysis.
     Here we report a study of the use of the cell wall antibodies in immunofluorescence procedures to determine the distribution and contents of cellulose, hemicelluloses, pectic polysaccharides and protoglycan in ginseng roots. Primary cell wall polysaccharides in ginseng roots are made of crystalline cellulose, xyloglucan, mannan, rhamonogalacturonan I (RG-I), protoglycans and high-methyl homogalacturonan (HG). Secondary cell wall is mainly composed of xylan, extensin and high-acetylated HG. Arabinogalactan protein (AGP) glycan is present on the surface of starch granules, in secretory cavities and in primary cell walls, which indicate diverse functions of AGP in ginseng roots. The results also showed that HG masking the epitopes of hemicelluloses and pectic polysaccharides in situ is widespread phenomenon in the primary ginseng cell walls. HG could mask the epitopes of hemicelluloses indicates that there are linkages between HG and hemicelluloses although we could not deduce if it is covalent linkages or not. HG could mask the epitopes of arabinan and AGP glycans but not galactan indicate that when the polymers assemble into cell walls, HG and galactan are present on the surface of cell wall, while arabinan and AGP glycans are wrapped inside.
     In order to study the structure characteristics of water-extracted pectic polysaccharides, ginseng pectin were fractionated systematically and detailedly according to the previous study in our lab. WGPA-H, WGPA-1, WGPA-2, WGPA-3 and WGPA-4 were made according to the method in our lab. Then WGPA-1~WGPA-4 were separated by size-exclusion chromatography to obtain four HG fractions and four RG fractions. In order to get non-HG pectic polysaccharides, ginseng pectin WGPA was hydrolyzed by endo-polygalacturonase to remove the un-esterified HG domain, then the hydrolysate was separated by a combination of anion-exchange and size-exclusion chromatography to get five RG-I fractions (RG-I-1, RG-I-2, RG-I-3A, RG-I-3B and RG-I-4), two AG fractions (AG1 and AG2) and one HG fraction (HM-HG).
     The structural features of isolated pectic fractions were elucidated using enzymolysis, HPLC, ELISA and 13C NMR. Analytical results showed that WGPA-1-HG and WGPA-2-HG were composed of a linearα-1,4-linked D-GalA with different degree of methyl-esterification and acetylation, and a small amount of neutral sugars that existed in these fractions might constitute RG-I domains with type II arabinogalactan linked to HG domains. Both WGPA-3-HG and WGPA-4-HG contain un-esterified and methyl-esterified HG. RG-I-2, RG-I-3A, RG-I-3B and RG-I-4 contain the characteristic monosaccharide compositions of RG-I which are GalA, Rha, Gal and Ara. Fractions RG-I-2 and RG-I-3B were two similar fractions, which had small molecular weights (around 5 Kd) and low ratios of Rha/GalA (around 0.25). RG-I-2 and RG-I-3B contained highly esterified HG segments and the the side chains were very complexed with type I and type II arabinogalactan (AG) as side chains. RG-I-3A and RG-I-4 are high molecular weight fractions that have similar compositions including typical RG-I monosaccharides and NMR peaks indicating high acetylation. Results showed that these two fractions contained highly esterified HG segments and the side chains were AG. Immunochemical analysis was processed on the structure features of the isolated ginseng pectic fractions which showed some antibodies bound strongly on these fractions. The striking feature of the in situ localization of the epitopes (that were observed to be abundant in the isolated ginseng fractions) is their predominant occurrence in the regions of cortical secretory cavities of the roots. The other cell wall components such as hemicelluloses that were not detected in the isolated fractions were not abundantly detected at these cavities. So the water-extracted pectic polysaccharides originated from secretory cavities.
     Pectin related enzyme hydrolysis, partial acid hydrolysis, 13C NMR and ELISA were used to study the fine structures of RG-I-3A and RG-I-4. The results showed that the backbone of RG-I-3A consists of two segments: the four residues repeats [→4)-α-GalpA-(1→4)-α-GalpA(1→4)-α-GalpA-(1→2)-α-Rhap-(1→]n and two residues repeats [→4)-α-GalpA-(1→2)-α-Rhap-(1→]n. The backbone of RG-I-4 consists of the―smooth region‖ofα-(1→4)–GalpA and [→4)-α-GalpA-(1→2)-α-Rhap-(1→]n as the―hairy region‖. The side chains of RG-I-3A and RG-I-4 are short and concentrated. All the side chains are attached to the O-4 of Rha in the backbone. 71% of Rha in RG- I-3A and 67% of Rha in RG-I-4 contained side chains. There are several types of side chains: small amount of [α-1,5-Araf]5-7; [α-1,5-Araf]1-4, most Ara is on the non-reduce terminate; less [β-1,4-Galp]4-6, more than 80% [β-1,4-Galp]1-4; less [β-1,3/1,6-Galp]1-2 which linked to the C-4 of Rha.
引文
[1] Huala E, Sussex I M. Determination and cell interactions in reproductive meristems [J]. Plant cell, 1993, 5: 1157-1165.
    [2] Smith A, Coupland G, Dolan L, et al. Plant biology [M]. New York: Garland Science, 2010.
    [3] Steeves T A, Sussex I M. Patterns in plant development [M]: 2ed edition. Cambridge: Cambridge University Press.
    [4] McCann M C, Roberts K. Architecture of the primary cell wall [M]. London: Acadamic press, 1991, 109-129.
    [5] Kroon-Batenburg L M J, Kroon J. The crystal and molecular structures of cellulose I and II [J]. Glycoconjugate J, 1997, 14: 677-690.
    [6] Franz G, Blaschek W. Cellulose [J]. Methods plant biochem, 1990, 2: 291-317.
    [7] Hayashi T. Xyloglucans in the primary cell wall [J]. Annu Rev Plant Physiol Plant Mole Biol, 1989, 40: 139-168.
    [8] Fry S C, York W S, Albersheim P, et al. An unambiguous nomenclature for xyloglucan derived oligosaccharides [J]. Physiologia Plantarum, 1993, 89: 1-3.
    [9] Hilz H. Characterization of cell wall polysaccharides in bilberries and black currants [D]: (PhD thesis). Wageningen, Wageningen University, 2007.
    [10] Albersheim P, Darvill A, Roberts K, et al. Plant cell walls [M]. New York: Garland Science, 2010, 68-94.
    [11] Schimizu K. Chemistry of hemicelluloses [M]. In wood and cellulosic chemistry, 177-214.
    [12] Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth [J]. Plant J, 1993, 3: 1-30.
    [13] Scheller H V, Ulvskov. Hemicelluloses [J]. Annu Rev Plant Physiol, 2010, 61: 263-289.
    [14] McCann M C, Roberts K. Architecture of the primary cell wall [M]. London, Academic Press, 1991. 109-128.
    [15] Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth [J]. Plant J, 1993, 3: 1-30.
    [16] Cassab G I. Plant cell wall proteins [J]. Annu rev plant physiol Plant Mol Boil, 1998, 49: 281-309.
    [17] Knox J P. The use of antibodies to study the architecture and development regulation of plant cell walls [J]. Int rev Cytol, 1997, 171: 79-120.
    [18] Kieliszewski M J. The latest type on Hyp-O-glycosylation codes [J]. Phytochem, 2001, 57: 319-323.
    [19] Showalter A M. Structure and function of plant cell wall proteins [J]. Plant cell, 1993, 5: 9-23.
    [20] Kieliszewski M J, O’Neill M, Leykam J F, et al. Tandem mass spectroscopy and structural elucidation of glycopeptides from a hydroxylproline-rich plant cell wall glycoprotein indicate that contiguous hydroproline residues are the major sities of hydroxyproline O-arabinosylation [J]. J Boil chem, 1995, 270: 2541-2549.
    [21] Zimmermann P, Hirsh-Hofmann M, Hennig L, et al. Genevestigator: Arabidopsis microassay database and analysis toolbox [J]. Plant physiol, 136: 2621-2632.
    [22] Cannon M C, Terneus K, Hall Q, et al. Self-assembly of plant cell walls requires an extension scaffold [J]. Proc Natl Acad Sci USA, 2008, 105: 2226-2231.
    [23] Kieliszewski M J, Lamport D T A. Extension: repetitive motifs, functional sites, post-translational codes, and phylogeny [J]. Plant J, 1994, 5: 157-172.
    [24] Stafstrom J P, Staehelin L A. Cross-linking patterns in salt-extractable extension from carrot cell walls [J]. Plant physiol, 1986, 81: 234-241.
    [25] Du H, Clarke A E, Bacic A. Arabinogalactan-proteins: a class of extracellular matrix proteoglycans involved in plant growth and development [J]. Trends plant sci, 1996, 6: 411-414.
    [26] Anderson R L, Clarke A E, Jermyn M A, et al. A carbohydrate-binding arabinogalactan-protein from liquid suspension cultures of endosperm from lolium multiflorum [J]. Aust J Plant Physiol, 1977, 4: 143-158.
    [27] Clarke A E, Anderson R L, Stone B A. Form and function of arabinogalactans and arabinogalactan-protein [J]. Phytochemistry, 1979, 18: 521-540.
    [28] Gaspar Y, Johnson K L, McKenna J A, et al. The complex structures of arabinogalactan-proteins and the journey towards understanding function [J]. Plant Mol Boil, 2001, 47: 161-176.
    [29] Showalter A M. Arabinogalactan-proteins: structure, expression and function [J]. Cell Mol Life Sci, 2001, 58: 1399-1417.
    [30] O’Neill M, Albersheim P, Darvill A. Methods in Plant Biochemistry [M]. London, Academic Press, 1990. 415-441.
    [31] Ridley B L, O’Neill M A, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling [J]. Phytochemistry, 2001, 57: 929-967.
    [32] Willats W G T, McCartney L, Mackie W, et al. Pectin: cell biology and prospects for functional analysis [J]. Plant Mol Biol, 2001, 47: 9-27.
    [33] Thakur B R, Singh R K, Handa A K. Chemistry and uses of pectin: a review[J]. Crit Rev Food Sci Nutr, 1997, 37: 47-73.
    [34] Jackson C L, Dreaden T M, Theobald L K, et al. Pectin induces apoptosis inhuman prostate cancer cells: correlation of apoptotic function with pectin structure [J]. Glycobiology, 2007, 17: 805-819.
    [35] Inngjerdingen K T, Patel T R, Chen X, et al. Immunological and structural properties of a pectic polymer from Glinus oppositifolius[J]. Glycobiology, 2007, 17: 1299-1310.
    [36] Mohnen D. pectin structure and biosynthesis[J]. Curr Opin Plant Biol, 2008, 11: 266–277.
    [37] Visser J, Voragen A G J. Pectins and Pectinases[M]. Amsterdam: Elsevier Sciences B V, 1996. 47-53.
    [38] Voragen A G J, Schols H A, Visser R G F. Advances in Pectin and Pectinase Research[M]. Dordrecht: Kluwer Academic Publishers, 2003. 259-316.
    [39] Voragen, A G J, Beldman G, Schols H A. Advanced Dietary Fiber Technology [M]. Oxford, Blackwell Science Ltd, 2001. 379-398.
    [40] Zablackis E, Huang J, Muller B, et al. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves [J]. Plant Physiology, 1995, 107: 1129-1138.
    [41] Hilz H. Characterisation of cell wall polysaccharides in bilberries and black currants [D]: [PhD thesis]. Wageningen: Wageningen University, 2007.
    [42] Schols H A, Voragen AG J. pectins and their manipulation[M]. Oxford: Blackwell, 2002. 1-29.
    [43] Ralet M C, Cabrera J C, Bonnin E, et al. Mapping sugar beet pectin acetylation pattern [J]. Phytochemistry, 2005, 66: 1832-1843.
    [44] Ralet M C, Crepeau M J, Bonnin E, et al. Evidence for a blockwise distribution of acetyl groups onto homogalacturonans from a commercial sugar beet (Beta vulgaris) pectin [J]. phytochemistry, 2008, 69: 1903-1909.
    [45] Ralet M C, Crepeau M J, Lefebvre J, et al. The reduced number of homogalacturonan domains in pectins of an Arabidopsis mutant enhances the flexibility of the polymer [J]. Biomacromolecules, 2008, 9: 1454-1460.
    [46] Thibault J F, Renard C M J C, Axelose M A V, et al. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis[J]. Carbohyd res, 1993, 238: 271-286.
    [47] Beldman G, Vincken J P, Schols H A, et al. Degradation of differently substituted xylogalacturonans by endoxylogalacturonan hydrolase and endopolygalacturonases [J]. Biocatal Biotransform, 2003, 21: 189-198.
    [48] Yu L, Mort A J, Progress in biotechnology: pectins and pectinases[M]. Amsterdam: Elsevier,1996.79-88.
    [49] Huisman M M H, Fransen C T M, Kamerling J P, et al. The CDTA-soluble pectic substances from soybean meal are composed of rhamnogalacturonan andxylogalacturonan but not homogalacturonan [J]. Biopolymers, 2001, 58: 279-294.
    [50] Schols H A, Bakx E J, Schipper D, et al. A xylogalacturonan subunit present in the modified hairy regions of apple pectin [J]. Carbohydr Res, 1995, 279: 265-279.
    [51] Zandleven J, Sorensen S O, Harholt J, et al. Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana [J]. Phytochemistry, 2007, 68: 1219-1226.
    [52] O’Neill M A, Ishii T, Albersheim P, et al. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide [J]. Annu Rev Plant Biol, 2004, 55: 109-139.
    [53] O’Neill M A, Eberhard S, Albersheim P, et al. Arabidopsis growth requires borate cross-linking of the cell wall pectic polysaccharide rhamnogalacturonan II [J]. Science, 2001, 294: 846-849.
    [54]Pérez S, Rodriguez-Carvajal M A, Dpcp T A. complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function [J]. Biochimie, 2003, 85: 109-121.
    [55] O’Neill M A, Warrenfelz D, Kates K, et al. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. In vitro conditions for the formation and hydrolysis of the dimer [J]. J Biol Chem, 1997, 272: 3869-3869.
    [56] Matsunaga T, Ishii T, Matsumoto S, et al. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implication for the evolution of vascular plants [J]. Plant Physiol, 2004, 134: 339-351.
    [57] Ishii T. Isolation and characterization of acetylated rhamnogalacturonan oligomers liberated from bamboo shoot cell walls by Driselase[J]. Mokuzai Gakkaishi, 2007, 41: 561-572.
    [58] O’Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell walls [J]. Methods plant biochem, 1990, 2: 415-441.
    [59] Willats W G T, McCartney L, Mackie W, et al. Pectin: cell biology and prospects for functional analysis [J]. Plant Mol Biol, 2001, 47: 9-27.
    [60] Guillemin F, Guillon F, Bonnin E, et al. Distribution of pectic epitopes in cell walls of the sugar beet root [J]. Planta, 2005, 222: 355-371.
    [61] Albersheim P, Darvill A G, O’Neill M A, et al. Progress in biotechnology, pectin and pectinases [M]. Amsterdam, Elsevier, 1996. 47-55.
    [62] Penfield S, Meissner R C, Shoue D A, et al. MYB61is required for mucilage deposition and extrusion in the arabidopsis seed coat [J]. Plant cell, 2001, 13: 2777-2791.
    [63] Western T L, Young D S, Dean G H, et al. Mucilage-modified4 encodes putative pectin biosynthetic enzyme developmentally regulated by APETALA2, transparenttesta GLABRA1, and GLABRA2 in the Arabidopsis Seed Coat [J]. Plant physiol, 2004, 134: 296-306.
    [64] Lau J, McNeil M, Darvill A G, et al. Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants [J]. Carbohydr Res, 1985, 137: 111-125.
    [65] Schols H A, Posthumus M A, Voragen A G J. Methylation analysis and mild acid hydrolysis of the―hairy‖fragments of sugar-beet pectins [J]. Carbohydr Res, 1990, 206: 117-129.
    [66] Selvendran R R, O’Neill M. Isolation and analysis of cell walls from plant materials [J]. Methods Biochem Anal, 1987, 32: 25-153.
    [67]Sengkhamparn N, Bakx E J, Verhoef R, et al. Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alphalinked galactosyl groups [J]. Carbohydr Res, 2009, 344: 1842-1851.
    [68] Naran R, Chen G, Carpita N C. Novel Rhamnogalacturonan I and Arabinoxylan Polysaccharides of Flax Seed Mucilage [J]. Plant physiol, 2008, 148: 132-141.
    [69] Nakamura A, Furuta H, Maeda H, et al. Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan [J]. Biosci Biotechnol Biochem, 2002, 66: 1301-1313.
    [70] Ishii T, Matsunaga T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan [J]. Phytochemistry, 2001, 57: 969-974.
    [71] Coenen G J, Bakx E J, Verhoef R P, et al. Identification of the connecting linkage between homo- or xylogalacturonan and rhamnogalacturonan type I [J]. Carbohydr Polym, 2007, 70: 224-235.
    [72] Thibault J-F, Renard C M G C, Axelos M A V, et al. Studies of the length of homogalacturonic regions in pectins by acid-hydrolysis [J]. Carbohydr Res, 1993, 238: 271–286.
    [73]Visser J, Voragen A G J. Progress in biotechnology 14: pectin and pectinases [M]. Amsterdam, Elsevier, 1996. 3-19.
    [74] Vincken J-P, Schols H A, Oomen R J F J, et al. If Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture [J]. Plant physiol, 2003, 132: 1781-1789.
    [75] Ishii T, Matsunaga T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan [J]. Phyochemistry, 2001, 57: 969-974.
    [76] Coenen G J. Structural Charactrization of native pectins [D]. [PhD thesis]. Wageningen: Wageningen University, 2007.
    [77] Hilz H, Bakx E J, Schols H A, et al. Cell wall polysaccharides in black currants and bilberries—characterisation in berries, juice, and press cake [J]. CarbohydrPolym, 2005, 59: 477-488.
    [78] Doco T, O'Neill M A, Pellerin P. Determination of the neutral and acidic glycosyl-residue compositions of plant polysaccharides by GC-EI-MS analysis of the trimethylsilyl methyl glycoside derivatives [J]. Carbohydr Polym, 2001, 46: 249-259.
    [79] Voragen A G J, Schols H A, Pilnik W. Determination of the degree of methylation and acetylation of pectins by HPLC [J]. Food Hydrocolloids, 1986, 1: 65-70.
    [80] Oosterveld A, Beldman G, Schols H A. Arabinose and ferulic acid rich pectic polysaccharides extracted from sugar beet pulp [J]. Carbohydr Res, 1996, 288: 143-153.
    [81] Vincken J P, Beldman G, Niessen W M A, et al. Degradation of apple fruit xyloglucan by endoglucanase [J]. Carbohydr Polym, 1996, 29: 75-85.
    [82] Zalyalieva S V, Kabulov B D, Akhundzhanov K A et al. Liquid chromatography of polysaccharides [J]. Chem Nat Compd, 1999, 35: 1-13.
    [83] Bruggink C, Maurer R, Herrmann H, et al. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry [J]. J Chromatogr A, 2005, 1085: 104-109.
    [84] Kabel M A, Heijnis W H, Bakx E J, et al. Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-1,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides [J]. J Chromatogr A, 2006, 1137: 119-126.
    [85] Daas P J H, Meyer-Hansen K, Schols H A, et al. Investigation of the non-esterified galacturonic acid distribution in pectin with endopolygalacturonase [J]. Carbohydr Res, 1999, 318: 135-145.
    [86] Barton C J, Tailford L E, Welchman H, et al. Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using PACE-polysaccharide analysis by carbohydrate gelelectrophoresis [J]. Planta, 2006, 224: 163-174.
    [87] Kim Y S, Kang K S, Kim S I. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction[J]. Archives of Pharmacal Research, 1990, 13: 330-337.
    [88]张惠,马洪林.人参多糖的活性成分及药理作用[J].中医药研究, 1989, 6: 38-40.
    [89] Du X F, Jiang C Z, Wu C F, et al. Synergistic Immunostimulating Activity of Pidotimod and Red Ginseng Acidic Polysaccharide against Cyclophosphamide-induced Immunosuppression [J]. Archives of Pharmacal Res, 2008, 31(9):1153-1159.
    [90] Zhang X, Yu L, Li S et al. total fractionation and characterization of the water-soluble polysaccharides isolated from panax ginseng C. A.Meyer [J]. Carbohydr polym, 2009, 77: 544-552.
    [91] Yun Y S, Lee Y S, Jo S K, et al. Inhibition of autochthonous tumor by ethanolinsoluble fraction from Panax ginseng as an immunomodulator [J]. Planta Med, 1993, 59(6):521-524.
    [92] Suzuki Y, Hikino H. Mechanisms of Hypoglycemic activity of Panax A and B, glycans of Panax ginseng roots: effects on plasma level, secretion, ensitivity and binding of insulin in mice [J]. Phytother Res, 1989, 3(1): 20.
    [93] Suzuki Y, Hikino H. Mechanisms of hypoglycemic activity of panaxans A and B, glycans of panax ginseng roots: effects on the key enzymes of glucose metabolism in the liver of mice [J]. Phytother Res, 1989, 3(1):15-19.
    [94] Han Y, Son S, Akhalaia M, et al. Modulation of Radiation-Induced Disturbances of Antioxidant Defense Systems by Ginsan [J]. Evid Based Complement Alternat Med, 2005, 2(4): 529-536.
    [95] Ahn J, Choi I, Shim J, et al. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptormediated inflammatory signals [J]. Eur J Immunol, 2006, 36: 37-45.
    [96] Lee J, Park E K, Uhm C, et al. Inhibition of helicobacter pylori adhesion to human gastric adenocarcinoma epithelial cells by acidic polysaccharides from artemisia capillaris and panax ginseng [J]. Planta Med, 2004, 70: 615-619.
    [97] Belogortseva N I, Yoon J Y, Kim K H. Inhibition of helicobacter pylori hemagglutination by polysaccharide fractions from roots of panax ginseng [J]. Planta Med, 2000, 66(3): 217-220.
    [98] Fan Y, Cheng H, Liu D, et al. The Inhibitory Effect of Ginseng Pectin on L-929 Cell Migration [J]. Arch Pharm Res, 2010, 33: 681-689.
    [99] Fan Y, Cheng H, Li S, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides [J]. Carbohydr Polym, 2010, 81: 340-347.
    [100] Cheng H, Li S, Fan Y, et al. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells [J]. Med Oncol, DOI 10.1007/s12032-010-9449-8
    [101]Wang J, Li S, Fan Yu, et al. Anti-fatigue activity of neutral and acidic polysaccharides from Panax ginseng C. A. Meyer [J]. J Ethnopharmacological, 2010, 130: 421-423.
    [102] Pwell D A, Morris E R, Gidley M J, et al. Conformations and interactions of pectins II: influence of residue sequence on chain association in calcium pectate gels [J]. J Mol Biol, 1982, 155: 517-967.
    [103] Gao Q, Kiyohara H, Cyong J, et al.Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of Panax ginseng [J]. Planta Med, 1989, 55: 9-12.
    [104] Ovodov Y S, Solov’eva T F. Polysaccharides of Panax ginseng [J]. KhimiyaPrirodnykh Soedinenii, 1966, 2: 299-303.
    [105] Solov'Eva T F, Arsnyuk L V, Ovodov Y S. Some structural features of panax ginseng C. A. Meyer pectin [J]. Carbohyd.Res, 1969, 10: 13-18.
    [106] Konno C, Sugiyama K, Kano M, et al. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E glycans of panax ginseng roots [J]. Planta Med, 1984, 50: 434-436.
    [107] Konno C, Murakami M, Oshima Y, et al. Isolation and hypoglycemic actiwty of panaxans Q, R, S, T and U glycans of panax ginseng roots [J]. J Ethnopharmaco, 1985, 14: 69-74.
    [108] Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L glycans of panax ginseng roots [J]. J Ethnopharmaco, 1985, 14: 255-259.
    [109] Konno C, Hikino H. Isolation and Hypoglycemic Activity of Panaxans M, N, O and P, Glycans of Panax ginseng Roots [J]. Pharm Biol, 1987, 25: 53-56.
    [110] Kim Y S, Kang K S, Kim S I. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction [J]. Arch Pharm Res, 1990, 13: 330-337.
    [111]李润秋,张翼伸.人参多糖的成分分析[J].中草药,1985, 16: 5-7.
    [112]李润秋,张翼伸.人参果胶的纯化与鉴定[J].药学学报,1984, 19: 764-766.
    [113]李润秋,张翼伸.人参果胶的结构研究[J].药学学报,1986, 21: 912-916.
    [114]傅平平,王维忠,高其品,等.人参根多糖化学性质及抗肿瘤活性的研究[J].白求恩医科大学学报, 1994, 20: 439-441.
    [1]刘杨.人参寡糖的分析[D]: [硕士学位论文].长春:东北师范大学, 2008.
    [2] Zhang X, Yu L, Bi H T, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C.A.Meyer [J]. Carbohydr Polym, 2009, 77: 544-552.
    [3] Cosgrove D J. Wall structure and wall loosening: A look backwards and forwards [J]. Plant Physio, 2001, 125: 131-134.
    [4] McCann M C, Roberts K. Architecture of the primary cell wall [M]. London: Acadamic press. 1991. 109-129.
    [5] Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth [J]. Plant J, 1993, 3: 1–30.
    [6] O’Neill M A, York W S. The plant cell wall [M]. USA: CRC Press. 2003. 1-54.
    [7] Hayashi T, Marsden M P F, Delmer P P. Peac xyloglucan and cellulose: VI. Xyloglucan cellulose interactions in vitro and in vivo [J]. Plant Physiol, 1987, 83: 384-389.
    [8] Fry S C. Wall polymer: chemical characterization [M]. Harlow: Longman Scientific & technical. 1988. 103-185.
    [9] Carson, Freida L, Christa H. Histotechnology: A Self-Instructional Text [M]: 3 ed. Hong Kong: American Society for Clinical Pathology Press. 2009. 2.
    [10] Marcus S E, Verhertbruggen Y, HervéC, et al. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls [J]. BMC Plant Biol, 2008, 8: 60
    [11] Verhertbruggen Y, Marcus S E, Haeger A, et al. Developmental complexity of arabinan polysaccharides and their processing in plant cell walls [J]. Plant J, 2009, 59: 413-425.
    [12] O’Brien T P, Feder N, Mc-Cully M E. Polychromatic staining of plant cell walls by toluidine blue O [J]. Protoplasma, 1964, 59: 367-373.
    [13] Parker A J P, Haskins E F, Deyrup-Olsen I. Toluidine blue: a simple, effective stain for plant tissues [J]. Am Biol Teach, 1982, 44: 487-489.
    [14] Hu SY. The genus Panax (ginseng) in Chinese medicine [J]. Econ Bot, 1976, 30: 11-28.
    [15] Li F. China ginseng and American ginseng [M]. Beijing: China Agricultural Science and Technology Press. 2002. 38-64.
    [16] Wang T. China Ginseng [M]. Shenyang: Liaoning science and technologypublishing house, 132-167.
    [17] Franz G, Blaschek W. Cellulose [J]. Methods plant Biochem, 1990, 2: 291-317.
    [18] Blake A W, McCartney L, Flint J E, et al. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes [J]. J Biol Chem, 2006, 281: 29321–29329.
    [19] McCartney L, Marcus S E, Knox J P. Monoclonal antibodies to plant cell wall xylans and arabinoxylans [J]. J Histochem Cytochem, 2005, 53: 543–546
    [20] Marcus S E, Blake A W, Benians T A S, et al. Restricted access of proteins to mannan polysaccharides in intact plant cell walls [J]. Plant J, 2010, 64: 191-203.
    [21] Verhertbruggen Y, Marcus S E, Haeger A, et al. An extended set of monoclonal antibodies to pectic homogalacturonan [J]. Carbohydr Res, 2009, 344: 1858-1862
    [22] Ridley B R, O’Neill M A, Mohnen D. pectins: structure, biosynthesis, and oligogalacturonide-related signaling [J]. Phytochemistry, 2001, 57: 929-967.
    [23] Powell D A, Morris E R, Gidley M J, et al. conformations and interactions of pectins II: influence of residue sequence on chain association in calcium pectate gels [J]. J Mol Biol, 1982, 155: 517-531.
    [24] Willats W G T, Orfula C, Limberg G, et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectins methyl esterase action, matrix properties, and cell adhesion [J]. J Biol Chem, 2001, 276: 19404-19413.
    [25] Clausen M H, Willats W G T, Knox J P. Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7 [J]. Carbohydr Res, 2003, 338: 1797-1800.
    [26] Verhertbruggen Y, Marcus S E, Haeger A, et al. Developmental complexity of arabinan polysaccharides and their processing in plant cell walls [J]. Plant J, 2009, 59: 413-425.
    [27] Jones L, Seymour G B, Knox J P. Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-D-galactan [J]. Plant Physiol, 1997, 113: 1405-1412.
    [28] Willats W G T, Marcus S E, Knox J P. Generation of a monoclonal antibody specific to (1→5)-L-arabinan [J]. Carbohydr Res, 1998, 308: 149-152. [ 29 ] Verhertbruggen Y, Marcus S E, Haeger A, et al. (2009) Developmental complexity of arabinan polysaccharides and their processing in plant cell walls [J]. Plant J, 59: 413-425.
    [30] Lee K J D, Sakata Y, Mau S-L, et al. Arabinogalactan-proteins are required for apical cell extension in the moss Physcomitrella patens [J]. Plant Cell, 2005, 17: 3051-3065
    [31] Moller I, Marcus S E, Haeger A, et al. High-throughput screening of monoclonalantibodies against plant cell wall glycans by hierarchial clustering of their carbohydrate microarray binding profiles [J]. Glycoconjugate J, 2008, 25: 37-48.
    [32] Yates E A, Valdor J-F, Haslam S M, et al. Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies [J]. Glycobiology, 1996, 6: 131-139
    [33] Knox J P, Linstead P J, Peart J, et al. Developmentally-regulated epitopes of cell surface arabinogalactan-proteins and their relation to root tissue pattern formation [J]. Plant J, 1991, 1: 317-326.
    [34] Pennell R I, Knox J P, Scofield G N, et al. A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants [J]. J Cell Biol, 1989, 108: 1967-1977.
    [35] Kieliszewski M J, Lamport D T A. Extension: repetitive motifs, functional sites, post-translational codes, and phylogeny [J]. Plant J, 1994, 5: 157-172. [ 36 ] Smallwood M, Martin H, Knox J P. An epitope of rice threonine- and hydroxyproline-rich glycoprotein is common to cell wall and hydrophobic plasma membrane glycoproteins [J]. Planta, 1995, 196: 510-522
    [37] Knox J P, Peart J, Neill S J. Identification of novel cell surface epitopes using a leaf epidermal strip assay system [J]. Planta, 1995, 196: 266-270
    [38] Neumann M, Gabel D. Simple method for reduction of autofluorescence in fluorescence microscopy [J]. J Histochem and Cytochem, 2002, 50: 437-439.
    [39] Popper Z A, Fry S C. Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells [J]. Ann Bot, 2005, 96: 91-99.
    [1] Zhang X, Yu L, Bi H et al. total fractionation and characterization of the water-soluble polysaccharides isolated from panax ginseng C. A. Meyer [J]. Carbohyd polym, 2009, 77: 544-552.
    [2]Lee J, Park E K, Uhm C, et al. Inhibition of helicobacter pylori adhesion to human gastric adenocarcinoma epithelial cells by acidic polysaccharides from artemisia capillaris and panax ginseng [J]. Planta Med, 2004, 70: 615-619.
    [3] Fan Y, Cheng H, Li S, et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides [J]. Carbohydr polym, 2010, 81: 340-347.
    [4] Ni W, Zhang X, Wang B, et al. Antitumor Activities and Immunomodulatory Effects of Ginseng Neutral Polysaccharides in Combination with 5-Fluorouracil [J]. J Med Food, 2010, 13: 1-8.
    [5] Vincken J-P, Voragen A G J, Beldman G. Enzymes degrading rhamnogalacturonan and xylogalacturonan [M]. York: Marcel Dekker. 2003. 930-941.
    [6] O’Neill M A, York W S. The composition and structure of plant primary cell walls [M]. USA: CRC Press. 2003, 1-54.
    [7] Talmadge K W, Keegstra K, Bauer W D. The structure of plant cell walls: I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides [J]. Plant physiol, 1973, 51: 158-173.
    [8] McNeil M, Darvill A G, Albersheim P. Structure of plant cell walls X: Rhamnogalacturonan I, a structurally complex polysaccharide in the walls of suspension-cultured sycamore cells [J]. Plant Physiol, 1980, 66: 1128-1134.
    [9] Lau J M, McNeil M, Darvill A G, et al. Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants [J]. Carbohydr Res, 1985, 137: 111-125.
    [10] O’Neill M A, Ishii T, Albersheim P, et al. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide [J]. Annu Rev Plant Bio, 2004, 55: 109-139.
    [11] O’Neill M A, Eberhard S, Albersheim P, et al. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth [J]. Science, 2001, 294: 846-849.
    [12]张旭.人参多糖的系统分析及其免疫活性研究[D]: [博士学位论文].长春:东北师范大学生命科学学院,2009.
    [13]范玉莹.人参果胶对细胞迁移的影响及机理研究[D]: [博士学位论文].长春:东北师范大学生命科学学院,2010.
    [14] Miller, Gail Lorenz. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31 (3): 426–428.
    [15] Hasui M, Matsuda M, Okutani K, et al. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses [J]. International J Biol Macromolecul, 1995, 17(5):293-297.
    [16] Strydom D J. Chromatographic separation of 1-phenyl-3-methyl-Spyrazolone-derivatized neutral, acidic and basic aldoses [J]. J Chromatography A, 1994, 678:17-23.
    [17] Fu D, O’neill R A. Monosaccharide Composition Analysis of Oligosaccharides and Glycoproteins by High-Performance Liquid Chromatography [J]. Anal Chem, 1995, 227: 377-384.
    [18] Ridley B L, O’Neill M A, Mohnen D. Pectins: structure, biosynthesis and oligogalacturonide-related signaling [J]. Phytochem, 2001, 57: 929-967.
    [19] Vincken J-P, Schols H A, Oomen R J F J, et al. If Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture [J]. Plant physiol, 2006, 132: 1781-1789.
    [1] Berg J M, Tymoczko J L, Stryer L. Biochemistry [M]. 5th edition. New York: W H Freeman, 2002.
    [2] Roseman S. Reflections on glycobiology [J]. J Biol Chem, 2001, 276(45): 41527-41542.
    [3]来鲁华,杨昱婷.寡糖的构象分析[J].生物化学与生物物理进展, 1995: 22 (4): 290-294. [ 4 ] Peter S T, Meyer B, Stuike-Prill R, et al. A monte carlo method for conformational analysis of saccharides [J]. Carbohydr Res, 1993, 238: 49-73.
    [5] Powell D A, Morris E R, Gidley M J, et al. Conformations and interactions of pectins II: influence of residue sequence on chain association in calcium pectate gels [J]. J Mol Biol, 1982, 155: 517-531.
    [6] Dea I C M, Mckinnon A A, Rees D A. Tertiary and quaternary structure in aqueous polysaccharide systems which model cell wall cohesion: reversible changes in conformation and association of agarose, carrageenan and galactomannans [J]. J Mol Biol, 1972, 68 (1): 153-172.
    [7] Fijan R, Basile Mostar-Turk S, et al. A study of rheological and molecular weight properties of recycled polysaccharides used as thickeners in textile printing [J]. Carbohydr Polym, 2009, 76(1): 8-16.
    [8] Rodrigues J O A, Taylor A M, Sumpton D P, et al. Mass spectrometry of carbohydrates:newer aspects [J]. Advances in carbohydrate chemistry and biochemistry, 2007, 61: 59-141.
    [9] Zaia J. Mass spectrometry of oligosaccharides [J]. Mass Spectrometry Reviews, 2004, 23: 161-227.
    [10] Boulet J C, Williams P, Doco T A. Fourier transform infrared spectroscopy study of wine polysaccharides [J]. Carbohydr Polym, 2007, 69: 79-85.
    [11] UrákováM K, Capek P, SasinkováV, et al. FT-IR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses [J]. Carbohydr Polym, 2000, 43(2): 195-203.
    [12] Duus J, Gotfredsen C H, Bock K. Carbohydrate Structural Determination by NMR Spectroscopy: Modern Methods and Limitations [J]. Chemical Rev, 2000, 100(12): 4589-4614.
    [13] Knox J P. Revealing the structural and functional diversity of plant cell walls [J]. Curr Opin Plant Biol, 2008, 11: 308-313
    [14] Thibault J, Renard C M G C, Axelos M A V, et al. studies of the length of homogalacturonic regions of in pectins by acid hydrolysis [J]. Carbohydr Polym, 1993, 238: 271-286.
    [15] Polle A Y, Ovodova R G, Chizhov A O, et al. Structure of Tanacetan, a Pectic Polysaccharide from Tansy Tanacetum vulgare L. [J]. Biochemistry (Moscow), 2002, 67: 1371-1376.
    [16] Westereng B, Michaelsen T E, Samuelsen A B, et al. Effects of extraction conditions on the chemical structure and biological activity of white cabbage pectin [J]. Carbohydr Polym, 2008, 72: 32-42. [[17]] Tamaki Y, Konishi T, Fukuta M, et al. Isolation and structural characterisation of pectin from endocarp of Citrus depressa [J]. Food Chemistry, 2008, 107: 352–361.
    [18]Westerlund E, Aman E, Andersson R, et al. Chemical Characterization of Water-Soluble Pectin in Papaya Fruit [J]. Carbohydr Polym, 1991, 15: 67-78.
    [19] Perrone P, Hewage C M, Thomson A R, et al. Patterns of methyl and O-acetyl esterification in spinach pectins: new complexity [J]. Phytochemistry, 2002, 60: 67–77.
    [20] Ralet M.-C, Cabrera J C, Bonnin E, et al. Mapping sugar beet pectin acetylation pattern [J]. Phytochemistry, 2005, 66: 1832-1843.
    [21] Schols H A, Voragen A G J. Occurrence of pectic hairy regions in various plant cell wall materials and their degradability by rhamnogalacturonase [J]. Carbohydr Res, 1994, 256: 83-95. [ 22 ] Habibi Y, Heyraud H, Mahrouz M, et al. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits [J]. Carbohydr Res, 2004, 339: 1119–1127.
    [23] Ryden P, Colquhoun I C, Selvendran R R. Investigation of structural features of the pectic polysaccharides of onion by 13C-NMR spectroscopy [J]. Carbohydr Res, 1989, 185: 233-237. [ 24 ] Pérez S, Rodríguez-Carvajal M A, Doco T. A complex plant cell wall polysaccharide: Rhamnogalacturonan II. A structure in quest of a function [J]. Biochimie, 2003, 85: 109-121.
    [25] Verhertbruggen Y, Knox J P. Pectic polysaccharides and expanding cell walls [J]. Plant cell Monoger, 2006, 5: 139-158. [ 26 ] Habibi Y, Heyraud H, Mahrouz M, et al. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits [J]. Carbohydr Res, 2004, 339: 1119–1127.
    [27] Ryden P, Colquhoun I C, Selvendran R R. Investigation of structural features of the pectic polysaccharides of onion by 13C-NMR spectroscopy [J]. Carbohydr Res, 1989, 185: 233-237.
    [28] Pérez S, Rodríguez-Carvajal M A, Doco T. A complex plant cell wall polysaccharide: Rhamnogalacturonan II. A structure in quest of a function [J]. Biochimie, 2003, 85: 109-121.
    [29] Verhertbruggen Y, Knox J P. Pectic polysaccharides and expanding cell walls [J]. Plant cell Monoger, 2006, 5: 139-158.
    [30] Polle A Y, Ovodova R G, Chizhov A O, et al. Structure of Tanacetan, a Pectic Polysaccharide from Tansy Tanacetum vulgare L. [J]. Biochemistry (Moscow), 2002, 67: 1371-1376. [[31]] Tamaki Y, Konishi T, Fukuta M, et al. Isolation and structural characterisation of pectin from endocarp of Citrus depressa [J]. Food Chemistry, 2008, 107: 352–361.
    [32]Westerlund E, Aman E, Andersson R, et al. Chemical Characterization of Water-Soluble Pectin in Papaya Fruit [J]. Carbohydr Polym, 1991, 15: 67-78.
    [1] Thibault J, Renard C M G C, Axelos M A V, et al. Studies of the length of homogalacturonic regionsin pectins by acid hydrolysis [J]. Carbohydr Res, 1993, 238: 271-286.
    [2]张旭.人参多糖的系统分析及其免疫活性研究[D]: [博士学位论文].长春:东北师范大学生命科学学院,2009.
    [3] Yu L, Zhang X, Li S, et al. Rhamnogalacturonan I domains from ginseng pectin [J]. Carbohydr Polym, 2010, 79: 811-817.
    [4] Marcus S E, Blake A W, Benians T A S, et al. Restricted access of proteins to mannan polysaccharides in intact plant cell walls [J]. Plant J, 2010, 64:191-203.
    [5] Polle A Y, Ovodova R G, Chizhov A O, et al. Structure of Tanacetan, a Pectic Polysaccharide from Tansy Tanacetum vulgare L. [J]. Biochemistry (Moscow), 2002, 67: 1371-1376.
    [6] Westereng, B, Michaelsen T E, Samuelsen A B, et al. Effects of extraction conditions on the chemical structure and biological activity of white cabbage pectin [J]. Carbohydr Polym, 2008, 72: 32-42.
    [7] Perrone P, Hewage C M, Thomson A R, et al. Patterns of methyl and O-acetyl esterification in spinach pectins: new complexity [J]. Phytochemistry, 2002, 60: 67–77.
    [8] Ralet M.-C, Cabrera J C, Bonnin E, et al. Mapping sugar beet pectin acetylation pattern [J]. Phytochemistry, 2005, 66: 1832-1843.
    [9] Schols H A, Voragen A G J. Occurrence of pectic hairy regions in various plant cell wall materials and their degradability by rhamnogalacturonase [J]. Carbohydr Res, 1994, 256: 83-95.
    [10] Habibi Y, Heyraud H, Mahrouz M, et al. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits [J]. Carbohydr Res, 2004, 339: 1119–1127.
    [11] Ryden P, Colquhoun I C, Selvendran R R. Investigation of structural features of the pectic polysaccharides of onion by 13C-n.m.r. spectroscopy [J]. Carbohydr Res, 1989, 185: 233-237.
    [12] Verhertbruggen Y, Knox J P. Pectic polysaccharides and expanding cell walls [J]. Plant cell Monoger, 2006, 5: 139-158.
    [13] Beldman G, Schols H A, Pitson S M, et al. Advances in macromolecular carbohydrate research [M]. JAI Press Inc: Greenwich. 1997, 1: 1-64.
    [14] Van de Vis J W, Searle-van Leeuwan M J F, Siliha H A, et al. Analytical profilingof plant cell wall polysaccharides [J]. Carbohydr Polym, 2008, 1991, 16: 167-187.
    [15]吴东儒.糖类的生物化学[M].上海:高等教育出版社,1987,886-901.
    [16]徐任生.天然产物化学[M].北京:科学出版社,1997,431-447.
    [17]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,129-439.
    [18] Golovchenko V V, Ovodova R G, Shashkov A S, et al. Structural studies of the pectic polysaccharide from duckweed Lemna minor L [J]. Phytochemistry, 2002, 60: 89-97.
    [19] Round A N, Rigby N M, MacDougall A J, et al. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy [J]. Carbohydr Polym, 2010, 345: 487-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700