用户名: 密码: 验证码:
不同时间使用地塞米松对新生大鼠高氧肺损伤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     (1)观察不同日龄新生大鼠的肺形态发育,为研究高氧暴露会致新生大鼠发生肺形态变化提供基础;(2)观察高氧对新生大鼠的生长发育及肺组织病理形态变化的影响,建立支气管肺发育不良(bronchopulmonary dysplasia ,BPD)动物模型;(3)观察不同时间使用地塞米松对新生大鼠高氧肺损伤及生长发育的影响,以期为在BPD的防治过程中能否使用地塞米松提供理论依据。
     方法
     (1)将新生Wistar大鼠随机分为4个大组(Ⅰ~Ⅳ组),每组再分2个亚组(a、b组),共8个小组,每小组20只新生鼠,分别为:7日龄空气组(Ⅰa组)及14日龄空气组(Ⅰb组);7日龄高氧组(Ⅱa组)和14日龄高氧组(高氧7日+空气7日,Ⅱb组);早期地塞米松组(Ⅲa组)于吸氧第1天起给予腹腔内注射地塞米松,每天1次,共7天,初始剂量为1.5ug/g体重,3天后改为0.75ug/g体重,再使用4天,Ⅲb组为生理盐水对照组;晚期地塞米松组(Ⅳa组)于生后第8天,即吸氧结束后给予腹腔内注射地塞米松,注射剂量及方法同Ⅲa组,Ⅳb组为生理盐水对照组。(2)观察记录各组大鼠一般状况、体重及死亡情况。(3)观察各组大鼠肺组织大体病理变化、HE染色下肺组织病理形态学变化,计算肺系数、测定肺泡间隔厚度、进行放射状肺泡计数(radical alveolar counts, RAC)和肺纤维化Stocker评分,以判断肺水肿、肺泡化阻滞及肺纤维化程度。
     结果
     (1)空气组大鼠生长发育情况良好,7d时肺泡数量较少,肺间隔及肺泡壁较厚,至14 d时肺泡壁和肺间隔明显变薄,肺泡数量较多,RAC及肺泡间隔厚度与7d时相比,P<0.05。(2)高氧组大鼠在暴露于95%O23天后就出现氧依赖及呼吸功能不全症状,并逐渐加重,与空气组大鼠相比一般状况差,体重增长缓慢(P<0.05)。高氧暴露7d时即可见大鼠肺泡间隔水肿、增宽,肺间质细胞增加,肺泡内及肺间质中可见炎性细胞渗出,肺泡数目减少,并可见肺泡内出血,停止吸氧后有2只大鼠死亡,且肺损伤继续加重,14d时表现为肺泡间隔明显增宽,肺泡次级隔数目减少,肺泡结构相对简单化且大小不一,肺泡数目减少,炎性细胞浸润明显,RAC值较正常同日龄大鼠明显减少(P<0.05),肺纤维化的发生率及严重程度提高。(3)早期地塞米松组大鼠的一般状况最差,体重增长最为缓慢(P<0.05),且停氧后有8只大鼠出现抽搐发作,其中6只大鼠死亡,肺大体病理以Ⅲ、Ⅳ、Ⅴ级为主,其肺水肿、肺泡发育阻滞及肺纤维化程度最严重,肺系数、RAC值、肺间隔厚度与高氧组及对照组相比均差异显著(P<0.05),肺纤维化的发生率及严重程度明显提高。。(4)晚期地塞米松组大鼠一般状况较高氧组好转,体重增长率较高氧组及对照组快(P<0.05),肺大体病理以Ⅱ、Ⅲ级为主,似肺损伤程度相对较轻,但与高氧组及对照组大鼠比较,肺系数、RAC值、肺间隔厚度及肺纤维化评分差异无统计学意义(P>0.05)。
     结论
     (1)新生大鼠生后肺仍处于持续发育阶段,将其暴露于95%氧7d即可导致高氧肺损伤。在停止吸氧后肺损害程度继续加重。(2)早期使用地塞米松没有预防BPD的作用,且会加重高氧肺损伤,应避免使用。(3)晚期使用地塞米松虽未明显改善高氧肺损伤的肺结构异常,但使大鼠的一般状况及生长发育有所改善。(4)鉴于目前临床使用地塞米松的习惯剂量及使用次数,建议不要将地塞米松作为BPD的预防性用药,在使用地塞米松治疗BPD的过程中,应在晚期使用,并尽可能使用小剂量、短疗程。
Objectivs
     (1) To provide basis for investigating chang of lung structure with prolonged hyperoxia by observing structural changes in neonatal rats with different age. (2) To observe the effects on the lung morphology changes and growth status of normal neonatal rats after prolonged hyperoxia-exposed for establishing bronchopulmonary dysplasia (BPD) model in neonatal rats. (3) To study the effects of used dexamethasone in different time on lung pathological morphology changes and growth development in neonatal rats which injury of hyperoxia , in order to providing the theoretical reference of whether can use dexamethasone to prevent and cure BPD.
     Methods
     The Wistar neonatal rats was designed in eight groups by random including:7st d and 14st d air group (Ⅰa andⅠb group);7st d hyperxia group which prolonged exposed 95%oxygen for 7 days (Ⅱa group)and 14st d hyperxia group which bred in the air for 7 days after hyperoxia-exposed for 7 days (Ⅱb group);hyperxia group with Early dexamethasone group which give dexamethasone from 1.5ug/g for 3 days to 0.75ug/g for 4 days i.p qd on the first day of oxygen (Ⅲa group) ,and NS group which use NS instead (Ⅲb group). Later dexamethasone group (Ⅳa group) which give dexamethasone from the day leave oxygen to 14st day, the doses as well as early dexamethasone group, and NS group which use NS instead (Ⅳb group). Body weight, general situation and the death number of rats were recorded. Observe the pulmonary general pathology classification and lung morphometric analysis were undertaken according to HE staining.Judge the degree of pulmonary edema, alveolarization block and pulmonary fibrosis from lung coefficient calculation , alveolar interval thickness ,radical alveoli count (RAC)and pulmonary fibrosis Stocker score.
     Results
     (1)The air group rats growth is good. The lung morphometric analysis in 7th day showed thick septa and walls of alveoli and fewer alveoli. In 14th day, the septa and walls of alveoli became thin, alveoli showing large. There have significant differences in RAC and alveolar interval thickness between the two air groups (P<0.05). (2) The hyperxia group rats showing progressive serious oxygen dependence and respiratory insufficiency symptoms after exposed 95% oxygen 3 days later. The general station is worse than that of the air group. The weight growth in the hyperxia group is slower and the rate of weight growth is obviously decrease than that of the air group (264.76±27.98% Vs 396.94±41.67%,P<0.05). The 7st d hyperxia group rats displayed the septa dedma and thicker walls of alveoli , alveolar interstitial cells increaed , there was a few inflammatory cells and blooding cells exuded out in the alveoli and interstitial. The lung injury was continue and there was two rats died after stop breathing oxygen. The 14st d hyperxia group rats showed alveolar septa was obviously thicker, and the secondary septum decreased , the alveolar structure showed simple and had fewer and larger alveoli. RAC of hyperxia group rats(8.36±1.28) was significantly lower than that of neonatal rats in air group(12.71±1.79), the degree and incidence of pulmonary fibrosis were obviously increased. (3) The general situation of early dexamethasone group rats was the worst and the weight growth is the slowest of all groups. There were eight rats happened convulsions after unexposed oxygen and six rats died. The pulmonary general pathology classification was the mostlyⅢ、Ⅳ、Ⅴlevel. The degree of pulmonary edema, alveolarization block and pulmonary fibrosis were the most serious. There have significant differences in lung coefficient calculation, RAC, alveolar interval thickness and pulmonary fibrosis Stocker score between the early dexamethasone group and the NS control group (P<0.05). (4) The general situation of the later dexamethasone group was better and the growth increased faster than hyperxia group and NS comtrol group. The pulmonary general pathology classification of the later dexamethasone group was the mostlyⅡ、Ⅲlevel. The later dexamethasone group seemly lung injury is lighter, but there have not significant differences in lung coefficient calculation, RAC, alveolar interval thickness and pulmonary fibrosis Stocker score between the later dexamethasone group and the NS control group (P>0.05).
     Conclusions
     (1) The lung of the neonatal rat is still in the continuous development stage after birth. Neonatal rats exposed to 95%oxygen for 7 days may cause hyperxia lung injury and the lung damage continue serious after stop oxygen (2) Early use dexamethasone has no action to prevent BPD happen, instead it may aggravated the hyperxia lung damage. (3) Although there was no significently change of pulmonary structured exception after use dexamethasone later, but the general situation and rat growth improved. (4) Because of the clinical habit of dexamethasone use dose and use frequency, we suggest don`t use dexamethasone as prophylaxis for BPD, we should use dexamethasone therapy BPD in the late stages, and during the treatment process,we should use dexamethasone as small doses and short treatment as possible.
引文
[1] Ehrenkranz RA, Walsh MC, Vohr BA,et al.Validation of the National Insititute of Health Consensus definition of bronchopulmonary dysplasia. Pediatrics, 2005, 116 (6): 1353-13061.
    [2] Gray PH, Sarkar S, Young J, et al. Conductive hearing loss in preterm infants with bronchopulmonary dysplasia. J Paediatr Children Health, 2001,37:278-282.
    [3] Short EJ, Klein NK, Lewis BA, et al. Cognitive and academic consequence of bronchopulmonary dysplasia and very low birth weight infant: 8-year-old outcomes. Pediatrics, 2003,112:359.
    [4] Smith J. An update on bronchopulmonary dysplasia., is there a relationship of the development of childhood asthma? Medical Hypotheses, 2003, 61:495-502.
    [5] Lemons JA, Bauer CR, et al. Very low birth weight outcomes of the national institute of child health and human develop-mentneonatal research network, January 1995 through December1996. NICHD Neonatal Research Network. Pediatrics, 2001,107:81.
    [6] Grier DG,Halliday HL, et al. Corticosteroids in the lion and management of bronchopnlmonary displasia [ J ] . Serain Neonatol , 2003 , 8(1),83-91.
    [7] Yeh TF, Lin YJ, Huang CC,et al. Early dexamethasone therapy in preterm infants follow-up study [J]. Pediatrics,1998,101(5):7.
    [8] American Academy of Pediatrics Committee on Fetus and Newborn, Canadian Paediatric Society Fetus and Newborn Committee. Postnatal corticosteroids to treat or prevent chronic ling disease in preterm infants. Pediatrics,2002,109:330-338.
    [9] Shinwell ES, Lerner-Geva LL, Lusky A, et al. Less postnatal steroids more bronchopulmonary dysplasia: a population-based study in very low birth weight infant. Arch Dis Child FetalNeonatal Ed, 2007, 92: 30-33.
    [10] Thurlbeck WM, Churg AM ,et al .Thurlbeck WM 1995 Lung growth and development.In: Pathology of the Lung 2nd Ed. Thieme Medical Publishers, New York, pp 37–87.
    [11] Briggs GG, Freeman RK, 1998 Dexamethasone. In: Briggs GG, Freeman RK, Yaffe SJ (eds) Drugs in Pregnancy and Lactation, 5th Ed. Williams , Wilkins, Baltimore, pp 306–308.
    [12] Blanco LN, Frank LL.The formation of alveoli in rat lung during the third and fourth postnatal weeks: effect of hyperoxia, dexamethasone and deferoxamine. Pediatratics Res, 1993,34(3): 334-340
    [13] Jobe AH, Bancalari E, et al. Bronchopulmonary dysplasia. Am J Respir Crit CareMedical, 2001, 163(4),1723-1729.
    [14] Barbara BW, Lorie AS, Richard AP, et al. Functional and pathological effects of prolonged hyperoxia in neonatal rats. Am J Physiol Lung Cell Mol Physiol.1998, 275(3): 110-117.
    [15]万志婷,常立文,陈晔.高浓度氧对新生鼠肺的影响.中华围产医学杂志,2000, 3(2): 116~120.
    [16]黄铃沂,田玉旺,封志纯.实验性支气管肺发育不良小鼠的肺部病变.中国妇幼保健,2009,24:2544~2548.
    [17] Chen Y, Martinez MA, Frank LL. Prenatal dexamethasone administration to premature rats prolonged to exposed hyperoxia: A new rat model of pulmonary fibrosis(bronchopulmonary dysp lasia) [J]. Pediatrics,1997,130(3):409-416.
    [18] Nixon GM, Brouillette RT. Paediatric obstructive sleeping apnoea [J]. Thorax, 2005,60: 511-516.
    [19] Stocker JT. Pathologic feature of long-standing“healed”bronchpulmonary dysplasia:a study of 28 3-to 40-month-old infants[ J]. Hum pathol, 1986, 17:54-61.
    [20] Northway WH, Rosan RC, Porter DY, et al. Pulmonary disease following respiratory therapy of hyaline membrane disease: bronchopulmonary dysplasia. N Engl J Med, 1967, 276: 356-368.
    [21] Shennan AT, Dunn MS, Ohlsson H, et al. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics, 1988, 82:527-532.
    [22] Monte LF, Silva Filho LV, Miyoshi MH, et a1. Bronchopulmonary dysplasia [J]. J Pediatr, 2005, 81(2):100-l10.
    [23] Wang Y(王颖).支气管肺发育不良(新生儿慢性肺疾病)的诊断与治疗[J].实用医学杂志, 2005, 21(17): 1859-1860.
    [24] Babara BW, Lorine AS, Richard AP, et al. Functional and pathological effects of prolonged hyperoxia in neonatal rat. Am J Physiol Lung Cell Mol Physiol, 1998, 272(4):112-117.
    [25] Shahen RM, Davis DW, Liu W, et a1. Antiangio genic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibit the growth of colon cancer living metastasis and inducing tumor and endothelial cell apoptosis.Cancer Res.1999, 59(1):5413-5416.
    [26] Schwar MA, Zhang F, Jane JE, et al. Angiognesis and morphogenesis of murine fetal distal lung in an allogaft model. Am J Physiol Lung Cell Mol Physiol, 2000, 278:L1001-1007.
    [27] Dik WA, Krijger RR, Bonkamp L, et a1. Localization and potential role of matrix metalloproteinase-land-1 and tissuel inhibition of metalloproteinase-1and-2 in different phases of bronchopulmonary dysplasia. Pediatric Research, 2001, 50(9): 760-766 .
    [28] Coalsson JJ. Pathology of new bronchopulmonary dysplasia. Seminars in Neonatology. 2003, 8(1):73-80.
    [29] Pierce AA, Abertine KH, Stalcher BC, et a1.Chronic lung injury in Preterm lambs:disordered pulmonary deposition. Am J Physio1,1997, 272(3):452-459.
    [30] Jakula M, Le Cras TD, Gebb SS, et al. Inhibition of angiogenesis dereases alveolarization on the developing rat lung. Am J Physiol Lung Cell Mol Physio1. 2000; 279(3):600-607.
    [31] Langston C, Kida K, Red M, et al. Human lung growth in late gestation and in the noenatal infants. Am Rev Respir Dis,1984,129(4):607-612.
    [32] Wllima MM, Richard HW, Miehael A, et al. Increased epithelial cell prolife-lation in very premature baboon with chronic lung disease .Am J physiol Lung Cell Mol Physio1.2002,283:991-1000.
    [33] Xu F, Fork TF, Yin J, et al. Hyperoxia-induced lung injury in preterm rats: description of suitable model for the study of lung disease in newborn. Chin Med J 1998,111(7):619-623.
    [34]富建华薛辛东.高浓度氧对早产鼠的肺发育影响的动态研究.中国优生与遗传杂志.2004,1(12):13-15.
    [35] Warmer BB, Stuert LA, Pape RA, et al. Functional and Pathological effects of prolonged hyperoxia in neonatal rats. Am J Physiol. 1998, 275, lung cell mol physiol 19(3):110-117.
    [36] Dauger S, Ferk dadji L, Saumon GA, et al. Neonatal exposure to 65% oxygen durably impairs lung architecture and breathing patterns in adult rats. Chest, 2003, 123(2):530-537
    [37] Yin M, Jankov PP, Belcastro R, et al. Opposing effects of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat. Am J Respir Crit Care Med, 2004 Sep 3 .
    [38] Jouvencel P, Fayon M, Choukrown ML, et al. Montelukast does not protect against hyperoxia-induced inhibitions of alveolarization in newborn rats. Pediatr Pulmonol, 2003,35(6): 446-450
    [39] Denis D, Fayon M , Berger P, et al. Prolonged moderate hyperoxia induceshyperresponsiveness and airway inflammation in newborn rats.Pediatr Res, 2001,50: 515– 518
    [40] Warner BB, Stuart LA, Pape RA, et al. Functional and Pathological Effects of Prolonged Hyperoxia in Neonatal Rats. Am J Physiol, 1998, 275(1 Pt 1):110-118.
    [41] Mohan PV, Tarnow-Mordi W, Stenson B, et al. Can Polyclonal Intrave-nous Immunoglobulin Limit Cytokine MediatedCerebral Damage And Chro-nic Lung Disease in PretermInfants [J].Arch Dis Child Fetal Neondtol Ed, 2004, 89 (1) :F5-F8.
    [42] Choi CW,Kim BI,Kim HS,et al. Increase of Interleukin-6 inTrachealaspirate at Birth : A predictor of Subsequent Bronchopulmonary Displasia in Preterm Infants [ J ] . Actor Pediatr, 2006 , 95 ( 1):38-43.
    [43]常立文,容志惠,张晓慧,等.肺灌洗液中细胞因子水平动态变化在诊断早产儿慢性肺疾病中的意义[J].中华围产医学杂志,2004,7( 5 ) :681-682.
    [44]常立文.新生儿慢性肺部疾病的诊治及预防.中国实用儿科杂志, 2003,18: 641-642.
    [45] Lee SK, McMillan DD, Ohlsson A, et al. Variations in Practiceand Outcomes in The CanadianNICU Network: 1996-1997. Ped-iatrics, 2000, 106: 1070-1079.
    [46] HallidayHL,EhrenkranzRA.Moderatelyearly (7-14 days)Postnatal Corticosteroids for Preventing Chronic Lung Disease Inpreterm Infants. Cochrane Database Syst Rev, 2001, 1:CD001146.
    [47] HallidayHL,EhrenkranzRA.Moderatelyearly (7-14 days)Postnatal Corticosteroids for Preventing Chronic Lung Disease Inpreterm Infants. Cochrane Database Syst Rev, 2001, 1:CD001144.
    [48]朱翠平,马祖祥,地塞米松对早产儿支气管肺发育不良预防作用的荟萃分析[J].广东医学,2006,27(3):415-418.
    [49] JonesRA. FRCPCH on Behalf of The Collaborative Dexam Ethasone Trial Follow-up Group Randomized, Controlled Trial of Dexam Ethasone in Neonatal Chronic Lung Disease: 13- to 17-year Follow-up Study: I.Neu-rologic, Psychologica,l and Educational Outcomes[J].Pediatrics, 2005,116(2): 370-378.
    [50] JonesRA. FRCPCH on Behalf Collaborative Dexam Ethasone Trial Follow-up Group of The Collaborative Dexam Ethasone Trial Follow-up Group Randomized, Controlled Trial of Dexam Ethasone in Neonatal Chronic Lung Disease: 13- to 17-year Follow-up Study:Ⅱ.Respiratory Status, Growth, and Blood Pressure[J].Pediatrics, 2005, 116(2): 379-384.
    [51] Gross SJ,AnbarRD,Mettelman BB. Follow-up at15 year of Preterm Infants From a Controlled Trial of Moderately Early Dexam Ethasone for The Prevention of Chronic Lung Disease[ J].Pediatrics, 2005, 115 (3):681-687.
    [52] Doyle LW, HallidayHL, EhrenkranzRA, et al. Impact of Postnatal Systemic Corticosteroids Onmortality and Cerebral Palsy in Preterm Infants: Effect Modification by Risk for Chronic Lung Disease.Pediatrics, 2005, 115: 655-661.
    [53] Doyle LW, Davis PG,Morley CJ, et al. Low-dose Dexam Ethaone Facilitates Extubation Anong Chronically Ventilator- dependent Infants Amulticenter, Internation, Randomized,Controlled Trial [J].Pediatrics, 2006, 117(1): 75-83.
    [54] McEvoy C,Bowling S,Williamson K,et al.Durand M Randomized,Double-blinded Trial of Low-dose Dexamethasone.Functional Residual Capacity and Pulmonary Outcome in Very Low Birthweight Infants at Risk for Bronchopulmonary Dysplasia [j].PediatrPulmonol,2004,38(1):55-63.
    [55] Barazzon-Argiroffo C, Pagano A, Juge C, et al. Glucocorticoids Aggravate Hyperoxia Induced Lung Injury Through Decrease Nuclear Factor 2 Kappa B Activity [L].Am J Physiol Lung Cell Mol Physiol,2003,284:197-204.
    [56] Blackmon BL, BellE, EngleW, et al. Committee on Fetus and Newborn. Postnatal Corticosteroids toTreat or Prevent Chronic Lungdisease in Preterm Infants. Pediatrics, 2002, 109: 330-338.
    [57] HallidayHL,EhrenkranzRA.Moderatelyearly (7-14 days)Postnatal Corticosteroids for Preventing ChronicLung Disease Inpreterm Infants. Cochrane Database Syst Rev, 2001, 1:CD001144.
    [58] Parikh NA, Lasky RE, Kemedy KA, et al. Postnatal Dexam Ethasore Therapy and Cerebral Tissue Volumes in Extremely Low Birth Weight Infants Pediatrics 2007, 119: 265-272.
    [59] Walsh MC, Yao Q,Horbar JD, et al. Changes in The Use of Postnatal Steroids for Bronchopulmonary Dysplasia in 3 Large Neonatal Net Works [J].Pediatrics, 2006, 118(5): e1328-e1335.
    [60] Halliday HL. Guidelnes on Neonatal Steroids .Prenat Neonat Medm ,2001,6: 371-373.
    [61] Korte C, Styne D, Merriet TA, et al. Adrenocortical Function in The Very Low Birth Weight Infant:Improved Testing Sensitivity and Association With Neonatal Outcome. J Pediatr,1996,128:257-26.
    [62] Wetterberg KL,Gerdes JS,Gifforol KL,et al:Prophylaxis Against Early Adrenal Insufficiency to Prevent Chronic Lung Disease in Premature Infants.Pediatrics1999,104:1258-1263.
    [63] Ballard PL. Scientific Rationale for The Use of Antenatal Glucocorticoids to Promote Fetal Development. Pediatr Rev, 2000,1(5): E83-90.
    [64] Beers MF, Solarin KO, Guttentag SH, et al. TGF-beta1 Inhibits Surfactant Component Expression and Epithelial Cell Maturation in Cultured HumanFetal Lung. Am J Physiol 1998, 275(5): L950-L960.
    [65] Dallas DV, Keeney SE, Mathews MJ, et al. Effects of Postnatal Dexamethasone on OxygenToxicity in Neonatal rats. Biol Neonate. 2004, 86(3): 145-54.
    [66] Gavino R, Johnson L, Bhandari V. Release of Cytokines and Apoptosis in Fetal Rat Type II Pneumocytes Exposed to Hyperoxia and Nitric Oxide: Modulatory Effects of Dexamethasone and Pentoxifylline. Cytokine, 2002, 20(6): 247-255.
    [67] Ramsay PL, Piedboeuf B, Gamache M, et al. Dexamethasone Enhances P-selectin mRNA Expression in Hyperoxic Rat Lungs. Inflamm Res, 2000,49(12): 655-665.
    [68] Appleby CJ,Towner RA. Magnetic Resonance Imaging of Pulmonary Damage in The Term and Premature Rat Neonate Exposed to Hyperoxia. Pediatr Res 2001 Oct ,50 ( 4):502-7.
    [69] Vazquez DM,Lopez JF,Morano MI,Kwaw SP,Watson ST,Akil H.α,β,andγMineralocorticoid Receptor Messenger Ribonucleic Acid Splice Variants: Differential Expression and Rapid Regulation in The Developing Hippocampus. Endocrinology 1998,139:3165-3177.
    [70] De Kloet ER,Vreugdenhil E,Oitzl MS,Joels M. BrainCorticosteroid Receptor Balance in Health and Disease. Endocr Rev 1998,19:169-301.
    [71] Mc Ewen BS,Magarinos AM.Stress Effects on Morphology And Function of The Hippocampus.Ann NY Acad Sci 1997,821:271-84.
    [72] Condon J,Gosden C,Gardener D. Expression of Type211 Beta-hydroxyste-roid Dehydrogenase And Corticosteroid Hormone Receptors in Early Human Fetal Life. J Clin Endocrinal Metab 1998,83:4490-4497.
    [73] Beato M,Chalepakis G,Schauer M,et al. DNA Regulatory Elements for Steroid Hormones. J Steroid Biochem Mol Biol,1989,32:737-747.
    [74] Heater E, Edwards W,Mcintyre Burnham. The Impact of Corticosteroids on The Developing Animal. Pediatric Res,2001,50(4);433-440.
    [75] Karinski DA,Balkundi D,Rubin LP,Padbury JF. The Use of Inhaled Gluco- corticosteroids And Recovery From Adrenal Suppression After Systemic Steroid Usein a VLBW Premature Infant with BPD:case Report And Literature Discussion. Neonatal Net 2000 Dec,19(8):27-32.
    [76] Cole CH. Postnatal Glucocorticoid Therapy for Prevention of Bronchopulmonary Dysplasia:routes of Administration Compared. Semin Neonatol 2001 Aug, 6(4): 343-350.
    [77] Doyle LW, Davis PG,Morley CJ, et al. Low-dose Dexam Ethaone Facilitates Extubation Anong Chronically Ventilator- dependent Infants Amulticenter, Internation, Randomized,Controlled Trial [J].Pediatrics, 2006, 117(1): 75-83.
    [78] Mc Evoy C,Bowling S,Williamson K,et al.Durand M Randomized,Double- blinded Trial of Low-dose Dexamethasone.Functional Residual Capacity And Pulmonary Outcome in Very Low Birthweight Infants at Risk for Bronchopulmonary Dysplasia [J]. Pediatr Pulmonol,2004,38(1):55-63.
    [1] Northway WH, Rosan RC, Porter DY. Pulmonary Disease Following Respiratory Therapy of Hyaline Membrane Disease: Bronchopulmonary Dysplasia. N Engl J Med, 1967, 276: 357-368.
    [2] Bancalari E, Abdenour GE, Feller R, et al. Bronchopulmonary Dysplasia: Clinical Presentation. J Pediatr, 1979, 95:819-823.
    [3] Shennan AT, Dunn MS, Ohlsson A, et al. Abnormal Pulmonary Outcomes in Premature Infants: Prediction From Oxygen Requirement in The Neonatal Period. Pediatrics, 1988, 82:527-532.
    [4] JobeAH, BancalariE. Bronchopulmonary Dysplasia [J]. Am JRespirCritCareMed, 200,l 163(7): 1723-l729.
    [5] Monte LF, Silva Filho LV, Miyoshi MH, et a1. Bronchopulmonary Dysplasia [J]. J Pediatr, 2005, 81(2):99-l10.
    [6]王颖.支气管肺发育不良(新生儿慢性肺疾病)的诊断与治疗[J].实用医学杂志, 2005, 21(17): 1859-1860.
    [7] Girer DG,Halliday HL.Management of Bronchopulmonary Dysplasia in Infants:Guidelines for Corticosteroid Use.Drugs,2005,65(1):15-29.
    [8] Mohan PV, Tarnow-Mordi W, Stenson B, et al. Can Polyclonal Intrave-nous Immunoglobulin Limit Cytokine Mediated Cerebral Damage and Chro-nic Lung Disease in Preterm Infants [ J ].Arch Dis Child Fetal Neondtol Ed,2004,89(1):F5-F8.
    [9] Choi CW,Kim BI,Kim HS,et al. Increase of Interleukin-6 in Trachealaspirate at Birth : A Predictor of Subsequent Bronchopulmonary Displasia in Preterm Infants [ J ] . Actor Pediatr, 2006 , 95 ( 1):38-43.
    [10]常立文,容志惠,张晓慧,等.肺灌洗液中细胞因子水平动态变化在诊断早产儿慢性肺疾病中的意义[J].中华围产医学杂志,2004,7( 5 ) :682.
    [11]常立文.新生儿慢性肺部疾病的诊治及预防.中国实用儿科杂志, 2003,18: 641-642.
    [12] Lemons JA, BauerCR, OhW, et al. Very Low Birth Weight Outcomes of The National Institute of Child Health And Human Develop-mentneonatal Research Network, January 1995 Through December1996. NICHD Neonatal Research Network. Pediatrics, 2001,107:E1.
    [13] Lee SK, McMillan DD, Ohlsson A, et al. Variations in Practiceand Outcomes in The CanadianNICU Network: 1996-1997. Ped-iatrics, 2000, 106: 1070-1079.
    [14] Grier DG , Halliday HL. Corticosteroids in The Lion And Management ofBronchopnlmonary Displasia [ J ] . Serain Neonatol , 2003 , 8(1),83-91。
    [15] Yeh TF,Lin YJ,Huang CC,et al. Early Dexam Ethasone Therapy in Preterm Infants A Follow-up Study [J].Pediatrics,1998,101(5):7.
    [16] American Academy of Pediatrics Committee on Fetus and Newborn, Canadian Paediatric Society Fetus and Newborn Committee. Postnatal Corticosteroids to Treat or Prevent Chronic Ling Disease in Preterm Infants. Pediatrics, 2002, 109:330-338.
    [17] ShinwellES,Lerner-Geva L, LuskyA, et al. Less Postnatal Steroids, More Bronchopulmonary Dysplasia: a Population-based Study in Very Low Birth Weight Infants. Arch Dis Child FetalNeonatal Ed, 2007, 92: F30-F33.
    [18] HallidayHL,EhrenkranzRA,Doyle LW.Early Postnatal(<96 hours)Corticsteroids for Preventing Chronic Lung Disease in Preterm Infants [J].CochraneDatabase SystRev, 2003, (1):CD001144- CD001146.
    [19] HallidayHL,EhrenkranzRA.Moderatelyearly (7-14 days)Postnatal Corticosteroids for Preventing Chronic Lung Disease Inpreterm Infants. Cochrane Database Syst Rev, 2001, 1:CD001144.
    [20]朱翠平,马祖祥,地塞米松对早产儿支气管肺发育不良预防作用的荟萃分析[J].广东医学,2006,27(3):415-418
    [21] JonesRA. FRCPCH on Behalf of The Collaborative Dexam Ethasone Trial Follow-up Group Randomized, Controlled Trial of Dexam Ethasone in Neonatal Chronic Lung Disease: 13- to 17-year Follow-up study: I.Neu-rologic, Psychologica,l and Educational Outcomes[J].Pediatrics, 2005,116(2): 370-378.
    [22] JonesRA. FRCPCH on Behalf Collaborative Dexam ethasone Trial Follow-up Group of The Collaborative Dexam Ethasone Trial Follow-up Group Randomized, Controlled Trial of Dexam Ethasone in Neonatal ChroniclLung Disease: 13- to 17-year Follow-up Study:Ⅱ.Respiratory Status, Growth, and Blood Pressure[J].Pediatrics, 2005, 116(2): 379-384.
    [23] Doyle LW, HallidayHL, EhrenkranzRA, et al. Impact of Postnatal Systemic Corticosteroids Onmortality and Cerebral Palsy in Preterm Infants: Effect Modification by Risk for Chronic Lung Disease.Pediatrics, 2005, 115: 655-661.
    [24] Doyle LW, Davis PG,Morley CJ, et al. Low-dose Dexam Ethaone Facilitates Extubation Anong Chronically Ventilator- dependent Infants Amulticenter, Internation, Randomized,Controlled Trial [J].Pediatrics, 2006, 117(1): 75-83.
    [25] McEvoy C,Bowling S,Williamson K,et al.Durand M Randomized,Double-blinded Trial of Low-dose Dexamethasone.Functional Residual Capacity and Pulmonary Outcome in Very Low Birthweight Infants at Risk for Bronchopulmonary Dysplasia [j].Pediatr Pulmonol,2004,38(1):55-63.
    [26] Barazzon-Argiroffo C,Pagano A,Juge C,et al.Glucocorticoids Aggravate Hyperoxia Induced Lung Injury Through Decrease Nuclear Factor 2 Kappa B Activity [L].Am J Physiol Lung Cell Mol Physiol,2003,284:197-204.
    [27] Blackmon BL, BellE, EngleW, et al. Committee on Fetus and Newborn. Postnatal Corticosteroids to Treat or Prevent Chronic Lungdisease in PretermInfants. Pediatrics, 2002, 109: 330-338.
    [28] Parikh NA, Lasky RE, Kemedy KA, et al. Postnatal Dexam Ethasore Therapy and Cerebral Tissue Volumes in Extremely Low Birth Weight Infants Pediatrics 2007, 119: 265-272.
    [28] YehTF, Lin YJ, LinHC,et al. Outcomes at School Age After Postnatal Dexam Ethasone Therapy for Lung Disease of Prematurity[ J].N Engl J Med, 2004, 350(13): 1304-1313.
    [29] Gross SJ,AnbarRD,Mettelman BB. Follow-up at15 year of preterm infants from a controlled trial of moderately early dexam ethasone for the prevention of chronic lung disease[ J].Pediatrics, 2005, 115 (3):681-687.
    [30] YehTF, Lin YJ, LinHC,et al. Outcomes at school age after postnatal dexam ethasone therapy for lung disease of prematurity[ J].N Engl J Med, 2004, 350(13): 1304-1313.
    [31] Walsh MC, Yao Q,Horbar JD, et al. Changes in the use of postnatal steroids for bronchopulmonary dysplasia in 3 large neonatal net works [J].Pediatrics, 2006, 118(5): e1328-e1335.
    [32] Halliday HL, Guidelnes on neonatal steroids Prenat Neonat Medm 2001,6: 371-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700