用户名: 密码: 验证码:
活性炭吸附法净化丙酮和二氧化硫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生存环境的日益恶劣和人们环保意识的不断增强,空气污染控制技术已成为研究热点,活性炭(Activated Carbon)吸附净化气态污染物被越来越多的学者和环保人士所研究。尽管诸多研究显示对挥发性有机污染物(VOCs)和二氧化硫的控制工艺技术已经相对成熟,但是在活性炭吸附微尺度分析理论对吸附作用影响机理研究上仍处于探索阶段。本文以活性炭为吸附剂,以丙酮为代表的VOCs和以二氧化硫(S02)为代表的无机气态污染物为吸附质,在活性炭多孔材料微尺度分析的理论上,定量系统地分析有机和无机气态污染物与微尺度材料表面物理化学性质之间的关系,从宏观和微观不同角度深入探讨丙酮和二氧化硫气体在活性炭多孔介质内复杂的表面物理化学状态和相互作用机制,从而科学地揭示吸附的微尺度构效关系。本课题的研究内容和结论主要包括:
     (1)利用元素分析、扫描电镜、BET、傅立叶红外光谱(FTIR)等一系列分析测试方法对活性炭表面物理化学等结构特征数据进行测试分析,量化关联有机和无机气态污染物在活性炭中的吸附基础物性数据、吸附性能数据,热力学实验数据,建立活性炭物理化学性质与吸附行为之间的关系,系统地分析活性炭的微观结构对有机和无机气态污染物的吸附性能的影响。同时研究活性炭对气态污染物的吸附过程中的传热传热耦合规律。结果表明:用Langmuir吸附等温线模型可较好地描述丙酮在样品活性炭上的吸附。丙酮吸附量随着微孔孔容的增大而增大。丙酮在活性炭上的表面覆盖率随丙酮浓度的增大而明显增大。活性炭孔结构影响吸附能,吸附能大的活性炭表面覆盖率小。在活性炭吸附丙酮的过程中,传热系数的变化对传质影响不大,传质系数对传热有一定影响,与浓度差异引起的传热效应相比,温度差异引起的传质过程更加明显。
     在S02吸附研究中,活性炭的总比表面积和微孔比表面积与S02吸附量的线性相关系数随进气浓度的增加而增大;在较高进气浓度和较低吸附温度时,活性炭的总孔容和微孔孔容均与SO2吸附量呈现良好的线性关系。在相同的吸附温度和进气浓度下,活性炭的物性与SO2吸附量影响排序为:次微孔孔容>微孔孔容>微孔比表面积>总比表面积>总孔容。当吸附温度一定时,四种商业活性炭的微孔极限吸附容积排序为山西活性炭(AC-SX)最大,广州活性炭(AC-GZ)最小,而吸附能的排序为AC-GZ>AC-NX>AC-HN>AC-SX。AC-SX极限微孔孔容最大,吸附能最小,最易与SO2进行吸附反应。
     (2)采用微波热处理,无机和有机化学试剂等三种方法对商业活性炭进行改性,借助Boehm滴定法、透射电镜、BET、FTIR等分析方法对改性活性炭的表面物理化学等结构特征数据进行表征,考察改性活性炭吸附丙酮规律。结果表明:Langmuir方程更加适合描述丙酮在改性活性炭上的吸附;经微波辐照加热和碱性溶液浸渍改性后,活性炭的总比表面积、孔容均减小,但微孔比表面积显著增大;在微波辐照加热改性中,随着温度升高,酸性基团大量分解,碱性基团逐渐形成;在碱性溶液浸渍改性后,酸性基团被完全去除。随着活性表面碱性基团的增加,丙酮吸附量呈现递减的趋势;利用酯类试剂浸泡-真空干燥法改性活性炭,可以定向改变活性炭结构,促使中孔比表面积减小,微孔比表面积增大,提高了活性炭捕获吸附质分子的能力。酯改性活性炭吸附丙酮气体初期,会出现酯类改性试剂被丙酮气体少量置换脱附的现象,采用乙酸乙酯改性的活性炭(AC-ethy)在处理高湿度、低浓度丙酮气体过程中对丙酮具有良好的吸附性能,与宁夏商业活性炭(AC-NX)相比较,在维持对丙酮具有一定吸附量的同时,吸附能力基本不受水蒸汽含量的影响。
     (3)采用两床五步式变压吸附工艺,研究了固定床的两床变压吸附处理SO:与空气的混合气体的动态过程,理论分析了商业活性炭变压吸附SO2过程中的传热传质规律和脱附状态下脱附气的浓缩率的变化规律。结果表明:吸附床内的压力呈周期性变化。不同吸附高度的温度曲线随变压吸附循环的周期数改变而变化。在实验条件下,传质区主要集中在H=0.08m-0.15m处。随着吸附柱高度的增加,气相组分物质浓度逐渐降低,并且在400个周期以后开始达到稳定。在床层高度0.6m以上没有SO2气体的存在。SO2在吹扫脱附阶段和真空脱附阶段的不同脱附时刻的脱附气浓缩率均随变压吸附过程先快速升高,然后趋于稳定。当达到稳定时,SO2的脱附气浓缩率随脱附时刻的增加而降低。所以在实验条件下,变压吸附各阶段的最佳时长分别设为,均压段3s,吸附段为170s,吹扫脱附设为15s,真空脱附为180s;脱附气的SO2平均浓缩率为2。
     (4)利用烟草工业废弃物(烟梗)采用化学法制备高比表面积活性炭,并对活性炭进行物性表征,探讨了不同活化实验条件下对制备活性炭性能的影响,通过利用孔结构参数分析所制备的活性炭的大孔、中孔及微孔的分布特征,同时采用所制备活性炭对丙酮进行吸附效果的实验研究,考察其对丙酮为代表的有机气态污染物的吸附效果。结果表明:在活性炭制备实验中,活化剂种类和用量对所制备的活性炭的孔结构和吸附性能产生重要影响。采用ZnCl2为活化剂所制备出的活性炭具有较高的比表面积;采用三种活化剂所制备的活性炭的氮吸附等温线基本符合Ⅰ型吸附等温线,采用D-A方程和H-K方程分别研究活性炭微孔分布可知,以ZnCl2为活化剂制备的活性炭H-K法微孔分布较宽,呈多峰分布的状态,这也说明了其形成的微孔极为丰富其且形成比表面积最大。采用BJH方程研究活性炭中孔和大孔分布可知,以KOH为活化剂制备的活性炭所形成的中孔及大孔最为丰富,而在相同活化剂的情况下,高活化剂用量有利于中孔和大孔的形成。通过活性炭固体表面分形维数的计算得到以K2C03为活化剂制备的活性炭表面是三类活化剂中最粗糙,说明该类活性炭极小微孔<0.6nm含量最多。在所研究的温度和浓度范围内,采用K2C03活化剂用量为2:1时制备的活性炭对丙酮吸附能用Langmuir和Temkin模型进行较好的拟合。
     本课题的研究成果对活性炭吸附法净化有机和无机工业气态污染物吸附处理的工业化应用和乡村废弃生物质资源综合利用将具有重大的指导意义。
Because of the increasing public awareness of pollution and environmental protection, gaseous pollutants control technology as a hot topic, has been widely studied. Although control technologies of volatile organic compounds (VOCs) and sulfur dioxide (SO2) have been conducted, researches on the mechanism as well as micro structure-function of activated carbons (ACs) are still in exploration. In this thesis, commerial ACs were selected as a adsorbent for acetone and SO2adsorption, the relationship between gaseous pollutants and micro structure-function material surface physicochemical properties was systematically and quantificationally analyzed. The inherent correlation between acetone and SO2adsorption activity and the AC's surface physicochemical properties and complex interaction mechanism was studied from the micro/macro point of view. The primary contents and conclusions are listed as follows:
     (1) Series of analysis methods such as elemental analysis, scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) surface area analyser, fourier transformed infrared (FTIR) were used to study the surface physicochemical properties and structure of ACs. And these gaseous pollutant adsorption performance by AC in association with basic physical property data, adsorption performance data and thermodynamic test data were systematically and quantificationally investigated. The relationship between physicochemical properties of ACs and adsorption behavior was set up. The effect of microstructure of ACs on organic and inorganic gaseous pollutants adsroption performance was also analysed. The coupled effects of heat and mass transfer in gaseous pollutants adsorption process by AC was theoretically studied. The received findings were that the Langmuir adsorption isotherm model described the adsorption of acetone onto ACs very well. Adsorption of acetone increased positively-linearly with the increases of micropore volume. Acetone surface coverage in the ACs increased obviously with the increase of acetone concentration. Smaller acetone surface coverage resulted in higher ACs adsorption energy for acetone. Heat transfer coefficients exhibited insignificant effect on mass transfer. In contrast, mass transfer coefficients exhibited more impact on heat transfer. The mass transfer effects caused by a temperature gradient were more obvious than heat transfer effects caused by a concentration gradient.
     For SO2adsorption on ACs, the linear correlation coefficient of specific surface area and micropore specific surface area and SO2adsorption capacity increased with the increasing of SO2inlet concentration. In the higher inlet concentration and lower adsorption temperature, total pore volume and micropore volume of ACs have both a well linear fitting with the SO2adsorption capacity. With the same adsorption temperature and inlet concentration, the impact of textural properties of ACs on SO2adsorption were in order as narrow pore volume> micropore volume> micropore surface area> BET surface area> total pore volume. When the adsorption at a certain temperature, the maximum adsorption capacity of micropore volume performed as AC-SX> AC-NX> AC-HN> AC-GZ, the order of adsorption energy were AC-GZ> AC-NX> AC-HN> AC-SX, it was explained that the larger the maximum adsorption capacity of micropore volume, the lower the adsorption energy, so absorption of AC-SX was occurred easily.
     (2)Commerial ACs were modified with microwave thermal treatment, inorganic and organic chemical reagents. The structure characteristics parameters such as physicochemical properties of modified ACs were obtained by the characterizations of Boehm titration, transmission electron microscope (TEM), BET and FTIR to investigate the adsorption performance of acetone by modified ACs. The research shows that the Langmuir adsorption isotherm model described the adsorption of acetone onto modified ACs. The specific surface area and total pore volume of modified ACs decreased slight, but the micropore specific surface area increased remarkably. With an increase of temperature, large number of surface acidic functional groups resolve and surface basic functional groups were formed gradually in thermal treatment. After alkaline solutions modification, with an increase of alkaline of solutions, surface basic functional groups increased remarkably and surface acidic functional groups were removed completely, which resulted in a dercease of acetone adsorption capacity. Esters modification could directional modified pore structure of ACs. It decreased the mesopore specific surface area, prompted micropore specific surface area, and improved the ability of the modified ACs capture adsorbate molecule. In early stage of adsorption of acetone on modified ACs, a small amount of ester reagents was replaced by acetone. The modified AC-ethy has a good performance on the treatment of high humidity and low density of acetone. Compared with the AC-NX, the acetone adsorption capacity of AC-ethy was not affected by water vapor.
     (3) The heat and mass transfer in a fix bed of AC and the variation of the ratio of desorption gas condensability was investigated on a double bed five steps pressure swing adsorption (PSA) for the first time. The results show that the pressure inside the adsorption bed was changed periodically, the temperature curve of different height was changed according to the changing periodicity, the mass transfer area was mainly in0.08-0.15m. The concentration of gas phase composition was decreased gradually with the increase of adsorption column height. It begin into a stability stage after400cycles. No SO2was detected when the bed height was higher than0.6m. During the purge desorption and vacuum desorption stage, the ratio of desorption gas condensability was increased, then tends to stable, finally bring down with desorption time increasing. In our experiment conditions, the best operation time for each stage were adsorption with170s, purge desorption with15s, vaccum desorption with180s, balance pressure with3s. The avarge condensability of SO2in desorption gas can achieved2.0.
     (4) Self-made AC was prepared by a chemical activation method using an tobacco industry waste. Experiments were conducted to study the influence of AC properity, The pore distribution of different ACs by using the pore structure parameter and the different of AC on acetone adsorption efficiency were investigated. The results show that the AC pore structure and adsorption properties were determined by the activation agent types and dosage. AC prepared by ZnCl2exhibited the highest specific surface area. Nitrogen adsorption isotherm for the three ACs in line with type I adsorption isotherm. Micropore distribution of ACs was illustrated by D-A equation and H-K equation, respectively. ACs exhibited the most wide pore distribution was prepared by ZnCl2, which appeared muti-peak distribution. Meso and macropore distribution of ACs was displayed by BJH equation. Most abundant meso and macropore structure were formed on the AC treated by KOH. Higher dosage of activation agent resulted in more meso and macropore when the same activation agent was used. The solid surface fractal dimensions of ACs was calculated. AC with K2CO3as a activation agent is the most rough, it was illustrated that the content of tiny micropore (<0.6nm) was the maximum. Adsorption of acetone has been measured for AC with two times dosage of K2CO3as a activation agent. The result shows that the Langmuir and Temkin model fitted experimental data well.
     This research provides a reasonable basis in industrial application of purification of gaseous pollutants by adsorption of AC, and also a new comprehensive utilization method by rural waste biomass resources.
引文
[1]J.L. Martinez-Hurtado, C.A.B. Davidson, J. Blyth, et al. Holographic detection of hydrocarbon gases and other volatile organic compounds[J]. Langmuir,2010, 26(19):15694-15699.
    [2]S. Sumathi, S. Bhatia, K.T. Lee, et al. Adsorption isotherm models and properties of SO2 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC)[J]. Chemical Engineering Journal,2010,162 (1):194-200.
    [3]郝吉明,马广大.大气污染控制工程[M].高等教育出版社:北京,中国,2002.
    [4]D.M. Young, A.D. Crowell. Physical Adsorption of Gases[M]. Butterworths: London, England,1962.
    [5]M.J.D. Low. Kinetics of chemisorption of gases on solids[J]. Chemical Reviews, 1960,60 (3):267-312.
    [6]K. Yang, Q. Sun, F. Xue, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101:Influence of molecular size and shape[J]. Journal of Hazardous Materials,2011,195 (15):124-131.
    [7]Yanxu Li, Jiangyao Chen, Yinghuang Sun. Adsorption of multicomponent volatile organic compounds on semi-coke[J]. Carbon,2008,46 (6):858-863.
    [8]A.L. Ahmad, M.M. Loh, J.A. Aziz. Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption[J]. Dyes Pigments,2007,75(2):263-272.
    [9]苏伟.椰壳基微孔活性炭制备与表征研究[D].天津:天津大学,2003.
    [10]N. Yoshizawa, Y. Yamada, T. Furuta, et al. Coal-based activated carbons prepared with organometallics and their mesoporous structure[J]. Energy Fuel.1997,11: 327-330.
    [11]Guozhuo Gong, Qiang Xie, Yanfeng Zheng, et al. Regulation of pore size distribution in coal-based activated carbon[J]. New Carbon Materials,2009, 24(2):141-146.
    [12]李立清,顾庆伟,石瑞,等.热改性活性炭吸附有机气体的性能[J].化工学报,2012,63(6):1749-1756.
    [13]张传祥.煤基活性炭电极材料的制备及性能[M].煤炭工业出版社,北京,中国,2009.
    [14]M.A. Lillo-Rodenas, D. Lozano-Castello, D. Cazorla-Amoros et al. Preparation of activated carbons from Spanish anthracite:Ⅱ.Activation by NaOH[J]. Carbon, 2001,39(5):751-759.
    [15]Y.C. Fung. Foundations of Solids Mechanics[M]. Prentice-Hall Press:London, England,1965.
    [16]M.M. Dubinin. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces [J]. Chemical Reviews,1960, 60 (2):235-241.
    [17]M.M. Dubinin, V.A. Astakhov. Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents[J]. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1971,20(1):3-7.
    [18]H.F. Stoeckli. A generalization of the Dubinin-Radushkevich equation for the filling of heterogeneous micropore systems [J]. Journal of Colloid and Interface Science,1977,59 (1):184-185.
    [19]Stephen Brunauer, Lola S. Deming, W. Edwards Deming, et al. On a theory of the van der waals adsorption of gases[J]. Journal of the American Chemical Society,1940,62 (7):1723-1732.
    [20]J. Rouquerol, D. Avnir, C.W. Fairbridge, et al. Recommendations for the characterization of porous solids[J]. International Union of Pure and Applied Chemistry,1994,66 (8):1739-1758.
    [21]J.H. de Boer. The Dynamical Character of Adsorption[M]. Oxford University Press:London, England,1968.
    [22]G.D. Parfitt, C.H. Rochester. Adsorption from Solution at the Solid-Liquid interface[M]. Academic Press:London, England,1983.
    [23]Irving Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society,1918,40 (9):1361-1403.
    [24]Stephen Brunauer, P.H. Emmett, Edward Teller. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society,1938,60 (2):309-319.
    [25]Milton Manes, Lawrence J.E. Hofer. Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon[J]. The Journal of Physical Chemistry,1969,73 (3):584-590.
    [26]Conway Pierce. The Frenkel-Halsey-Hill adsorption isotherm and capillary condensation[J], the Journal of Physical Chemical,1960,64 (9):1184-1187.
    [27]近藤精一,石川达雄,安部郁夫.吸附科学[M].化学工业出版社:北京,中国,2005.
    [28]M. Popescua, J.P. Jolyb, J. Carreb, et al. Dynamical adsorption and temperature-programmed desorption of VOCs (toluene, butyl acetate and butanol) on activated carbons[J]. Carbon,2003,41 (4):739-748.
    [29]A.B. Fuertesa, G. Marbana, D.M. Nevskaia. Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths[J]. Carbon,2003, 41 (1):87-96.
    [30]M.A. Lillo-Rodenasa, A.J. Fletcherb, K.M. Thomasb, et al. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration [J]. Carbon,2006,44 (8):1455-1463.
    [31]A.J. Romero-Anaya, M.A. Lillo-Rodenas, A. Linares-Solano. Spherical activated carbons for low concentration toluene adsorption [J]. Carbon,2010,48 (9): 2625-2633.
    [32]王玉新,苏伟,周亚平.不同结构的活性炭对CO2、CH4、N2及O2的吸附分离性能[J].化工进展,2009,28(2):206-209.
    [33]刘军利,韩学文,施荫锐.丙酮回收用活性炭微结构的研究[J].林产化学与工业,2003,23(1):55-58.
    [34]Yu-Chun Chiang, Pen-Chi Chiang, Chin-Pao Huang. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon,2001,39 (4): 523-534.
    [35]Mary A. Koladea, Andreas Kogelbauer, Esat Alpay. Adsorptive reactor technology for VOC abatement [J]. Chemical Engineering Science,2009,64 (6): 1167-1177.
    [36]王贵珍,李丽欣,李永真,等.毛竹活性炭制备及其对含苯酚废水吸附的研究[J].高校化学工程学报,2010,24(4):700-704.
    [37]Qingjun Chen, Zhi Wang, Donghui Long, et al. Role of pore structure of activated carbon fibers in the catalytic oxidation of H2S[J]. Industrial and Engineering Chemistry Research,2010,49 (7):3152-3159.
    [38]Bei Cheng, Yao Le, Weiquan Cai, et al. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water[J]. Journal of Hazardous Materials,2011,185 (2-3):889-897.
    [39]Mei-Chiung Huang, Chia-Huei Chou, Hsisheng Teng. Pore-size effects on activated-carbon capacities for volatile organic compound adsorption [J]. An Official Publication of the American Institute of Chemical Engineers Journal, 2002,48 (8):1804-1810.
    [40]Seyed A. Dastgheib, Tanju Karanfil. The effect of the physical and chemical characteristics of activated carbons on the adsorption energy and affinity coefficient of Dubinin equation[J]. Journal of Colloid and Interface Science, 2005,292 (2):312-321.
    [41]J.F. Wu, M.E. Stromqvist, O. Claesson, et al. A systematic approach for modelling the affinity coefficient in the Dubinin-Radushkevich equation[J]. Carbon,2002,40 (14):2587-2596.
    [42]O.G. Martynenko, N.V. Pavlyukevich. Heat and mass transfer in porous media[J]. Journal of Engineering Physics and Thermophysics,1998,71 (1):1-13.
    [43]M.S. Malashetty, S.N. Gaikwad. Effect of cross diffusion on double diffusive convection in the presence of horizontal gradients[J]. International Journal of Engineering Science,2002,40 (7):773-787.
    [44]Cheng, Ching-Yang. Soret and Dufour effects on heat and mass transfer by natural convection from a vertical truncated cone in a fluid-saturated porous medium with variable wall temperature and concentration[J]. International Communications in Heat and Mass Transfer,2010,37 (8):1031-1035.
    [45]Adrian Postelnicu. Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects[J]. Heat and Mass Transfer,2007,43 (6):595-602.
    [46]R.M.L. Coelho, A.S. Telles. Extended Graetz problem accompanied by Dufour and Soret effects[J]. International Journal of Heat and Mass Transfer,2002,45 (15):3101-3110.
    [47]D.M. Ruthven. Principles of Adsorption and Adsorption Processes[M]. Wiley-Interscience:New York,1984.
    [48]Atanas Serbezov, Stratis V. Sotirchos. Mathematical Modeling of Multicomponent Nonisothermal Adsorption in Sorbent Particles Under Pressure Swing Conditions [J]. Adsorption-Journal of the International Adsorption Society, 1998,4 (2):93-111.
    [49]R.T. Yang. Gas Separation by Adsorption Processes[M]. Butterworths Publishers: USA,1986.
    [50]Craig R.C. Jensen, Nigel A. Seaton, Vladimir Gusev, et al. Prediction of multicomponent adsorption equilibrium using a new model of adsorbed phase nonuniformity[J]. Langmuir,1997,13 (5):1205-1210.
    [51]Liqing Li, Zheng Liu, Yingxin Qin, et al. Estimation of volatile organic compound mass transfer coefficients in the vacuum desorption of acetone from activated carbon[J]. Journal of chemical and engineering data,2010,55 (11): 4732-4740.
    [52]Damien Leinekugel-le-Cocq, Melaz Tayakout-Fayolle, Yann Le Gorrec, et al. A double linear driving force approximation for non-isothermal mass transfer modeling through bi-disperse adsorbents[J]. Chemical Engineering Science, 2007,62 (15):4040-4053.
    [53]Shivaji Sircar. Gas sorption kinetics by differential closed-loop recycle method: Effect of heat of adsorption. [J]. Adsorption-Journal of the International Adsorption Society,2006,12 (4):259-266.
    [54]S. Sircar, J.R. Hufton. Why does the linear driving force model for adsorption kinetics work?[J]. Adsorption-Journal of the International Adsorption Society, 2000,6 (2):137-147.
    [55]M.B. Rao, S. Sircar. Thermodynamic consistency for binary gas adsorption equilibria[J]. Langmuir,1999,15 (21):7258-7267.
    [56]李立清,朱正双,秦映心,等.两组分有机气体等温吸附模拟与传热传质分析[J].中国电机工程学报,2008,28(26):46-52.
    [57]Yufeng He, Jeong-Ho Yun, Nigel A. Seaton. Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon:Isotherms and calorimetric heats of adsorption[J], Langmuir,2004,20 (16):6668-6678.
    [58]D.D. Do. Adsorption Analysis:Equilibria and Kinetics[M]. Imperial College Press:London, England,1998.
    [59]Liqing Li, Zheng Liu, Jundong Xin, et al. Adsorption modeling with Soret-Like and Dufour effects of a two-component organic gas on activated carbon [J]. Journal of chemical and engineering data,2012,57 (2):568-576.
    [60]Mingchun Li, Yanwen Tian, Yuchun Zhai. Soret and Dufour effects in strongly endothermic chemical reaction system of porous media[J]. Transactions of Nonferrous Metals Society of China,2006,16 (5):1200-1204.
    [61]Chung-Kung Lee, Sheng-Kuo Fen, Huan-Ping Chao, et al. Effects of pore structure and surface chemical characteristics on the adsorption of organic vapors on titanate nanotubes[J]. Adsorption-Journal of the International Adsorption Society,2012,18 (5-6):349-357.
    [62]J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, et al. Modification of the surface chemistry of activated carbons[J]. Carbon,1999,37 (9):1379-1389.
    [63]QingSong Liu, Tong Zheng, Nan Li, et al. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue[J]. Applied Surface Science,2010,258 (10):3309-3315.
    [64]J.A. Menendez, E.M. Menendez, M.J. Iglesias, et al. Modification of the surface chemistry of active carbons by means of microwave-induced treatments[J]. Carbon,1999,37(7):1115-1121.
    [65]K.Y. Foo, B.H. Hameed. Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation[J]. Chemical Engineering Journal,2012,187 (1): 53-62.
    [66]Jiun-Horng Tsai, Hsiu-Mei Chiang, Guan-Yinag Huang, et al. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers [J]. Journal of Hazardous Materials.2008,154(1-3):1183-1191.
    [67]Lihui Huang, Yuanyuan Sun, Weiliang Wang, et al. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC)[J]. Chemical Engineering Journal,2011,171 (3):1446-1453.
    [68]Xinhui Duan, C. Srinivasakannan, Jinhui Peng, et al. Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating[J]. Biomass and Bioenergy,2011,35 (9):3920-3926.
    [69]Dan Mugisidi, Aria Ranaldo, Johny W. Soedarsono, et al. Modification of activated carbon using sodium acetate and its regeneration using sodium hydroxide for the adsorption of copper from aqueous solution[J]. Carbon,2007, 45 (5):1081-1084.
    [70]Lin Li, Suqin Liu, Junxin Liu. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal [J]. Journal of Hazardous Materials,2011,192 (2):683-690.
    [71]H.P. Boehm. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon,1994,32 (5):759-769.
    [72]李立清,梁鑫,石瑞,等.酸改性活性炭对甲苯、甲醇的吸附性能[J].化工学报,2013,64(3):970-979.
    [73]P. Chingombe, B. Saha, R.J. Wakeman. Surface modification and characterisation of a coal-based activated carbon[J]. Carbon,2005,43 (5): 3132-3143.
    [74]P.J.M. Carrotta, J.M.V:Nabaisa, M.M.L.Ribeiro Carrotta, et al. Thermal treatments of activated carbon fibres using a microwave furnace[J]. Microporous and Mesoporous Materials,2001,47 (3):243-252.
    [75]C.A. Leon y Leon, J.M.Solar, V. Calemma, et al. Evidence for the protonation of basal plane sites on carbon[J]. Carbon,1992,30 (5):797-811.
    [76]N. Wibowo, L. Setyadhi, D. Wibowo, et al. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption[J]. Journal of Hazardous Materials, 2007,146 (1-2):237-242.
    [77]A.A. Attia, W.E. Rashwan, S.A. Khedr. Capacity of activated carbon in the removal of acid dyes subsequent to its thermal treatment[J]. Dyes and Pigments, 2006,69(3):128-136.
    [78]Fen Gao, Donglin Zhao, Yan Li, et al. Preparation and hydrogen storage of activated rayon-based carbon fibers with high specific surface area[J]. Journal of Physics and Chemistry of Solids,2010,71 (4):444-447.
    [79]Muriivvet Yurdakoc, Yoldas. Seki, Senem Karahan, et al. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80[J]. Journal of Colloid and Interface Science,2005,286 (2):440-446.
    [80]Mitali Sarkar, Parshati Majumdar. Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead[J]. Chemical Engineering Journal,2011,175 (15):376-387.
    [81]Gurhan Gereli, Yoldas Seki, I. Murat Kusoglu, et al. Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite[J]. Journal of Colloid and Interface Science,2006,299 (1):155-162.
    [82]Vipasiri Vimonses, Shaomin Lei, Bo Jin, et al. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials[J]. Chemical Engineering Journal,2009,148 (2-3):354-364.
    [83]S.G. Chen, R.T. Yang. Theoretical basis for the potential theory adsorption isotherms:the Dubinin-Radushkevich and Dubinin-Astakhov equations[J]. Langmuir,1994,10 (11):4244-4249.
    [84]G.O. Wood. Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations:A review with compilations and correlations[J]. Carbon,2001,39 (3): 343-356.
    [85]C.L. Mangun, J.A. DeBarr, J. Economy. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers[J]. Carbon,2001,39 (11):1689-1696.
    [86]Lilli Kirkeskov Jensen, Annelise Larsen, Lars Mlhave, et al. Health evaluation of volatile organic compound (VOC) emissions from wood and wood-based materials[J]. Archives of Environmental Health,2001,56 (5):419-432.
    [87]谢兰英,Lingai Luo,李忠.VOCs在MAC上吸附等温线的测定与拟合[J].化工学报,2006,57(6):1357-1363.
    [88]余谟鑫,李忠,夏启斌,等.活性炭表面热氧化对其吸附二苯并噻吩性能影响[J].化工学报,2007,58(4):938-943.
    [89]E. Ayranci, E. Bayram. Adsorption of phthalic acid and its esters onto high-area activated carbon-cloth studied by in situ UV-spectroscopy[J]. Journal of Hazardous Materials,2005,122 (1-2):147-153.
    [90]F. Delage, P. Pre, P. Cloirec. Effects of Moisture on Warming of Activated Carbon Bed during VOC Adsorption[J]. Journal of Environmental Engineering-Asce,1999,125 (12):1160-1167.
    [91]E. Dimotakis, M. Gal, J. Economy, et al. Water vapor adsorption on chemically treated activated carbon Cloths[J]. Chemistry of Materials,1995,7 (12): 2269-2272.
    [92]Jun Fan, Aimin Li, Weiben Yang, et al. Adsorption of water-soluble dye X-BR onto styrene and acrylic ester resins [J]. Separation and Purification Technology, 2006,51 (3):338-344.
    [93]C. Yang, U. Kaipa, Q.Z. Mather, et al. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage[J]. Journal of the American Chemical Society,2011,133 (45):18094-18097.
    [94]Guangming Liu, Li Fu, Guangzhao Zhang. Role of hydrophobic interactions in the adsorption of poly(ethylene glycol) chains on phospholipid membranes investigated with a quartz crystal microbalance[J]. Journal of Physical Chemistry B,2009,113 (11):3365-3369.
    [95]N. Qi, W.S. Appel, M.D. LeVan, et al. Adsorption dynamics of organic compounds and water vapor in activated carbon beds[J]. Industrial & Engineering Chemistry Research,2006,45 (7):2303-2314.
    [96]Zheng Yang, Qifeng Li, Rui Hua, et al. Competitive adsorption of toluene and n-alkanes at binary solution/silica interfaces[J]. Journal of Physical Chemistry C, 2009,113 (47):20355-20359.
    [97]刘振宇.活性炭纤维的微结构解析及其改性研究[D].山西,中国:中国科学院山西煤炭化学研究所,2001.
    [98]郭亮,彭晓峰,吴占松.甲烷在成型纳米活性炭中的吸附动力学特性[J].化工学报,2008,59(11):2726-2732.
    [99]Qian Liu, Shurong Wang, Yun Zheng, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis,2008,82 (1):170-177.
    [100]J.B. Reeves, G.W. McCarty, D.W. Rutherford, et al. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin:Implications for the quantitative determination of charcoal in soils[J]. Applied Spectroscopy,2008,62 (2):182-189.
    [101]M. Keiluweit, P.S. Nico, M.G. Johnson, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology,2010,44 (4):1247-1253.
    [102]Qun He, Zheng Hu, Yin Jiang, et al. Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination[J]. Journal of Hazardous Materials, 2010,175 (1-3):710-714.
    [103]李立清,宋剑飞,孙政,等.三种VOCs物性对在其活性炭上吸附行为的影响[J].化工学报,2011,62(10):2784-2790.
    [104]叶青,张瑜,李茗,等.改性碳纳米管常温下吸附分离低浓度CO2[J].物理化学学报,2012,28(5):1223-1229.
    [105]C. Kwong, C.Y.H. Chao, K.S. Hui, et al. Removal of VOCs from indoor environment by ozonation over different porous materials[J]. Atmospheric Environment,2008,42 (10):2300-2311.
    [106]R.K. Srivastava, W. Jozewicz, C. Singer. SO2 scrubbing technologies:A review[J]. Environmental Progress,2001,20 (4):219-227.
    [107]刘征建,张建良,杨天钧.烧结烟气脱硫技术的研究与发展[J].中国冶金,2009,19(2):1-6.
    [108]S. Sumathi, S. Bhatia, K.T. Lee, et al. Adsorption isotherm models and properties of SO2 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC)[J]. Chemical Engineering Journal,2010,162 (1): 194-200.
    [109]A.C. Lua, T.Yang. Theoretical and experimental SO2 adsorption onto pistachio-nut-shell activated carbon for a fixed-bed column[J]. Chemical Engineering Journal,2009,155 (1-2):175-183.
    [110]高继贤,王铁峰,王金福.炭法吸附烟气净化硫回收技术进展及应用前景[J].现代化工,2006,26(10):194-200.
    [111]A.C. Lua, J. Guo. Adsorption of sulfur dioxide on activated carbon from oil-palm waste[J]. Journal of Environmental Engineering-Asce,2001,127 (10): 895-901.
    [112]Joseph A. DeBarr, Anthony A. Lizzio, Michael A. Daley. Adsorption of SO2 on bituminous coal char and activated carbon fiber[J]. Energy & Fuels,1997,11 (2):267-271.
    [113]N. Karatepe, I. Orbak, R. Yavuz, et al. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties [J]. Fuel,2008,87 (15-16):3207-3215.
    [114]刘少俊,高翔,曹飞飞,等.孔隙结构对活性炭脱硫影响的实验研究[J].中国电机工程学报,2012,32(35):46-52.
    [115]J. Guo, A.C. Lua. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption[J]. Journal of Colloid and Interface Science,2002,251 (2):242-247.
    [116]Yuwen Zhu, Jihui Gao, Yang Li, et al. Preparation of activated carbons for SO2 adsorption by CO2 and steam activation [J]. Journal of the Taiwan Institute of Chemical Engineers,2012,43 (1):112-119.
    [117]K.E. Noll, V. Gounaris, W. Hou. Adsorption Technology for Air and Water Pollution Control[M]. Lewis Publishers:USA,1992.
    [118]岑泽文,曾汉才,张鹏宇,等.PAN-ACF表面物化特性及其吸附能[J].电力环境保护,2004,20(3):57-59.
    [119]S.A. Dastgheib, T. Karanfil. The effect of the physical and chemical characteristics of activated carbons on the adsorption energy and affinity coefficient of Dubinin equation[J]. Journal of Colloid and Interface Science, 2005,292 (2):312-321.
    [120]GO. Wood. Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations-A review with compilations and correlations[J]. Carbon,2001,39 (3):343-356.
    [121]M.M. Dubinin. Fundamentals of the theory of adsorption in micropores of carbon adsorbents:Characteristics of their adsorption properties and microporous structures[J]. Carbon,1989,27 (3):457-467.
    [122]B.H. Hameed, A.A. Ahmad, N. Aziz. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash[J]. Chemical Engineering Journal, 2007,133(1-3):195-203.
    [123]P.G. Gray. A fundamental study on the removal of air pollutants (sulfur dioxide, nitrogen dioxide and carbon dioxide) by adsorption on activated carbon[J]. Gas Separation & Purification,1993,7 (4):213-224.
    [124]A.C. Lua, T. Yang. Theoretical analysis and experimental study on SO2 adsorption onto pistachio-nut-shell activated carbon[J]. Aiche Journal,2009,55 (2):423-433.
    [125]C.W. Skarstrom. Press swing adsorption progress for air separation[P]. USA Patent (US2944627),1960.
    [126]Guerin de Montgareuil, D. Domine Process for separating a binary gaseous mixture by adsorption[P]. USA Patent (US3155468),1964.
    [127]Kuck-Tack Chue, Jong-Nam Kim, Yun-Jong Yoo, et al. A parametric study of pressure swing adsorption for the recovery of carbon dioxide from flue gas[J]. Fundamentals of Adsorption The Kluwer International Series in Engineering and Computer Science,1996,356:203-210.
    [128]C.A. Grande, S. Cavenati, F.A. Da Silva, et al. Carbon molecular sieves for hydrocarbon separations by adsorption[J]. Industrial & Engineering Chemistry Research,2005,44 (18):7218-7227.
    [129]H. Miyajima, A. Kodama, M. Goto, et al. Improved purge step in pressure swing adsorption for CO purification [J]. Adsorption-Journal of the International Adsorption Society,2005,11(1):625-630.
    [130]L. Gales, A. Mendes, C. Costa. Recovery of acetone, ethyl acetate and ethanol by thermal pressure swing adsorption[J]. Chemical Engineering Science,2003, 58 (23-24):5279-5289.
    [131]李立清.吸附与变压吸附处理挥发性有机蒸气的实验与理论研究[D].长沙:湖南大学,2004.
    [132]J.F. Nastaj, B. Ambrozek, J. Rudnicka. Simulation studies of a vacuum and temperature swing adsorption process for the removal of VOC from waste air streams[J]. International Communications in Heat and Mass Transfer,2006,33 (1):80-86.
    [133]K. Chihara, H. Minaki, T. Aiko, et al. Solvent recovery by PSA, an experimental and a simulation study[J]. Adsorption-Journal of the International Adsorption Society,2005,11:567-572.
    [134]E.S. Kikkinides, R.T. Yang. Gas separation and purification by polymeric adsorbents:flue gas desulfurization and sulfur dioxide recovery with styrenic polymers[J]. Industrial & Engineering Chemistry Research,1993,32 (10): 2365-2372.
    [135]E.S. Kikkinides, R.T. Yang. Simultaneous sulfur dioxide/nitrogen oxide (NOx) removal and sulfur dioxide recovery from flue gas by pressure swing adsorption[J]. Industrial & Engineering Chemistry Research,1991,30 (8): 1981-1989.
    [136]V.G. Gomes, K.W.K. Yee. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases[J]. Separation and Purification Technology, 2002,28(2):161-171.
    [137]Zhonghua Hu, E.F. Vansant. Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell[J]. Microporous Materials,1995,3 (6):603-612.
    [138]Nikolai V. Bodoev, Rene Gruber, Vladimir A. Kucherenko, et al. A novel process for preparation of active carbon from sapropelitic coals[J]. Fuel,1998, 77 (6):473-478.
    [139]Vincent Verheyen, Robert Rathbone, Marit Jagtoyen, et al. Activated extrudates by oxidation and KOH activation of bituminous coal[J]. Carbon,1995,33 (6): 763-772.
    [140]Klaus J. Huttinger, Roland Minges. Catalytic water vapour gasification of carbon:Importance of melting and wetting behaviour of the 'catalyst'[J]. Fuel, 1985,64 (4):491-494.
    [141]郭玉鹏,杨少凤,赵敬哲,等.由稻壳制备高比表面积活性炭[J].高等学校化学学报,2000,21(3):335-338.
    [142]A. Ahmadpour, D.D. Do. The preparation of activated carbon from macadamia nutshell by chemical activation[J]. Carbn,1997,35 (12):1723-1732.
    [143]Hsisheng Teng, Sheng-Chi Wang. Influence of oxidation on the preparation of porous carbons from phenol-formaldehyde resins with KOH activation[J]. Industrial & Engineering Chemistry Research,2000,39 (3):673-678.
    [144]A. Ahmadpour, D.D. Do. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon,1996,34 (4):471-479.
    [145]Jun'ichi Hayashi, Atsuo Kazehaya, Katsuhiko Muroyama, et al. Preparation of activated carbon from lignin by chemical activation[J]. Carbon,2000,38 (13): 1873-1878.
    [146]Jun'ichi Hayashi, Mikihito Uchibayashi, Toshihide Horikawa, et al. Synthesizing activated carbons from resins by chemical activation with K2CO3[J]. Carbon,2002,40 (15):2747-2752.
    [147]荣海琴,郑经堂.改性PAN-ACFs对甲醛吸附性能的初步研究[J].新型炭材料,2001,16(1):44-48.
    [148]Kazunori Kakei, Sumio Ozeki, Takaomi Suzuki, et al. Multi-stage micropore filling mechanism of nitrogen on microporous and micrographitic carbons [J]. Journal of the Chemical Society, Faraday Transactions,1990,86 (2):371-376.
    [149]Peter Pfeifer, David Avnir. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces [J]. The Journal of Chemical Physics,1983,79 (7):3558-3565.
    [150]David Avnir, Dina Farin, Peter Pfeifer. Chemistry in noninteger dimensions between two and three. Ⅱ. Fractal surfaces of adsorbents[J]. The Journal of Chemical Physics,1983,79 (7):3566-3571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700