用户名: 密码: 验证码:
生物滴滤法脱除天然橡胶厂臭气技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然橡胶因为具有较强的弹性,较好的绝缘性和可塑性等性能被广泛地用于工业、农业、国防、交通等领域,在国民经济发展过程中具有举足轻重的地位。天然橡胶生产过程中产生的废气具有恶臭气味,对环境造成臭气污染。因此,控制天然橡胶企业的恶臭气体污染成为实现天然橡胶产业可持续发展的必然选择。论文对天然橡胶厂的臭气成分进行了来源解析;针对两类恶臭成分筛选和驯化降解微生物;在此基础上,以焦炭和磷矿石作为基质固定相应的降解菌对橡胶厂主要恶臭成分进行降解,最后对降解过程和降解机理进行机理分析,主要内容如下:
     (1)建立了天然橡胶厂废气分析方法。采用GC/MS联用仪、GC仪和紫外-可见分光光度仪等仪器对固体橡胶释放出的臭气和天然橡胶厂大气环境中的臭气污染状况进行了调查和分析。结果表明,天然橡胶厂释放的臭气物质包括羰基化合物、硫类、胺类、芳香烃、醇类等6类,涉及37种物质。其中挥发性脂肪酸(VFAs)、氨气、硫化氢和甲硫醚是天然橡胶厂恶臭气体的特征污染物,是造成恶臭污染的主要来源;
     (2)构建了生物滴滤床反应器。以甲酸、丙酸和正戊酸(质量比为1:1:1)的混合物天然橡胶厂产生的挥发性脂肪酸臭气,并将混合物作为唯一碳源从天然橡胶厂生产废水处理站的活性污泥中分离、获得降解菌—DA-1。在此基础上,以焦炭和磷矿石作为反应器的基质并固定DA-1菌,分别构建了1#和2#生物滴滤反应器对挥发性脂肪酸臭气进行净化。结果表明,在进气浓度205.80-677.40mg/m3,营养液pH6.0-7.0的条件下,反应器对挥发性脂肪酸的体积去除负荷随运行时间增加而呈逐渐增加的趋势;以甲硫醚为唯一碳源从天然橡胶厂生产废水处理站的活性污泥中分离出3株优势菌,被命名为DJ-1、DJ-2和DJ-3,其中DJ-2菌的菌落最大。DJ-2菌的最佳生长条件为:pH=7、t=30℃、C/N=5。以焦炭和磷矿石为基质固定DJ-2菌,分别构建了3#和4#生物滴滤反应器对甲硫醚臭气进行降解。第45天,3#和4#塔对甲硫醚的体积去除负荷分别达到6.60g/(m3.h)和6.08g/(m3-h);对4个生物滴滤反应器的净化效果进行综合分析后发现,以焦炭为填料的生物反应器净化效果更好。其原因可能在于焦炭相对于磷矿石具有更大的比表面积、空隙率和更强的持水性。理化性质分析结果表明:焦炭的比表面积、持水率和空隙率分别为312.40m2/g、28%和45.98%,各项参数均优于磷矿石的0.38m2/g、7.5%和43.76%;构建了两套新型生物滴滤反应器,其中一套(5#)反应器的下半层填料以挥发性脂肪酸(VFAs)为唯一碳源驯化和挂膜,上半层填料以甲硫醚为唯一碳源驯化和挂膜。另一套(6#)反应器的填料构成正好与5#反应器相反,即上半层填料以挥发性脂肪酸(VFAs)为唯一碳源驯化和挂膜,下半层填料以甲硫醚为唯一碳源驯化和挂膜。利用这两个复合生物反应器对甲硫醚和VFAs的混合气体进行净化,考察了反应器的运行状况和净化效果。实验结果表明,5#反应器和6#反应器都对甲硫醚和VFAs表现出一定的净化能力,两个反应器都有一定抗负荷冲击能力。尤其是在低浓度阶段,两个反应器都对混合臭气表现出了较好的净化能力。但在高浓度阶段,6#反应器对甲硫醚的净化效果不好,净化率随进气浓度的增加出现急剧下降的趋势。当VFAs和甲硫醚进气负荷分别为2.12g/(m3.h)和5.71g/(m3.h)时,反应器对甲硫醚的净化率降为53.13%。实验结果还表明,在降解甲硫醚的反应器中引入低浓度的VFAs有利于甲硫醚的去除,当VFAs浓度偏高时会抑制甲硫醚的降解。在降解VFAs的反应器中引入甲硫醚对VFAs的净化效果没有明显影响;
     (3)对VFAs和甲硫醚的降解机理进行了分析。结果认为,氧气是影响VFAs和甲硫醚降解最重要的因素之一。在氧气供应充足的条件下,两类物质所进行的降解反应都以好氧反应为主,VFAs最终降解产生CO2和H2O,甲硫醚最终降解产生H2SO3;在厌氧条件下,两类物质都主要进行厌氧反应,VFAs最终降解产生CO2和CH4,甲硫醚最终降解产生H2S。
Raw material products from natural rubber processing plants provide huge benefits to human beings as they are exploited to manufacture many kinds of important rubber goods. However, a large number of odorous substances have been produce during the production process of natural rubber. The contradictions between the development of rubber production and environmental protection have become increasingly prominent with the expansion of rubber production. Therefore, it is need that using environmental friendly methods to solve the problem of odor pollution.
     In this paper, the main odor components resulting from the production process of natural rubber were analyzed and the odor-degrading microorganisms have been isolated based on those odor components. Furthermore, six biotrickling filters were designed and made, which were characterized by using coke and phosphate rock as the packing to immobilize the odor-degrading microorganisms and then to degrade the odor components producing the process of natural rubber production, respectively. In addition, the degradation mechanisms were explored. The results were showed as follow:
     (1) The odor components resulting from the production process of natural rubber were analyzed using UV spectrophotometer, gas chromatography and gas chromatography/mass spectrometry (GC/MS) associated with head space sampling technique. The results showed that the odorous components from the natural rubber plant include amines, ketones, ethers, acids, et al., Of which, volatile fatty acid, ammonia, hydrogen sulphide and methyl sulfide were identified as the typical components;
     (2) A volatile fatty acids-degrading microorganism, DA-1, was isolated from the sludge from wastewater treatment plant of natural rubber production by using formic acid, propionic acid and n-valeric acid (the quality ratio:1:1:1) as odor and carbon source. Further, DA-1was immobilized on coke (reactor1) and phosphate rock (reactor2), which used to degrade volatile fatty acids in the two biotrickling filters, respectively. The results showed that the elimination capacity of volatile fatty acids always increased during the experiment at the inlet concentration of205.80-677.40mg/m3and pH of6.0-7.0; A methyl sulfide-degrading microorganism, DJ-1, DJ-2and DJ-3were isolated from the sludge of wastewater treatment plant of natural rubber production by using dimethyl sulfide as carbon source. The optimum growth conditions for DJ-2were pH7,30℃, and C/N ratios of5. Further, DJ-2was immobilized on coke (reactor3) and phosphate rock (reactor4), which used to degrade the dimethyl sulfide in the two biotrickling filters, respectively. The results showed that the elimination capacity of dimethyl sulfide reached6.60g/(m3-h) in reactor3and6.08g/(m3·h) in reactor4at odor flow rate of0.50L/min and pH of6.0-7.0on the45th day; The biotrickling filter using coke as the packing was better than that using phosphate rock as the packing. The reason probably lied that coke with respect to the phosphate rock having a larger specific surface area and porosity, greater water holding capacity, and thus demonstrate better purifying capability because coke has a specific surface area of312.40m2/g, the water holdup of28%and the porosity of45.98%, while phosphate rock has a specific surface area of0.38m2/g, the water-holding rate of7.5%and a porosity of43.76%; Two sets of biotrickling filters were built, one (reactor5) packed with volatile fatty acids-degrading microorganism in the lower part and the other (reactor6) packed with methyl sulfide-degrading microorganism in the upper parter. Further, the two biofilters to be used to degrade the mixtures of volatile fatty acids and methyl sulfide from air streams. The results showed that reactor5and6both can withstand shock loading and will maintain stably under relative low concentration of odorous volatile fatty acids and methyl sulfide inlet gas. However, the bioreactor6was ineffective in removing methyl sulfide under the inlet load too high. The purification rate of dimethyl sulfide dropped to53.13%at VFAs mass loadings up to5.71g/m3-h and methyl sulfide loadings up to2.12g/m3-h;
     (3) In addition, the mechanism about the degradation of volatile fatty acids and dimethyl sulfide were explored. The results showed that oxygen played an important role in the biological degradation process. The VFAs and dimethyl sulfide would be degraded to CO2, H2O and H2SO3provided the oxygen was supplied sufficiently. In contrast, the VFAs and dimethyl sulfide would be degraded to CO2, CH4and H2S respectively.
引文
[1]魏邦柱,胶乳.乳液应用技术[M].北京:化学工业出版社,2002.
    [2]Patricio.O, Fernando.A, Christian.C, et al., Aroca Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus [J]. Process Biochemistry,2003,39: 165-170.
    [3]郑志峰,田森林,吸附浓缩/热脱附-空气中挥发性有机物分析前处理技术[J].云南环境科学,2006,25(2):44-46.
    [4]苗虹,关亚风,王涵文等,气体样品的动态预浓缩方法[J].色谱,2001,1(19):71-73.
    [5]Jacek.A. K, Yin.C. M, et al., Simultaneous Characterization of VOCs and Livestock Odors Using Solid-Phase Microextraction-Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry [J]. Chemical Engineering Transactions,2010,23:73-80.
    [6]钟罗宝,陈谷,顶空进样器在快速检测食品美拉德反应风味物质中的新应用[J].现代食品科技,2009,25(9):1091-1095.
    [7]Jacques N, Anne.C, Romain, et al., Odour Annoyance Assessment around Landfill Sites: Methods and Results [D]. Belgium:University of Liege,2008.
    [8]赵东风,张继光,张庆冬,三点比较式臭袋法与动态嗅觉仪法关联性研究[J].环境科技,2009,22(3):1-4.
    [9]Vipavee.P. H, Determination of chemical components that cause mal-odor from natural rubber [J]. Rubber chemistry and technology,2003,1128-1145.
    [10]Jidda Upanishadic, Characterization and Mechanism to Generate the Obnoxious Odor in Natural Rubber [J]. Testing and Measuring,2006,8:382-388.
    [11]翟崇治,微生物过滤法净化恶臭污染物[J].重庆环境科学,2000,22(3):35-36.
    [12]Joanna E. B, Simon A. P, Richard M. S, Developments in odour control and waste gas treatment biotechnology:a review [J]. Biotechnology Advances,2001(19):35-63.
    [13]闫凯,生物滴滤法处理低浓度混合恶臭气体的研究[J].江苏环境科技,2007,20(1):39-40.
    [14]吴荣芳,米忠强,生态除臭技术应用发展研究[J].安徽农业科,2008,36(10):4231-4233.
    [15]Share. Z, Singh. A, Biotechnology for Odor and Air Pollution Control [M].New York: Springer-Verlaine Berlin and Heidelberg Gamb,2005.
    [16]Baith. K, Cannon. M, Milligan. D, et al., Comparing scrubbing technology [J]. Water Environment and Technology,1996,8 (6):35-38.
    [17]李琳,刘俊新,挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J].环境污染治理技术与设备,2001,2(5):41-47.
    [18]杨义飞,姜尔玺,生物脱臭技术研究进展[J].环境保护科学,2001,27(6):3-6.
    [19]Devin. J.S, Chorusses. M.A, Webster. T, Biofiltration for Air Pollution Control [M]. Lewis Publishers, New York,1999.
    [20]Gentilhomme. M.C, Heinz. M, Biofiltration of air:a review [J], Critical Reviews in Biotechnology,2005,25:53-72.
    [21]Gentilhomme. M.C, Beau. L, Dendron. J, et al., Air treatment by biofiltration:influence of nitrogen concentration on operational [J]. Industrial Engineering Chemistry Research,2001a, 40:5405-5414.
    [22]Share. Z, Singh. A, Biotechnology for Odor and Air Pollution Control [M].New York: Springer-Verlaine Berlin and Heidelberg Gamb,2005.
    [23]Schlegelmilch. M, Streese. J, Stegmann.R, Odour management and Treatment technologies: An overview [J]. Waste Management,2005,25:928-939.
    [24]Guillermo.B, Juan P. M, Takeyuki S, et al., A detailed model of a bio-trickling filter for ammonia removal:Model parameters analysis and model validation [J]. Chemical Engineering Journal,2005,113:205-214.
    [25]Ergas. S. J, Schroeder E. D, Chang. D.P.Y, et al., Control of volatile organic compound emissions using a compost bio-trickling filter [J].Water Environment Research,1995,67: 816-821.
    [26]Chris. E, Chris. Q. Peter. B. et al.. Odor and air emissions control using biotechnology for both collection and wastewater treatment systems [J]. Chemical Engineering Journal,2005, 113:93-104.
    [27]赵鹏,栾金义,王京刚等,恶臭气体生物处理技术研究进展[J].化工环保,2005,25(1):23-29.
    [28]张兰河,汪群慧,焦中志等,滴滤反应器式生物反应器去除硫化氢恶臭气体[J].南京理工大学学报(自然科学版),2008,32(1):13-16.
    [29]黄树杰,周伟煌,陈凡植,生物滴滤反应器处理含硫化氢恶臭气体的实验研究[J].广东化工,2008,35(8):89-94.
    [30]Marc. F, Juan. A. B, Xavier. G, et al., Biological sweetening of energy gases mimics in bio-trickling filters [J]. Chemosphere,2008,71:10-17.
    [31]马红,固定化微生物处理含氨臭气的研究[J].中国环境科学,1995,(4):302-304.
    [32]张甜甜,李建军,岑英华等,净化低浓度大风量恶臭气体的生物滴滤反应器中生物膜研究[J].微生物学通报,2007,34(6):462-469.
    [33]Jiang. X, Yan. R, Tay.J. H, Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration [J]. Journal of Hazardous Materials,2009,164: 726-732.
    [34]Yaomin. J, Maria.C. V, Christian K, Co-treatment of hydrogen sulfide and methanol in a single-stage bio-trickling filter under acidic conditions [J]. Chemosphere,2007,68: 1186-1193.
    [35]吴献花,孙珮石,雷艳梅,生物滴滤反应器处理苯乙烯废气的动力学模型研究[J].玉 溪师范学院学报,2008,24(4):15-22
    [36]黄树杰,周伟煌,陈凡植,生物滴滤反应器处理含硫化氢恶臭气体的实验研究[J].广东化工,2008,35(8):45-52.
    [37]Devin. J.S, Chorusses. M.A, Webster.T, Biofiltration for Air Pollution Control [M]. New York: Lewis Publishers,1999.
    [38]Groenestijn.J. W, Lake.M. E, Elimination of alkanes from off-gases using bio-trickling filters containing two liquid phases [J]. Environmental Progress,1999,18(3):151-155.
    [39]Arriaga.S, Munoz, Hernandez. S, et al., Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors [J]. Environmental Science and Technology,2006,40:2390-2395.
    [40]王晓昌,臭氧用于给水处理的几个理论和技术问题[J].西安建筑科技大学学报,1998,30(4):307-311.
    [41]魏宏斌,严煦世,氧化法去除水中有机物的研究与应用现状[J].中国给水排水,1996,12(5):19-22.
    [42]Hung.J. L, Wang. L, Ren. N. Q, Disinfection effect of chlorine dioxide on bacteria in water [J]. Water Research,1997,31(3):607-613.
    [43]Gentilhomme.M. C, Beau. L, Dendron. J, et al., Influence of nitrogen on the degradation of toluene in a compost-based bio-trickling filter [J]. Journal of Chemical Technology and Biotechnology,2001b,76:997-1006.
    [44]Mohseni. M, Allen. D.G, Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds [J]. Chemical Engineering Science,2000,55:1545-1558.
    [45]Chung.Y. C, Huang. C, Tseng.C. P, et al., Bio-treatment of H2S-and NH3-containing waste gases by co-immobilized cells bio-trickling filter [J]. Chemosphere,2000,41:329-336.
    [46]Kazuhiro. S, Satoshi. O, Takashi. O, et al., Characteristics of Hydrogen Sulfide Removal by Thiobacillus thiooxidans KS1 Isolated from a Carrier-Packed Biological Deodorization System [J]. Fermentation and Biongeneeing,1995,80 (6):592-598.
    [47]Patricio. O, Fernando. A, Christian. C, et al., Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus [J]. Process Biochemistry,2003,39:165-170.
    [48]Cho.K. S, Ryu. H. W, Lee. N. Y, Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillusthioxidans [J]. Journal of Bioscience and Bioengineering, 2000,1:25-31.
    [49]Chung.Y, Huang.C, Tseng.C, Removal of Hydrogen sulphide by immobilized Thiobacillus sp. strain CHI 1 in a bio-trickling filter [J]. ChemTechnol Biotechnol,1997,69:58-62.
    [50]Eun.Y. L, Kyung.S. C, Hee.W. R, Simultaneous Removal of H2S and NH3 in bio-trickling filter Inoculated with Acidithiobacillus thiooxidans TAS [J]. Journal of Bioscience and Bionengineering,2005,99(6):611-615.
    [51]Martin. R, Jose. Manuel G, German. A, et al., Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a bio-trickling filter packed with polyurethane foam [J]. Bioresource Technology,2009,100:4989-4995.
    [52]Xie. B, Liang. S.B, Tang.Y, et al.. Petrochemical wastewater odor treatment by biofiltration [J]. Bioresource Technology,2009,100:2204-2209.
    [53]Ma.Y. L, Yang.B. L, Zhao.J. L. Removal of H2S by Thiobacillus denitrificans immobilizedon different matrices [J]. Bioresource Technology,2006,97:2041-2046.
    [54]Busca. G, Pistarino.C, Abatement of ammonia and amines from waste gases:a summary [J]. Journal of Loss Prevention in the Process Industries,2003.16:157-163.
    [55]Pandey.R.A, Padoley. K.V, Mukherji.S.S, et al., Bio-treatment of waste gas containing pyridine in a bio-trickling filter [J]. Bioresource Technology,2007,98:2258-2267.
    [56]Kim.S. G, Bae.H. S, Lee.S. T, A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways [J]. Archives of Microbiology,2001,176:271-277.
    [57]Jang.M. H, Basran. J, Serutton.N. S, The reaction of trimethylamine dehydrogenase with trimethylamine [J]. The Journal of biological chemistry,1999,274:13147-13154.
    [58]Moune.S, Manac'h. N, Hirschler, et al., a novel halophilic fermentative bacterium that reduces glycinebetaine to trimethylamine with hydrogenorserine as electron donors; emendation of the genus Haloanaerobacter [J]. International journal of systematic bacteriology,1999.49:103-112.
    [59]Zhang. L, Kuniyoshi. I. Hirai. M, et al., Oxidation of dimethilsulfide by Pseudomonas acidovorans DMR-11 isolated from peat biofilter [J]. Biotechnology Letters,1991,13: 223-227.
    [60]Zhang. L, Hirai. M, Shoda. M. Removal characteristics of dimethyl sulfide by a mixture of Hypomicrobium sp.155 and Pseudomonas acidovorans DMR-11 [J]. Journal of Fermentation and Bioengineering,1992,74:174-176.
    [61]Cho. K, Hirai. M, Shoda. M, Degradation characteristics of hydrogen sulfide, metanethiol, dimethyl sulfide by Thiobacillus thioparus DW44 isolated from peat bio-trickling filter [J]. Journal of Fermentation and Bioengineering,1991,71(6):384-389.
    [62]Kanagawa. T, Mikami. E, Removal of methanethiol dimethylsulfideand hydrogen sulfide from contaminated air by Thiobacillusthioparus TK-m. [J]. Applied and environmental microbiology,1989,55:555-563.
    [63]Tanji. Y, Kanagawa. T, Mikami. E, Removal of dimethyl sulfide, methyl mercaptan, and hydrogen sulfide by immobilized Thiobacillusthioparus TK-m. [J]. Journal of Fermentation and Bioengineering,1989,67:280-285.
    [64]姜安玺,王晓辉,马立等,优势菌混合接种泥炭滴滤反应器去除混合硫系[J].哈尔滨工业大学学报,2004,36(2):45-49.
    [65]贺启环,罗欣,毕涛巍等,甲硫高效降解菌的筛选[J].化工环保,2005,5:23-25.
    [66]刘波,闫懂懂,毕雪梅,甲硫醇脱臭菌的分离、分子鉴定及应用[J].环境科学研究,2007,20(1):5-12.
    [67]Pandey. R, Gangane. R, Mudliar. S.N, Treatment of waste gas containing monomethylamine in a bio-trickling filter enriched with Pseudomonas mendocina [J]. Waste Management, 2006,26:233-244.
    [68]Padoley.K. V, Rajvaidya.A. S, Subbarao.T. V, et al., Biodegradation of pyridine in a completely mixed activated sludge process [J]. Bioresource Technology,2006,97: 1225-1236.
    [69]Lee.E.Y, Cho. K.S, Hee.W. R, Simultaneous Removal of H2S and NH3 in Biofilter Inoculated with Acidithiobacillus thiooxidans TAS [J]. Journal of Biscience and Bioengineering,2005, 99(6):611-615.
    [70]Ho.K. L, Chung.Y. C, Lin.Y. H, et al., Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp. CP2 and Arthrobacter sp. CP1 [J]. Chemosphere,2008,72:250-256
    [71]Perry. R.H, Green. Don. W, Perry's Chemical Engineers'Handbook, seventhed [M]. New York:springer,1997.
    [72]Rene. E. R, Murthy. D.V. S, Swaminathan. T, Performance evaluation of a compost biofilter treating toluene vapours [J]. Process Biochemistry,2005,40:2771-2779.
    [73]Syed. M, Soreanu. G, Falletta. P, et al., Removal of hydrogen sulfide from gas streams using biological processes-A review [J]. Canadian Biosystems Engineering,2006,48:1-4.
    [74]Sheridan.B. A, Curran.T. P., Dodd.VA, Assessment of the influence of media particle size on the biofiltration of odorous exhaust ventilation air from a piggery facility [J]. Bioresource Technology,2002,84:129-143.
    [75]Piet. L, Piet.N. L. L, Look.H. P, Biological treatment of gases polluted by volatile sulfur compounds [M]. London:IWA Publishing,2000.
    [76]Williams.T. O, Miller. F. C, Biofilters and facility operations [J]. Biocycle,1992,75-79.
    [77]徐晓军,宫磊,杨虹,恶臭气体生物净化理论与技术[M].北京:化学工业出版社,2004.
    [78]Hirai. M, Kamamoto. M, Yani. M, et al., Comparison of the biological H2S removal characteristics among four inorganic packing materials [J]. Journal of Bioscience and Bioengineering,2001,91:396-402.
    [79]Gemeiner. P, Rexova. L, Svec. F, et al., Immobilized Biosystems [M]. Sweden:Springer Netherlands,1994.
    [80]朱建斌,陈绍伟,用微生物脱除硫化氢恶臭气体的研究[J].上海应用技术学院学报,2004,4(3):78-83.
    [81]马肖卫,生物净化H2S气体的研究[J].环境工程,1994,(2):18-20.
    [82]Kennes. C, Cox.H.H. J, Doddema.H. J, et al., Design and performance of biofilters for the removal of alkylbenzene vapors [J]. Chem. Technol. Biotechnol,1996,66:300-304.
    [83]Jiang.X, Yan.Rong, Joo.H. T, Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration [J]. Journal of Hazardous Materials,2009, 164:726-732.
    [84]于晓辉,姜安玺,刘波等,泥炭生物过滤器去除甲硫醚的微生物学研究[J].高技术通讯,2002,7:46-23.
    [85]殷峻,方十,陈英旭,泥炭生物滤塔处理低浓度H2S气体的实验研究[J].环境科学学报,2003.23(1):1-5.
    [86]Sene. L, Converti. A, Felipe. M.G. A. et al., Sugarcane bagasseas alternative packing material for biofiltration of benzene polluted gaseous streams:A preliminary study [J]. Bioresource Technology,2002.83:153-157.
    [87]Ramirez-Lopez. E, Corona-Hernandez. J, Dendooven. L, et al., Characterization of five agricultural by-products as potential biofilter carriers [J]. Bioresource Technology,2003.88: 259-263.
    [88]Gabriel.D, Maestre.J. P, L. Martin. X, et al., Characterisation and performance of coconut fibre aspacking material in the removal of ammonia in gas-phase biofilters [J]. Biosystems Engineering,2007,97:481-490.
    [89]Ramirez.L. E, Corona.H. J, Dendooven. L, et al., Characterization of five agricultural by-products as potential biofilter carriers [J]. Bioresource Technology,2003,88:259-263.
    [90]Kim.N. J. Hirai. M, Shoda. M. Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters [J]. Journal of hazardous materials,2000,72:77-90.
    [91]Gracian. C. Malhautier. L. Fanlo. J. L, et al., Biofiltration of air loaded with ammonia by granulated sludge [J].Environmental Progress.2002,21:237-246.
    [92]Alexander. R, Compost markets grow with environmental applications [J]. Biocycle,1999,40: 43-48.
    [93]Jeronimo. H, σscar.J. P, Manuel.A, et al., Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics [J]. Journal of Hazardous Materials,2010,178(1-2):65-72.
    [94]Jung.H. K, Eldon.R. R, Hung.S. P, Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter [J]. Bioresource Technology,2008, 99:583-588.
    [95]Ergas.S. J, Schroeder.E. D, Chang.D.P. Y, et al., Control of volatile organic compound emissions using a compost biofilter [J]. Water Environment Research,1995,67:816-821.
    [96]Dumont. E, Andres. L, Cloirec.Y. P, et al., Evaluation of a new packing material for H2S removed by biofiltration [J]. Biochemical Engineering Journal,2008,42:120-127.
    [97]Chan.W. C, Lin.Z. Y, A process to prepare a synthetic filter material containing nutrients for biofiltration [J]. Bioresource Technology,2006,97:1927-1933.
    [98]Hong.J. H, Park.K. J, Compost biofiltration of ammonia gas from bin composting [J]. Bioresource Technology,2005,96:741-745.
    [99]DragtA. J, van Ham. J, Biotechniques for air pollution abatement and odour control policies: Proceedings of an International Symposium [M]. Netherlands:Maastricht,1992.
    [100]Ranasinghe,M. A, Gostomski.P. A, A novel reactor for exploring the effect of water content on biofilter degradation rates [J]. Environmental Progress,2003,22(2):103-109.
    [101]Sandeep. M, Balendu. G, Kiran. Pa, et al., Bioreactors for treatment of VOCs and odours-A review [J]. Journal of Environmental Management,2010,91:1039-1054.
    [102]Morales M, Hernandez. S, Cornabe. T, et al., Effect of drying on biofilter performance: modeling and experimental approach. Environmental [J]. Science and Technology,2003,37: 985-992.
    [103]Cho.K. S, Hee.W. R, Lee.N. Y, Biological Deodorization of Hydrogen Sulfide Using Porous Lava as a Carrier of Thiobacillus thiooxidans [J]. Journal of bioscience and bioengineering, 2000,1:25-31.
    [104]Lu. C, Lin.M. R, Chu. C, Effects of pH, moisture, and flow pattern on trickle bed air biofilter performance for BTEX removal [J]. Advance Environmental Research,2002,6: 99-106.
    [105]董林,唐志刚,利用生物法处理恶臭气体[J].环境科学导刊,2009,28(1):67-68
    [106]Sutrdtorno. H, pH and Mg/Ca control for Biological treatment an offensive flavour Water [J]. Science and Technology,1998,37:101-106.
    [107]Ergas.S. J, spatial distribution of microbial populations in biofilters. In:Proceedings of the 87th Annual Meeting and Exhibition of the Air and Waste Management Association, Ohio: Cincinnati,1994.
    [108]Tang.H. M, Hwang.S. J, Transient behavior of the biofilters for toluene removal [J]. Journal of Air and Waste Management Association,1997,47:1142-1151.
    [109]Gribbins.M. J, Loehr.R. C, Effect of media nitrogen concentration on biofilter performance [J]. Journal of Air Waste Management Association,1998,48:216-226.
    [110]杨静,联苯降解菌的筛选、鉴定及其特性研究[D].山东山东大学硕士论文,2009.
    [111]冷守琴,魏芳,张丽丽等,一株氯苯降解新菌株的分离鉴定及其降解特性研究[J].环境科学与技术,2011,34(2):6-12.
    [112]李章良,陈勇,林小园,甲醛降解菌的筛选及生物膜填料塔净化甲醛废气[J].化工进展,2011,30(3):675-681.
    [113]韩博,吴建会,王凤炜等,典型工业恶臭源恶臭排放特征研究[J].中国环境科学,2013,33(3):416-422.
    [114]Jiang. X, Yan. R, Tay.J. H, Developing sulfide-oxidizing biofilm on H2S-exhausted carbon for sustainable bio-regeneration and biofiltration [J]. Journal of Hazardous Materials,2009, 164:726-732.
    [115]Galli.V, Olmo.N, Barbas.C, Capillary electrophoresis for the determination of new markers of natural latex quality [J]. Journal of Chromatography A,2002,949(1-2):367-372.
    [116]Kono.K. Y, Malodor Preventive Low:Editorial Supervision for special Pollution Section of Air Preservation Department of the Ministry of Environment in Japan [J]. Gyousei Incorporation,1993,1:13-35.
    [117]Ferchichi. M, Ghrabi. A, Grasmick. A, Urban wastewater treatment by trickling filter and rotating biological reactor [J]. Water Resouce,1994,28:437-443.
    [118]Elefsiniotis. P, Oldham.W. K, Anaerobic acidogenesis of primary sludge:the role of solids retention time [J]. Biotechnology and bioengineering,1994.44:7-13.
    [119]Sai. R. M, Singh. L, Suryanarayana. M.V. S, et al., Effect of sulfate and nitrate on anaerobic oxidation of volatile fatty acids in rabbit waste at 20℃ [J]. Journal of General and Applied Microbiology,1994,41:181-189.
    [120]Gijzen. H. J, Kansiime. F, Comparison of start-up of an upflow anaerobic sludge blanket reactor and a polyurethane carrier reactor [J]. Water Science and Technology,1996,34:5-6.
    [121]Wang. Q, Kuninobu. M, Ogawaa. H, et al., Degradation of volatile fatty acids in highly efficient anaerobic digestion [J]. Biomass and Bioenergy,1999,16:407-416.
    [122]Tsang.Y. F, Chua. H, Sin.S. N, et al., Treatment of odorous volatile fatty acids using a biotrickling [J]. Bioresource technology,2008 (99):589-595.
    [123]Engel. S, Jensen.P. R, Fenical. W, Chemical ecology of marine microbial defense [J]. Journal of chemical ecology,2002,28(10):1971-85.
    [124]Ronald. B, Thomas. G, Chasteen*, Environmental VOSCs—formation and degradation of dimethyl sulfide, methanethiol and related materials [J]. Chemosphere,2004,55:291-317.
    [125]Giri.B. S, Mudliar.S. N, Deshmukh.S. C, et al., Treatment of waste gas containing low concentration of dimethyl sulphide (DMS) in a bench-scale biofilter [J]. Bioresource Technology,2010,101:2185-2190.
    [126]Kim.J. Y, Byung.W. K, Removal of Dimethyl Sulfide in Ceramic Biofilters Immobilized with Thiobacillus thioparus TK-m. [J]. Journal of microbiology and biotechnology,2003, 13(6):866-871.
    [127]Ramirez-Saenz. D, Zarate-Segura.P. B, Guerrero-Barajas. C, et al., H2S and volatile fatty acids elimination by biofiltration:Clean-up process for biogas potential use [J]. Journal of Hazardous Materials,2009,163:1272-1281.
    [128]Takayuki. E, Hiroshi. H, Takako.Y, et al., A CysB-regulated and σ54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1 [J]. Microbiology,2003,149:991-1000.
    [129]Smith.C. A, O'Reilly.K. T, Hyman.M. R, Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5 [J]. Applied and Environmental Microbiology,2003,69:796-804.
    [130]Horinuchi. M, Yoshida. T, Nojiri. H, et al., Polypeptide Requirement of Multicomponent Monooxygenase DsoABCDEF for Dimethyl Sulfide Oxidizing Activity [J]. Bioscience, Biotechnology, and Biochemistry,1999,63:1765-1771.
    [131]Takami. W, Yoshida. T, Nojiri. H, et al., Oxidation of chlorinated olefins by Escherichia coli transformed with dimethyl sulfide monoxygenase genes or cumene dioxygenase genes [J]. The Journal of general and applied microbiology,1999,45:69-75.
    [132]王晓辉,姜安玺,泥炭生物过滤器去除甲硫醚的微生物学研究[J].高技术通讯,2002, 12(7):87-89.
    [133]Suylen.G.M. H, Large. P. J, van Dijken. J. P, et al., Methyl mercaptan oxidase a key enzyme in the metabolism of methylated sulfur compounds by Hyphomicrobium EG [J]. Journal of General Microbiology,1987,133:2989-2998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700