用户名: 密码: 验证码:
仿生蜘蛛振动感知的硅微加速度传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合国家自然科学基金项目“基于蜘蛛振动感知机理的仿生多维微拾振构件及应用基础研究”(项目编号:50675193),首先通过生物学解剖、理论建模、数值仿真,深入研究了蜘蛛的两种机械感知器官及其感知机理,分别提出其在仿生微纳传感技术中的应用;进而结合微机电系统技术,提出新型的孔缝-微悬臂梁结构,研制出基于孔缝-微悬臂梁结构的仿生硅微加速度传感器,并对相关的设计开发问题进行了深入系统研究。
     第1章,阐述了本学位论文的研究背景与意义,详细介绍了国内外在基于动植物体表感觉器官的仿生微纳传感技术、基于MEMS的微悬臂梁传感技术及硅微加速度传感器研制技术方面的研究现状,提出了本学位论文的主要研究内容。
     第2章,首先选取狼蛛科的拟环纹豹蛛,进行生物学解剖实验,对蜘蛛的两种机械感知器官,即蜘蛛的毛形感受器及缝感受器,分别进行了SEM的电镜扫描观察;其次,针对蜘蛛的刚毛结构,研究其流量触觉感知机理,探讨其在仿生传感技术中的应用;然后,针对蜘蛛缝感受器和琴形器,研究其机械振动感知机理,结合孔缝的应力集中效应,提出基于孔缝的新型微传感器件的设计新思路。
     第3章,研究仿生蜘蛛琴形器结构,结合微机电系统中的微悬臂梁传感技术,提出了新型的孔缝-微悬臂梁结构;其次,通过理论建模,深入研究孔缝的结构与位置参数等对微悬臂梁力学特性与检测性能的影响。结果表明:孔缝的引入可以有效的提高微悬臂梁的检测性能,而且可根据不同的设计要求,通过优化孔缝与微悬臂梁的结构参数以及孔缝的位置,获得所需的微悬臂梁力学特性,进而提高微悬臂梁的检测性能。
     第4章,在孔缝-微悬臂梁理论分析的基础上,研究仿生蜘蛛琴形器的振动感知机理,提出了一种基于孔缝-微悬臂梁结构的压阻式仿生硅微加速度传感器。通过力学建模,系统分析了硅微加速度传感器的检测性能,如传感器的输出电压、线性度、灵敏度、谐振频率、噪声特性、分辨率、频响特性等。结果表明:相较于无孔缝结构,矩形孔缝的引入可以有效的提高硅微加速度传感器的检测性能,特别是在满足测量带宽的条件下,极大的提高传感器的灵敏度。
     第5章,针对设计的仿生硅微加速度传感器,首先系统分析了结构参数、工艺参数和工作参数等对传感器性能的影响;其次,针对硅微加速度传感器优化设计这一问题,分别以灵敏度、噪声、分辨率作为设计目标,进行了单目标的优化设计分析;然后,针对三类参数之间的耦合关系及不同优化目标之间的矛盾,提出将非支配排序遗传算法(NSGA-Ⅱ)应用于仿生硅微加速度传感器的多目标优化设计。比较单目标优化结果,表明经多目标优化设计的硅微加速度传感器,各性能指标都有了较大的提升,验证了多目标优化设计数学模型的正确性和方法的有效性。
     第6章,在仿生硅微加速度传感器理论分析和优化设计的基础上,结合外协作单位中国电子科技集团第13研究所的工艺条件,对本文仿生硅微加速度传感器的微机械加工工艺流程进行了研究,并完成了相应的制版与传感器制作。其次,针对传感器的结构特点,结合圆片级封装技术,完成了仿生硅微加速度传感器的封装制作;并为使封装后的硅微加速度传感器具有较高的动态特性,通过理论建模,分析了封装结构对传感器性能的影响,提出可以通过优化硅上盖板与玻璃衬底到中间结构层的距离来提高传感器的动态特性。
     第7章,为了验证前面提出的理论和方法的正确性,在实验室自行研制的标准振动台上构建了仿生硅微加速度传感器的动态特性测试实验系统,并进行了相关的实验研究。首先对研制的仿生硅微加速度传感器的线性度、灵敏度、频响特性、噪声特性等进行了测试标定实验,结果表明,研制的仿生硅微加速度传感器具有较高的检测性能;其次,对传感器的非线性度及横向干扰进行了测试,分析其产生的原因及改善方案;此外,分析了仿生硅微加速度传感器的PCB安装方式对传感器性能的影响,提出实际使用中的改进方案。
     第8章,总结了论文的主要研究工作和创新点,并展望了未来的研究工作。
Supported by "Research on Biomimetic Multidimensional Microvibrometer and Its Application Inspired from the Vibration Sensilla of Spiders", an National Natural Science Foundation of China (Grant No.50675193), spider's vibration mechanism and their application in biosensors development, such as slot-cantilever sensors and an novel piezoresistive accelerometers, were studied in this dissertation. The rearsearch work was carried out by combining theoretical analysis, numerical simulation with experimental verification.
     In Chapter 1, the background and significance of the research were introduced, the development trend and current research situations of the biomimetic microsystems based on animals and plants'sensilla, micro-cantilever type sensors and accelerometers'development were explatiated, then the research contents of this dissertation were proposed.
     In Chapter 2, firstly, spider's vibration sensing organs were studied by anotomy and SEM experiment. For spider's hair, the flow sensing mechanism was studied, and their potential applications in bio-sensing technologies were proposed. As for slit sensilla, the vibration sensing mechanism and slits'stress concentration effects were studied. Then, a novel design method of bio-sensors was presented.
     In Chapter 3, based on spider's lyriform slits sensilla and combing MEMS technologies, piezoresistive slot-cantilever were presented. Analytical modeling was established to analyze the slits location and geometries effect on the sensing performance of cantilever sensors. The results show that the sensing performance and mechanical properties of cantilever can be greatly improved and adjusted by optimizing the slits and cantilever's structural and location parameters.
     In Chapter 4, based on the above chapters analysis, a novel slot-cantilever type piezoresistive accelerometer was proposed. Then, an analytical models was established to study the sensing performance, such as output voltage, sensitivity, resonant frequency, noise floor, resolution, dynamic frequency responses, and etc. The results show that the sensing performance of the proposed bio-accelerometer can be effectively improved, especially for improving sensitivities and without decreasing the resonant frequency.
     In Chapter 5, for piezoresistive accelerometer's optimization design, sensitivity, noise floor, resolution were selected as optimization objectives, the effects of structural dimensions, process parameters and working conditions were systematically analyzed. Then, sensitivity, noise floor or resolution was studied for single objective optimization design, respectively. As for the confliction of design parameters and objectives, a multi-objective optimization design method by using nondominated sorting genetic algorithm (NSGA-Ⅱ) is proposed to achieve the design optimization. The results demenstrated that the sensing performance of piezoresistive accelerometer can be greatly enhanced by using multi-objective optimization.
     In Chapter 6, in order to fabricate the designed accelerometer, a set of process flows are brought forward and a series of important process steps are carried out to optimize the process parameters and flows. Then, the proposed accelerometer was eventually fabricated. For the packaging process, wafer-level packaging was designed to improve the sensing performance. An analytical models was presented to study the dynamic performance of the packaged accelerometer. The results show that the sensing performance can be enhanced by optimizing the air gaps of top silicon cap and bottom glass substrate to the middle sensing structure.
     In Chapter 7, to verify the theory mentioned above and study the sensing performance for the developed accelerometer, the experimental setup was built on the standard vibration testing table. A series of experiments were carried out to study the sensing performance, such as sensitivity, linearity, bandwidth, noise level and etc. The results shown that the proposed accelerometer features high performance, such as higher sensitivity and relative large bandwidth. For the nonlinearity and cross sensitivity, the induced mechanism and improvements were studied. At last, as for the method of installation, analytical modeling was presented to study the effects of installation, then the improvements were proposed to eliminate these effects.
     In Chapter 8, the chief work and innovations of this dissertation were summarized, and the further research subjects were proposed.
引文
[1]http://zh.wikipedia.org/zh-cn/%E4%BB%BF%E7%94%9F%E5%AD%A6.
    [2]路甬祥.仿生学的意义与发展.科学中国人,2004:23-24.
    [3]孙久荣,戴振东.仿生学的现状和未来.生物物理学报,2007(4):109-105.
    [4]Minhang Bao, Weiyuan Wang, Future of microelectromechanical systems (MEMS), Sensors and Actuators A,1996(56):135-141.
    [5]C.S. Smith, Piezoresistive effect in germanium and silicon, Physical Review,1954, (94):42-49.
    [6]R.P. Feynman, There is Plenty of Room at the Bottom. Journal of Microelectromechanical System, 1992(1):60-66.
    [7]H.G. Graighead, Nanoelectromechanical Systems, Science,2000 (290):1532-1535.
    [8]M. Roukes, Nanoelectromechanical systems face the future, Physics World,2001 (14):25-31.
    [9]周兆英.微/纳机电系统.仪表技术与传感器,2003,(2):1-5.
    [10]J.W. Judy, Microelectromechanical systems (MEMS):fabrication, design and application, Smart Materials and Structures,2001(10):1115-1134.
    [11]O.N. Tufte, P.W. Chapman, and Donald Long, Silicon diffused-element piezoresistive diaphragms, Journal of Applied Physics,1962(33):3322-3327.
    [12]Roylance L M, Angell J B, A batch-fabricated silicon accelerometer. IEEE Trans Electron Devices, 1979,26:11-19.
    [13]K.E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE,1982(70):420-457.
    [14]R.T. Howe, and R.S. Muller, Polycrystalline silicon micromechanical beams, in Proceedings of Electrochemical Society Spring Meeting, Montreal, Canada, May 9-14,1982:184-185.
    [15]L.S. Fan, Y.C. Tai, and R.S. Muller, IC-processed electrostatic micro-motors, Technical Digest of International Electron Devices Meeting, San Francisco, USA,1988:666-669.
    [16]Yazdi N, Ayazi F and Najafi K, Micromachined inertial sensors. Proceedings of the IEEE,1998,86: 1640-1659.
    [17]张绍武.惯性技术的研制现状及其发展.中国航天机电集团科技委员会控制与惯性技术专业组研讨会论文.北京,2002:235-238.
    [18]孙百香,董恩生,孙立静.基于MEMS技术的微型组合导航传感系统研究.电子测量.2008(3): 30-33.
    [19]董景新.微惯性仪表:微机械加速度计.清华大学出版社,2003.
    [20]Craig Lowrie, Marc P.Y. Desmulliez, Lars Hoff, Ole Jakob Elle and Erik Fosse, MEMS Three-Axis Accelerometer:Design, Fabrication and Application of Measuring Heart Wall Motion, DTIP 2009, MEMS/MOEMS'09, Rome, Italy:229-234.
    [21]江雷,冯琳.仿生智能纳米界面材料.化学工业出版社,2007.
    [22]孙久荣,郭策,戴振东.几种刚毛的结构及其仿生学.生物物理学报,2007 23(6):428-435.
    [23]C.M. Comer, E. Mara, K.A. Murphy, M. Getman, M.C. Mungy. Multisensory control of escape in the cockroach (Penplaneta Americana). Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1994,174(1):13-26.
    [24]Xuefeng Gao, Lei Jiang. Water-repellent legs of water striders. Nature,2004,432:36.
    [25]JohnW.M. Bush, David L. Hu. Walking on Water:Biolocomotion at the Interface. Annu. Rev. Fluid. Mech.2006,38:339-369.
    [26]David L. Hu, John W.M. Bush. The hydrodynamics of water-walking arthropods. J. Fluid Mech.2010, 644:5-33.
    [27]David L. Hu, Manu Prakash, John W.M. Bush. Water-walking devices. Exp. Fluids,2007 (43): 769-778.
    [28]Steven Floyd, Terence Keegan, John Palmisano, and Metin Sitti. A Novel Water Running Robot Inspired by Basilisk Lizards. IROS, Beijing, China,2006:5430-5436.
    [29]Steven Floyd, Serhat Adilak, Steven Ramirez, Raphael Rogman, and Metin Sitti. Performance of Different Foot Designs for a Water Running Robot. ICRA, Pasadena, CA, USA,2008:244-250.
    [30]Kesel AB, Martin A, Seidl T. Adhesion measurements on the attachment devices of the jumping spider. The Journal of Experimental Biology,2003,206:2733-2738.
    [31]Geim AK, Dubonos SV, Grigorievai IV, Novoselov KS, Zhukov A, Ashapoval SYU Microfabricated adhesive mimicking gecko foot-hair. Nature Materials,2003(2):461-463.
    [32]Bhushan, Bharat. Nanotribology and Nanomechanics:An introduction,2nd ed.2008, Springer.
    [33]Ardian Jusufi, Daniel I. Goldman, Shai Revzen, and Robert J. Full. Active tails enhance arboreal acrobatics in geckos. PNAS,2008,105(11):4215-4219.
    [34]Kellar Autumn. How Gecko Toes Stick. American Scientist,2006 (94):124-132.
    [35]戴振东,孙久荣.壁虎的运动及仿生研究进展.自然科学进展,2006,16(5):519-524.
    [36]王辉静,梅涛.仿壁虎粘附阵列与粗燥表面间粘附仿真分析.中国科学技术大学学报,2006,36(8):845-850.
    [37]Kellar Autumn, Yiching A. Liang, S. Tonia Hsieh, Wolfgang Zesch, Wai Pang Chan, Thomas W. Kenny, Ronald Fearing, Robert J. Full. Adhesive force of a single gecko foot-hair. Nature,2000, 405(8):681-685.
    [38]M. Dijkstra, J.J. van Baar, R.J. Wiegerink, R.J. de Boer, and G.J.M. Krijen. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets. J. Micromech. Microeng.2005 (15):S132-S138.
    [39]Krijen G J M, Dijkstra M, Baar J J van, Shankar S S, Kuipers W J, de Boer R J H, Altpeter D, Lammerink T S J and Wiegerink R, MEMS based hair flow-sensors as model system for acoustic perception studies. Nanotechnology,2006,17:S84-S89.
    [40]Nannan Chen, Craig Tucker, Jonathan M. Engel, Yingchen Yang, Saunvit Pandya, and Chang Liu. Design and Characterization of Artificial Haircell Sensorr for Flow Sensing with Ultrahigh Velocity and Angular Sensitivity. Journal of Microelectromechanical Systems,2007,16(5):999-1014.
    [41]Liu C, Micromachined biomimetic artificial haircell sensors, Bioinspiration & Biomimetics,2007,2: S162-S169.
    [42]张国军,陈尚,薛晨阳,张斌珍,张开瑞.纤毛式MEMS矢量水声传感器的仿生组装.纳米技术与精密工程,2009,7(3):221-227.
    [43]Diemut Klarner, Friedrich G. Barth, Vibratory Signals and Prey Capture in Orb-Weaving Spiders (Zygiella x-notata, Nephila clavipes; Araneidae). Journal of Comparative Physiology A.1982 (148): 445-453.
    [44]Philip H. Brownell, Compressional and Surface Waves in Sand:Used by Desert Scorpions to Locate Prey. Science,1977 (197):479-482.
    [45]Friedrich G. Barth. A Spider's World:Senses and Behavior, Springer,2002.
    [46]Barth F G. Spider sensors-technical perfection and biology, Zoology 2005,105:71-285.
    [47]Barth F G, Spider mechanoreceptors, Current Opinion in Neurobiology,2004,14:415-422.
    [48]Fratzl P, Barth F G, Biomaterial systems for mechanosensing and actuation, Nature,2009,462: 442-448.
    [49]Albert J T, Friedrich O C, Dechant H E, Barth F G. Arthropod touch reception:spider hair sensilla as rapid touch detectors, Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,2001,187:303-312.
    [50]Joseph A.C. Humphrey, Raghuram Devarakonda, Immaculada Iglesias and Friedrich G. Barth. Dynamics of arthropod filiform hairs. Ⅰ. Mathematical modeling of the hair and air motion. Phil. Trans. R. Soc, Lond. B.1993 (340):423-444.
    [51]Friedrich G. Barth, Ute Wastl, Joseph A.C. Humphrey, and Raghuram Devarakonda. Dynamics of arthropod filiform hairs. Ⅱ. Mechanical properties of spider trichobothria (Cupiennius salei Keys.) Phil. Trans. R. Soc, Lond. B.1993 (340):445-461.
    [52]Friedrich G. Barth, Joseph A.C. Humphrey, Ute Wastl, Johannes Halbritter and Waltraud Brittinger. Dynamics of arthropod filiform hairs.Ⅲ.Flow patterns related to air movement detection in a spider (Cupiennius salei Keys.) Phil. Trans. R. Soc, Lond. B.1995 (347):397-412.
    [53]H.-E. Dechant, F.G. Rammerstorfer, F.G. Barth. Arthropod touch reception:stimulus transformation and finite model of spider tactile hairs. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,2001,187:313-322.
    [54]F.G. Barth, S.S. Nemeth, and O.C. Friedrich, Arthropod touch reception:structure and mechanical of the basal part of a spider tactile hair. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,2004,190:523-530.
    [55]Charlotte Barbier, Joseph A.C. Humphrey. Design, fabrication and testing of a bioinspired hybrid hair-like fluid motion sensor array, Seattle, Washington, USA 2007:1-6.
    [56]Charles Walcott, The physiology of the spider vibration receptor. J. Exp. Zool.1959,141:191-244.
    [57]Takeshi Watanabe. Effects of Web design on the prey capture efficiency of the Uloborid spider Octonoba sybotides under Abundant and Limited Prey Conditions. Zoological science.2001,18(4): 585-580.
    [58]M.A. Landolfa, F.G. Barth. Vibrations in the orb web of the spider Nephila clavipes:cues for discrimination and orientation. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1996,179:493-508.
    [59]W. Mitch Masters. Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae) Ⅱ. Prey and wind signals and the spider's response threshold. Behavioral Ecology and Sociobiology,1984,15(3): 217-223.
    [60]Philip H. Brownell, Prey Detection by the sand scorpion. Scientific American,1984251:86-92.
    [61]W. Stiirzl, R. Kempter, and J. L. van Hemmen. Theory of Arachnid Prey Localization, Physical Review Letters.2000,84(24):5668-5671.
    [62]Philip H. Brownell, J. Leo van Hemmen, Vibration Sensitivity and a Computational Theory for Prey-Localizing Behavior in Sand Scorpions, AMER. ZOOL.,2001,41:1229-1240.
    [63]Friedrich G. Barth, Josef Stagl. The slit sense organ of arachnids:a comparative study of their topography on the Walking legs (Chelicerata, Arachnida). Zoomorphologie,1976 (86):1-23.
    [64]Hoβ1 B, Bohm H J, Rammerstorfer F G, Barth F G, Studying the deformation of arachnid slit sensilla by a fracture mechanical approach, Journal of Biomechanics,2006,39:1761-1768.
    [65]Ulli Hoger, Ernst-August Seyfarth, Structural correlates of mechanosensory transduction and adaptation in identified neurons of spider slit sensilla. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,2001,187:727-736.
    [66]Andrew S. French, Paivi H. Torkkeli. From stress and strain to spikes:mechanotransduction in spider slit sensilla. Journal of Comparative Physiology A:Sensory, Neural, and Behavioral Physiology,2002, 188:739-752.
    [67]Diemut Klarner, Friedrich G. Barth. Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae). Journal of Comparative Physiology A:Sensory, Neural, and Behavioral Physiology,1982,148(4):445-455.
    [68]W. Mitch Masters. Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae) Ⅱ. Prey and wind signals and the spider's response threshold. Behavioral Ecology and Sociobiology,1984,15(3): 217-223.
    [69]Andrew S. French, Paivi H. Torkkeli. Mechanotransduction in spider slit sensilla. Canadian Journal of Physiology and Pharmacology,2004,82:541-548.
    [70]Jochen Speck, Friedrich G. Barth. Vibration sensitivity of pretarsal slit sensilla in the spider leg. Journal of Comparative Physiology A:Sensory, Neural, and Behavioral Physiology,1982,148(2): 187-194.
    [71]Hoβ1 B, Bohm H J, Rammerstorfer F G, Barth F G, Finite element modeling of arachnid slit sensilla-I. The mechanical significance of different slit arrays. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,2007,193:445-459.
    [72]Hoβ1 B, Bohm H J, Schaber C F, Rammerstorfer F G, Barth F G, Finite element modeling of arachnid slit sensilla Ⅱ. Actual lyrifom organs and the face deformations of the individual slits. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,2009,195 (9): 881-894.
    [73]P. F. V. Kessel, L. J. Hornbeck, R. E. Meier and M. R. Douglass, A MEMS-based projection display, Proceedings of the IEEE,86[8](1998)1687-1704.
    [74]Carter J.C. et al., Recent developments in materials and processes for ink-jet printing high resolution polymer OLED displays. SPIE,2003,4800:34-46.
    [75]http://www.wtc-consult.com/englisli/mems-microsystems/.
    [76]Kurt Petersen. A new age for MEMS. TRANSDUCERS'05, vol.1, June,2005, pp.1-4.
    [77]张吉桥.固体表面吸附原子/分子的微尺度力学行为研究.清华大学博士学位论文,2007.
    [78]T.R. Albrecht, P. Grutter, D. Home, and D. Rugar. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys.1991,69(2):668-673.
    [79]Christiane Ziegler, Cantilever-based biosensors. Anal. Bioanal. Chem,2004,379:946-959.
    [80]Nickolay V. Lavrik, Cantilever transducers as a platform for chemical and biological sensors. Review of Scientific Instruments,2004,75(7):2229-2253.
    [81]G. Gerald Stoney. The Tension of Metallic Films Deposited by Electrolysis, Proceedings of the Royal Society of London. Series A,1909,82(553):172-175.
    [82]Zhiyu Hu, T. Thundat, and R.J. Warmack. Investigation of adsorption and absorption-induced stresses using microcantilever sensors. Journal of applied physics,2001,90(1):427-431.
    [83]G.Y. Chen, T. Thundat, E. A. Wachter, and R.J. Warmack. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys.1995,77 (8):3618-3622.
    [84]Ji-Qiao Zhang, Shou-Wen Yu, Xi-Qiao Feng and Gang-Feng Wang, Theoretical analysis of adsorption-induced microcantilever bending. J. Appl. Phys.2008,103,093506-6.
    [85]Ji-Qiao Zhang, Shou-Wen Yu, and Xi-Qiao Feng. Theoretical analysis of resonant frequency change induced by adsorption. J. Phys. D:Appl. Phys.2008,41:125306 (8pp).
    [86]李凯.基于微悬臂梁的生化传感技术研究.中国科学技术大学博士学位论文,2006.
    [87]黄渊.基于光学读出的微悬臂梁生化传感技术研究.中国科学技术大学博士学位论文,2009.
    [88]Tortonese M, Barrett R C, Quate C F. Atomic resolution with an atomic force microscope using piezoresistive detection. Applied Physics Letters.1993,62(8):834-836.
    [89]R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh and R. Gomez. On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng.2000,10:483-491.
    [90]Harley J A, Kenny T W.1/f Noise Considerations for the Design and Process Optimization of Piezoresistive Cantilevers Journal of Microelectromechanical Systems 2000,9:226-235.
    [91]Park S J, Doll J C, Pruitt B L. Piezoresistive cantilever performance, part Ⅰ:analytical model for sensitivity. Journal of Microelectromechanical Systems,2010,19:137-148.
    [92]Park S J, Doll J C, Rastegar A J, Pruitt B L. Piezoresistive cantilever performance, part Ⅱ:optimization. Journal of Microelectromechanical Systems,2010,19:149-161.
    [93]Doll J C, Park S J, Pruitt B L. Design optimization of piezoresistive cantilevers for force sensing in air and water. Journal of Applied Physics,2009,106:064310.
    [94]Yu X M, Thaysen J, Hansen O and Boisen A. Optimization of sensitivity and noise in piezoresistive cantilevers Journal of Applied Physics,2002,92:6296-6301.
    [95]Wang Z Y, Yue R F, Zhang R X and Liu L T. Design and optimization of laminated piezoresistive microcantilever sensors Sensors and Actuators A:Physcial,2005,120:325-336.
    [96]B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo and C. Batt, Mechanical resonant immunospecific biological detector, Applied Physics Letter,2000,77(3):450-452.
    [97]B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo and C. Batt, Single cell detection with micromechanical oscillators, Journal Vacuum Scientist and Technology B, 2001,19:2825-2828.
    [98]A. Gupta, D. Akin and R. Bashir, Single virus particle mass detection using microresonators with nanoscale thickness, Applied Physics Letter,2004,84:1976-1978.
    [99]D.Z. Jin, X.X. Li, J. Liu, G.M. Zuo, Y.L. Wang, M. Liu and H.T. Yu, High-mode resonant piezoresistive cantilever sensors for tens-femtogram resoluble mass sensing in air, J. Micromech. Microeng.2006 (16):1017-1023.
    [100]Kianoush Naelia, Oliver Brand. Dimensional considerations in achieving large quality factors for resonant silicon cantilevers in air. J. Appl. Phys.2009,105:014908-10.
    [101]Kianoush Naelia. Optimization of piezoresistive cantilevers for static and dynamic sensing applications. Georgia Institute of Technology, Ph.D. Dissertation,2009.
    [102]房轩.微悬臂梁品质因数调控技术机理的研究.天津大学博士学位论文,2007.
    [103]Aaron Partridge, Lateral piezoresistive accelerometer with epipoly encapsulation. Standford University, Ph.D. Dissertation,2003.
    [104]Patridge A, Reynolds J K, Chui B W, Chow E M, Fitzgerald A M, Zhang L, Maluf N I, Kenny T W, A high-performance planar piezoresistive accelerometer. Journal of Microelectromechanical Systems, 2000,9:58-66.
    [105]Woo-Tae Park, Aaron Partridge, Rob N. Candler, Vipin Ayanoor-Vitikkate, Gary Yama, Markus Lutz, and Thomas W. Kenny. Encapsulated Submillimeter Piezoresistive Accelerometer. Journal of Microelectromechanical Systems,2006,15(3):507-514.
    [106]Woo-Tae Park, Kevin N. O'Connor, Kuan-Lin Chen, Joseph R. Mallon Jr., Toshiki Maetani, Parmita Dalal, Rob N. Candler, Joseph B. Roberson Jr., Sunil Puria, Thomas W. Kenny. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids. Biomed Microdevices,2007,9(6):939-949.
    [107]Z.C. Feng, Kapil Gore. Dynamic Characteristics of Vibratory Gyroscopes. IEEE Sensors,2004,4(1): 80-84.
    [108]Andrew R. Atwell, Robert S. Okojie, Kevin T. Kornegay, Scott L. Roberson, Alain Beliveau. Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers Sensors and Actuators A:Physical,2003,104(1):11-18.
    [109]Amarasinghe R, Dao D V, Toriyama T, Sugiyama S. Simulaton, fabrication and characterization of a three-axis piezoresistive accelerometer. Smart Mater. Struct.2006,15:1691-1699.
    [110]Amarasinghe R, Dao D V, Toriyama T, Sugiyama S, Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sensors and Actuators A.,2007,134:310-320.
    [111]Eklund E J, Shkel A M, Single-mask fabrication of high-G piezoresistive accelerometers with extended temperature range. Journal of Micromechanics and Microengineering,2007,17:730-736.
    [112]Sankar A R, Lahirl S K, Das S. Performance enhancement of a silicon MEMS piezoresistive single axis accelerometer with electroplated gold on a proof mass Journal of Micromechanics and Microengineering,2009,19:025008(10pp).
    [113]Chen H, Bao M H, Zhu H J, Shen S Q, A piezoresistive accelerometer with a novel vertical beam structure. Sensors and Actuators A.,1997,63(1):19-25.
    [114]Shusen Huang, Xinxin Li, Zhaohui Song, Yuelin Wang, Heng Yang, Lufeng Che and Jiwei Jiao 2005 A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. Journal of Micromechanics and Microengineering,2005,15:993-1000.
    [115]Peitao Dong, Xinxin Li, Heng Yang, Haifei Bao, Wei Zhou, Shengyi Li, Songlin Feng. High-performance monolithic triaxial piezoresistive shock accelerometers. Sensors and Actuators A. 2008,141:339-346.
    [116]程保罗,李听欣,王跃林.带有静电自检测功能的高灵敏度加速度传感器.半导体学报,2005, 26(3):547-553.
    [117]Bo Li, Wendong Zhang, Bin Xie, Chenyang Xue, Jijun Xiong. Development of a novel GaAs micromachined accelerometer based on resonant tunneling diodes. Sensors and Actuators A,2008,143: 230-236.
    [118]余海忠.昆虫触角感受器研究进展.安徽农业科学,2007,35(14):4238-4240.
    [119]Schneider D. Insect antennae. Annu. Rev. Entomol.1964,9:103-122.
    [120]尚玉昌.蜘蛛的感觉和感觉器官.动物学杂志,1992,27(3):45-48.
    [121]K.M. Chapman, Campaniform sensilla on the tactile spines of the legs of the cockroach. J. Exp. Biol. 1965,42:191-203.
    [122]Friedrich G. Barth, Geethabali. Spider Vibration Receptors:Threshold Curves of Individual Slits in the Metatarsal Lyriform Organ. Journal of Comparative Physiology A,1982,148:175-185.
    [123]Rau P. Auditory perception in insects, with special reference to the cockroach. The Quarterly Review of Biology,1940,15(2):121-155.
    [124]宋大祥.蜘蛛的行为.生物学通报,1991,12:12-15.
    [125]刘献中,李晓晨.蜘蛛的机械感器.昆虫知识,2008,45(1):162-165.
    [126]Bree Cummins, Tomas Gedeon, Isaac Klapper, and Ricardo Cortez. Interaction between arthropod filifom hairs in a fluid environment. Journal of Theoretical Biology,2007,247:266-280.
    [127]Hans-Erich Dechant, Bernhard Hoβ1, Franz G. Rammerstorfer, Friedrich G. Barth. Arthropod mechanoreceptive hairs:modeling the directionality of the joint. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,2006,192:1271-1278.
    [128]矫健,张罗.纤毛研究进展.首都医科大学学报,2009,30(1):70-75.
    [129]F.G. Barth. How to catch the wind:Spider hairs specialized for sensing the movement of air. Naturwissenschaften,2000,87:51-58.
    [130]T. Friedel, F.G. Barth. Wing-sensitive interneurones in the spider CNS (Cupiennius salei):directional information processing of sensory inputs from trichobothria on the walking legs. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1997,180: 223-233.
    [131]Thomas A. Keil. Functional Morphology of Insect Mechanoreceptors. Microscopy Research and Technique,1997,39:506-513.
    [132]Steinmann T, Casas J, Krijnen G, Dangles O. Air-flow sensitive hairs:boundary layers in oscillatory flows around arthropod appendages. The Journal of Experimental Biology,2006,209:4398-4408.
    [133]T. Kumagai, T. Shimozawa, and Y. Baba. The shape of wind-receptor hairs of cricket and cockroach. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998,183:187-192.
    [134]Shimozawa T, Kumagai T, Baba Y, Structural scaling and functional design of the cercal wind-receptor hairs of cricket. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1998,183:171-186.
    [135]Stokes G G, On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge. Philos. Soc.1851,9:8.
    [136]Erleben, Christian F.J. Calcium influx through stretch-activated cation channels mediates adaptation by potassium current activation. Neuroreport,1993,4(6):616-618.
    [137]杨雄里,谭德培,叶冰,蒋正尧,罗冬根.神经生物学.北京:科学出版社,2003.
    [138]Ulli Hoger, and Ernst-August Seyfarth. Structural correlates of mechanosensory transduction and adaptation in identified neurons of spider slit sensilla. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,2001,187:727-736Brain res
    [139]Ernst-August Seyfarth, Esmond J. Sanders, Andrew S. French. Sodium channel distribution in a spider mechanosensory organ. Brain Research,1995,683(1):93-101.
    [140]Andrew S. French. Transduction mechanisms of mechanosensilla, Annu. Rev. Entomol.1988,33: 39-58.
    [141]Ulli Hoger, Andrew S. French. Estimated single-channel conduction of mechanically-activated channels in a spider mechanoreceptor. Brain Research,1999,826(2):230-235.
    [142]X.C. Yang, F. Sachs. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science,1989,243:1068-1071.
    [143]D.H.B. Wicaksono, L.-J. Zhang, G. Pandraud, J.F.V. Vincent, and P.J. French. Fly's proprioception-inspired micromachined strain-sensing structure:idea, design, modeling and simulation, and comparison with experimental results. Journal of Physics:conference series.2006,34:336-341.
    [144]D.H.B. Wicaksono, G. Pandraud, G. Craciun, J.F.V. Vincent, and P.J. French. Fabrication and initial characterization results of a micromachined biomimetic sensor inspired from the Campaniform Sensillum of insects. IEEE Sensors 2004, Vienna, Austria, pp.542-545.
    [145]H6B1 B. Mechanical simulation of slit sensors of arachnids. PhD. Dissertation,2007.
    [146]Skordos A, Chan P H, Vincent J F V and Jeronimids G. A novel strain sensor based on the campaniform sensillum of insects Phil. Trans. R. Soc. Am.2002,360:239-253.
    [147]Vincent J F V, Clift S E and Menon C. Biomimetics of Campaniform Sensilla:Measuring Strain from the Deformation of Holes. Journal of Bionic Engineering,2007,4:63-76.
    [148]Wicaksono D H B, Vincent J F V, Pandraud G, Craciun G and French P J. Biomimetic strain-sensing microstructure for improved strain sensor:fabrication results and optical characterization J. Micromech. Microeng.2005,15:S72-S81.
    [149]Gupta A, Bashir R, Neudeck G W, McElfresh M. Design of piezoresistive silicon cantilevers with stress concentration regions (SCR) for scanning probe microscopy applications J. Micromech. Microeng. 2000,10:483-491.
    [150]Yang M, Zhang X, Vafai K and Ozkan C S. High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding J. Micromech. Microeng.2003,13:64-72.
    [151]B.P. Joshi, A.S. Chaware, and S.A. Gangal, Optimising performance of a cantilever-type miro accelerometer sensor. Defence Science Journal,2007,57(3):261-269.
    [152]Ahmed A.S. Mohammed, Walied A. Moussa, and Edmond Lou, Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensor. J. Micromech. Microeng.2010,20:015015.
    [153]Binning G, Quate C, and Gerber Ch. Atomic force microscope. Phys. Rev. Lett.1986,56:930.
    [154]Brugger J, Buser R. A., and de Rooij N. F. Silicon cantilevers and tips for scanning force microscopy. Sensors Actuators A.1992,34:193.
    [155]R.R. Archer, N.H. Cook, S.H. Crandall, N.C. Dahl, F.A. McClintock, E. Rabinowicz, and G.S. Reichenbach. An introduction to the mechanics of solids. New York, McGraw-Hill,1959.
    [156]Venkata Chivukula, Ming Wang, Hai-Feng Ji, Abdul Khaliq, Ji Fang, Kody Varahramyan. Simulation of SiO2-based piezoresistive microcantilevers. Sensors Actuators A.2006,125:526-533.
    [157]程耀东,李培玉.机械振动学(线性系统).浙江大学出版社,杭州,2005.
    [158]R. Sandberg, W. Svendsen, K. Molhave, and A. Boisen. Temperature and pressure dependence of resonance in multi-layer microcantilevers. J. Micromech. Microeng.2005,15:1454-1458.
    [159]J. Thaysen, A. Boisen, O. Hansen, S. Bouwstra. Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone brige arrangement. Sensors and Actuators,2000,83: 47-53.
    [160]金大重.生化检测用集成微机械悬臂梁谐振传感器技术.中国科学院上海微系统与信息技术研究所博士学位论文,2006.
    [161]M. Tabib-Azar, A. Garcia-Valenzuela, Sensing means and sensor shells:a new method a comparative study of piezoelectric, piezoresistive, electrostatic, magnetic, and optical sensors. Sensors and Actuators A.1995,45:87-100.
    [162]Minhang Bao, Analysis and Design Principles of MEMS Devices. Elsevier,2005.
    [163]Muskhelishvili N.I. Some Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, 1963.
    [164]Savin G.N. Stress concentration around holes. Pergamon Press, New York,1961.
    [165]Pilkey W D, Pilkey D F 2008 Peterson's Stress Concentration Factors (3rd Edition), Wiley.
    [166]航空工业部科学技术委员会.应力集中系数手册.北京:高等教育出版社,1990.
    [167]佘崇民,郭万林,孟波,张斌.椭圆孔三维应力集中及其对疲劳强度的影响.计算力学学报.2007,24(2):215-218.
    [168]Zheng Yang, Chang-Boo Kim, Chongdu Cho, Hyeon Gyu Beom. The concentration of stress and strain in finite thickness elastic plate containing a circular hole. International Journal of Solids and Structures, 2008,45:713-731.
    [169]Wilkinson P R, Klug W S, Leer B V and Gimzewski J K. Nanomechanical properties of piezoresistive cantilevers:theory and experiment. Journal of Applied Physics.2008,104:103527-7.
    [170]Lobontiu N, Lupea L, Llic R, Craighead H G. Modeling, design, and characterization of multisegment cantilevers for resonant mass detection. Journal of Applied Physics.2008,103:064306-10.
    [171]Hooge F N.19941/f noise sources IEEE Trans. Electron Devices 411926-1935.
    [172]Gabrielson, T.B. Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron Devices.1993,40:903-909.
    [173]王家畴.硅基集成式微型平面纳米级定位系统的研究.哈尔滨工业大学博士学位论文,2009.
    [174]Nicolae Lobontiu. Dynamics of Microelectromechanical Systems. Springer,2007.
    [175]李德葆,陆秋海.工程振动试验分析.清华大学出版社,2004.
    [176]John K. Coultate, Colin H.J. Fox, Stewart Mc William, Alan R. Malvern. Application of optimal and robust design methods to a MEMS accelerometer. Sensors and Actuators A.2008,142:88-96.
    [177]Manuel Engesser, Axel R. Franke, Matthias Maute, Daniel C. Meisel, Jan G. Korvink. Miniaturization limits of piezoresistive MEMS accelerometers. Microsyst. Technol.2009,15:1835-1844.
    [178]Amgel R. Cortes-Perez, Agustin Leobardo Herrera-May, Luz A. Aguilera-Cortes, Max A. Gonzalez, Palacios, Miguel Torres-Cisneros. Performance optimization and mechanical modeling of uniaxial piezoresistive microaccelerometers. Microsyst. Technol.2010,16:461-476.
    [179]Manuel Engesser, Axel R. Franke, Matthias Maute, Daniel C. Meisel, Jan G. Korvink. A robust and flexible optimization technique for efficient shrinking of MEMS accelerometers. Microsyst. Technol. 2010,16:647-654
    [180]Qingzhou Li, Ping Song, Kejie Li. Structure optimization of a monolithic high-shock three-axis piezoresistive accelerometer using ant colony optimization. NEMS, Shenzhen, China,2009:522-526.
    [181]Narain D. Arora, John R. Hauser, David J. Roulston. Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Transactions on Electron Devices,1982,29(2): 292-295.
    [182]Kanda, Y. A graphical representation of the piezoresistance coefficients in silicon. IEEE Transactions on Electron Devices,1982,29:64-70.
    [183]Guido Masetti, Mazrizio Severi, Sandro Solmi. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Transactions on Electron Devices,1993,30:764-769.
    [184]L.K.J. Vandamme, S. Oosterhoff. Annealing of ion-implanted resistors reduces the 1/f noise. J. Appl. Phys.1986,59(9):3169-3174.
    [185]Srinivas N. Deb K. Multi-objective function optimization using nondominated sorting genetic algorithms. Evolutionary Computations.1995,2(3):221-248.
    [186]Deb K. Pratap A. Agarwal S. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation.2002,6(2):182-197.
    [187]Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley,2002.
    [188]Papila M, Haftka R T, Nishida T and Sheplak M. Piezoresistive Microphone Design Pareto Optimization:Tradeoff Between Sensitivity and Noise Floor Journal of Microelectromechanical Systems.2006,15:1632-1643.
    [189]李中凯.产品族可重构设计理论与方法及其在大型空分装备中的应用研究.浙江大学博士学位论文,2009.
    [190]王喆垚.微系统设计与制造.清华大学出版社,2008.
    [191]张亚非.半导体集成电路制造技术.高等教育出版社,2006.
    [192]张海霞,赵小林(译).微机电系统设计与加工.机械工业出版社,2010.
    [193]Yogesh B. Gianchandani, Osamu Tabata, Hans Zappe. Comprehensive Microsystems. Elsevier,2008.
    [194]蒋玉齐.高量程MEMS加速度计封装研究.中国科学院上海微系统与信息技术研究所博士学位论文,2004.
    [195]孟光,张文明.微机电系统动力学.科学出版社,2008.
    [196]陈宏.全对称双级解耦微机械振动式陀螺研究.哈尔滨工业大学博士学位论文,2008.
    [197]Bao M H, Yang H. Squeeze film air damping in MEMS. Sensors and Actuators A.2007,136:3-27.
    [198]O.N. Tufte, E.L. Stelzer. Piezoresistive Properties of Heavily Doped n-Type Silicon. Phys. Rev.1964, 133:1705-1716.
    [199]Hung-Ming Chuang, Kong-Beng Thei, Sheng-Fu Tsai, Wen-Chau Liu. Temperature-Dependent Characterististics of Polysilicon and Diffused Resistors. IEEE Transactions on Electron Devices,2003, 50(5):1413-1415.
    [200]Chun Hyung Cho. Experimental Characterization of the Temperature Dependence of the Piezoresistive Coefficients of Silicon. Auburn University, Ph.D. Dissertation,2007.
    [201]Plaza J A, Collado A, Cabruja E, Esteve J. Piezoresistive accelerometers for MCM package. J. Microelectromech. Systems.2002,11:794-801.
    [202]http://www.icminer.com/datasheet/pdf/3022-005-P.html.
    [203]http://content.honeywell.com/sensing/sensotec/pdf_catalog08/008727-1-EN_Model_ITF_Gen_Pur.pdf.
    [204]李浩,陆德仁.分度头检测加速度计时横向效应对线性度的影响.功能材料与器件学报.2002,8:40-44.
    [205]王钻开.微机械压阻式冲击加速度传感器研究.中国科学院上海微系统与信息技术研究所硕士学位论文,2003.
    [206]Mahmoud Ibrahim Ibrahim. An investigation into the effect of electrostatic actuation and mechanical shock on microstructures. State University of New York at Binghamton, Master Thesis,2007.
    [207]Mohammad I. Younis, Fadi M. Alsaleem, Ronald Miles, and Quang Su.Characterization of the performance of capacitive switches activated by mechanical shock. J. Micromech. Microeng.2007,17: 1360-1370.
    [208]E.H. Wong, Yiu-Wing Mai. The damped dynamics of printed circuit board and analysis of distorted and deformed haif-sine excitation. Microelectronics Reliability,2009,49:916-923.
    [209]Fadi M. Alsaleem, Mohammad I. Younis, Mahmound I. Ibrahim. A Study for the effect of the PCB motion on the dynamics of MEMS devices under mechanical shock. Journal of Microelectromechanical Systems,2009,18(3):597-609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700