用户名: 密码: 验证码:
开口薄壁梁柱的空间稳定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢结构构件壁薄而修长,在外力作用下常易产生翘曲扭转变形,设计不合理将会导致空间失稳。针对翘曲变形,这种薄壁构件特有的变形形式,必须利用一套不同于实体构件的分析理论对其进行分析和计算。传统的“瓦格纳-符拉索夫理论”开创了相关理论的先河,至今仍影响着各国研究工作的进行。然而,随着传统理论复杂性带来应用上的困难问题逐渐显露,相继有学者提出了新的分析理论,“泛义弯曲理论”即为其中之一。该理论用更为宽松的“中直线假定”替代传统理论中的“刚周边假定”,相应的分析结果更符合实际。本论文基于新理论,对开口薄壁梁柱的空间稳定性进行研究,主要完成了以下几个方面的工作:
     ①以开口三板型截面薄壁梁柱为对象,对“泛义弯曲理论”的基本原理进行介绍,在验证其正确性的同时展示其巨大效益。新理论新创建了弯矩矢量和转角向径两大物理量,借此将构件的空间内力平面化、空间变形一维化;列出了薄壁构件内、外双力矩平衡方程,指出翘曲正应力和双力矩是薄壁构件的主导力因素;新建了薄壁构件截面内力和变形的速算法“动态坐标法”,该方法将构件发生的空间变形合成为绕转动中心轴的转动,将传统理论中四项应力叠加式合成为一项统一计算公式,极大地加快了计算速度;提出了薄壁构件构件层次的拉弯比拟法,指出自由扭转刚度在构件的一阶内力和变形的计算过程中可以暂时略去,如此可以全面移植“平面弯曲理论”中的相应成果,极大地简化了计算过程。
     ②基于“泛义弯曲理论”展开对开口薄壁梁柱空间屈曲问题的研究。首先,基于新理论,以转动中心为简化中心,导出了薄壁梁柱空间屈曲的控制方程,并反演出临界力统一公式及相应的转动中心坐标公式。由空间屈曲控制方程,结合历史上对瓦格纳效应及系数的定义的相关讨论,澄清了瓦格纳效应及系数的概念及计算思路,揭示了其具有的诸多力学特性和工程应用价值。其次,利用转动中心联线形成的转心三角形,揭示出临界力及相应屈曲模态的正交特性,该特性为后续二阶分析中变形的正交分解后单独进行放大再叠加的放大系数法的应用提供了理论基础。最后,对各种截面形式的开口薄壁构件进行大量的计算后绘制出临界力与长细比关系曲线和转心三角形,从中揭示出开口薄壁梁柱空间屈曲特性。
     ③确定开口薄壁梁柱二阶分析中将要涉及的重要参数,为后续二阶分析提供条件。类比平面初始缺陷的选取并结合薄壁构件的空间屈曲特性,提出薄壁构件空间稳定初始缺陷的选取方法。讨论了基于临界力及相应屈曲模态的正交特性如何把薄壁梁柱的初始变形和一阶变形正交分解为三个独立变形的方法。根据内、外双力矩的平衡方程导出相互独立的三种变形的转角放大系数,提出了统一放大系数的概念。从最基本的扭转问题出发,推导简单荷载作用下的考虑了自由扭转刚度的内力和变形计算公式,从中寻找出自由扭转刚度的二阶效应规律。初步提出计算薄壁构件截面二阶应力的方法,解决传统理论中无法将双力矩项正确引入二阶应力计算公式的问题。
     ④基于边缘屈服准则绘制开口薄壁梁柱空间稳定系数与长细比关系曲线,揭示构件发生空间失稳时的诸多特性。从柱子曲线理论的研究进程出发,从众多稳定判定准则中选取简单且实用者,即采用边缘屈服准则,对多种截面形式且考虑了空间初始变形的开口薄壁构件空间稳定承载能力进行计算,将计算结果绘制成曲线,从中揭示构件发生空间弯扭失稳时的诸多特性。特别指出了两板型截面构件特有的失稳模式——扭转剪切失稳产生的根本原因。最后,初步讨论残余应力和弹塑性对压杆空间稳定性的影响。
     ⑤利用ANSYS有限元软件对前述开口薄壁梁柱空间稳定分析结果进行验证。对多种截面形式的薄壁构件进行一阶分析和特征值屈曲分析结果表明,本论文提出的分析方法正确。在原有的特征值屈曲分析的模型中引入构件的几何初始缺陷,利用弧长法绘制荷载-位移曲线并获得压杆的极限承载力,将其与前文中的空间稳定分析的结果进行对比后发现:两板型截面短杆确实存在剪切失稳现象,但新方法中的压杆尤其是较短压杆空间稳定分析结果与有限元分析结果相比偏于保守,因此必须对新方法中的空间稳定校核公式进行修正,提出新的实用校核方法。
     ⑥将基于“泛义弯曲理论”的开口薄壁梁柱空间稳定分析结果在工程中进行初步推广应用。将基于边缘屈服准则的空间稳定校核公式变换为临界应力的表达形式,并类比平面稳定问题中的处理方式,提出合理的开口薄壁梁柱的空间稳定校核方法——虚拟弹性逆算初弯扭法。鉴于现今缺少构件空间初始缺陷的科学统计资料,初步提出实用计算方法——折算长细比法。使用该方法对T形截面钢压杆的空间稳定性进行讨论,消除传统校核公式和理论分析方法带来的分歧,并按照新方法对现行规范中存在的问题进行初步修正。
     总的说来,本文所作的工作是:简述并验证统一计算理论、推导空间屈曲临界力及屈曲模态的统一计算公式、理顺基于边缘屈服准则的空间稳定系数的统一计算步骤和提出实用的空间稳定统一校核方法。当然,上述对开口薄壁梁柱的空间稳定性的研究目前只处于理论阶段,尚缺乏有关初始缺陷资料的积累,以及大量实际工程的检验。本文从理论方面为薄壁构件空间稳定研究开创一种新思路,供规范修订参考。
Because of its thin wall and slender length, the steel member often yield warping and torsional deflection under external force. Unreasonable design would lead to the spatial buckling of member. In view of distortion, one kind of unique deformation of thin-walled member, there would be an analysis theory, which was different with the plane bending theory, to carry on the analysis and computation with it. The traditional Wagner-Vlasov Theory was the ancestor in this aspect and now influences the research in many countries. However, because it’s difficult to apply the traditional theory, some scholars have advanced several new analysis theories. General Bending Theory was one of them. In General Bending Theory, the rigid perimeter assumption was substituted by the straight midline hypothesis. So, the theoretical analysis results were according with the reality. Based on the General Bending Theory, This paper conducts the research to the spatial stability analysis on thin-walled beam-columns with open cross-section. Mainly the following related works have been carried out:
     ①Object to the thin-walled beam-columns with 3-plate-section, the basic principle of General Bending Theory is introduced, and the great benefit of the new theory is revealed by proving the theory. Firstly, the two physical quantities, moment vector and radius vector rotation, are founded. Take advantage of those quantities, the spatial internal force changes into the planar one and the spatial deformation changes into the one-dimensional one. Secondly, the inside and outside bimoment balance equation of thin-walled member is listed. It is pointed out that the warping normal stress and bimoment are the key force factors of thin-walled member. Thirdly, dynamic coordination method, the quick calculation of the internal force and deformation of the cross-section is newly built. By this method, it is carried on that the spatial distortion synthesis to the rotation circling the rotation center and the four stress superimposition in traditional theory synthesis to the unification formula, so the computation process is simplified and the computation speed is enhanced mostly. It is proposed that the tension-bending analogue of the thin-walled component level and pointed out that the free torsion rigidity can be neglected temporarily in the process of first-order analysis. So, the related achievement in the Plane Bending Theory can be transplanted generally and the computation process can be simplified greatly.
     ②Based on the General Bending Theory, Spatial buckling of thin-walled beam-columns with open cross-section is researched. Firstly, based on the General Bending Theory, take the rotation center as the simplified center, the governing equation of the spatial buckling is derived, and the conversion of the critical force unification formula and the corresponding rotation center coordinates formula is carried on. Secondly, by the spatial buckling governing equation, combining the historical related discussion of the Wagner effect and the Wagner coefficient, it is clarified that the concepts, computation path, many mechanics characteristics and project application value of the Wagner effect and the Wagner coefficient. Thirdly, by the rotation center triangle which comes from the junction of rotation centers, the orthogonal characteristic of the critical force and the corresponding buckling mode is disclosed. That characteristic provides the theoretical basic for the application of the amplification coefficient method in the following second-order analysis. Finally, the massive computations of thin-walled member with many kinds of open cross-section are carried on, then the relation curves of critical force and slenderness ratio and the rotation center triangle are drawn up, and the related characteristic of the spatial buckling of member is disclosed.
     ③The important parameters in the second-order analysis of thin-walled beam-columns with open cross-section are determined, that is providing facilities for the subsequent work in the second-order analysis. By analogy with the selection of plane initial flaw, combining with the spatial buckling characteristic of thin-walled member, the selection method of spatial initial flaw is proposed. It is discussed the orthogonal decomposition method of the initial deformation and first-order deformation turned to be three independent deformation. Based on the balance equation of inside and outside bimoment, the rotation angle magnification factor of three independent deformations is derived and the conception of uniform amplification coefficient is put forward. Embarking from the most basic torsion problem, the calculation formulas considering the free torsion rigidity of the internal force and the deformation of member under simple load are deduced. From those formulas, the second-order effect rule of free torsion rigidity is sought for. The computation method of second-order stress of thin-walled member is proposed initially. Then the question introducing correctly the bimoment to the calculation formula of second-order stress is solved.
     ④In terms of the external fiber yielded criteria, the relation curves of spatial stability coefficient and slenderness ratio are drawn up. According to those curves, many characteristics of member with spatial flexural-torsional buckling are disclosed. From the research advancement of column curves, in terms of the external fiber yielded criteria, the spatial stability bearing capacity of thin-walled members with many kinds of section and considering the spatial initial deformation are computed. The results are drawn up to curves, and from them, many characteristics of member with spatial flexural-torsional buckling are disclosed. A new instability mode in steel member, the torsional shearing instability which is an especial phenomenon in Bi-plate-type section, is pointed out. The influence of residual stress and elastic-plasticity on the spatial stability is discussed initially.
     ⑤By ANSYS, one kind of finite element software, it is proved that the former results of spatial stability of thin-walled beam-columns are valid. The results of the first-order analysis and the eigenvalue analysis indicate that the analysis method proposed in this paper is correct. The geometry initial flaw of member is introduced in the model of former eigenvalue analysis, and the limit bearing capacity of member is obtained by the load-displacement curve from the arc length method. Contrasting the limit bearing capacity with the result of spatial stability analysis in former chapters, it is discovered that the limit bearing capacities of struts particularly short ones in new method are too conservative than those in ANSYS. Therefore, the thing must be done is revising the check formula of spatial stability in the new method, and proposing a new practical check method.
     ⑥The spatial stability analysis results of beam-columns with open cross-section are applied to the practice preliminarily. Transforming the spatial stability check formula based on the external fiber yielded criteria into the expression form as critical stress, and by analogy with the processing way in plane stability, the inverse calculation method of the initial flexural-torsional flaw in the hypothesis elasticity strut, which is the rational check method of the spatial stability of the thin-walled beam-columns with open cross-section, is proposed. In view of the fact that the scientific statistical data of members’spatial initial flaw are lack nowadays, the reduced slenderness ratio method, one kind of practical calculation method, is proposed preliminarily. Using that method, the discussion of the T-strut’s spatial stability is carried on, and the differences brought by the traditional check formula and traditional theoretical analysis method are eliminated. According to the new method, the preliminary revisions of the existing problems in the present code are done.
     In general, the work completed in this paper is as following: summarizing and confirming the uniform computation theory, deducing the uniform computation formula of the critical force and buckling mode of the member in spatial buckling, Straightening out the uniform computation step of the spatial stability coefficient based on the external fiber yielded criteria, and proposing the practical uniform check method of spatial stability. Certainly, the research at present is only in the stage of theory, the data of related initial flaw and the practical verifications are lack. The purpose of this paper is finding a new path from the theoretical side for the research of thin-walled member’s spatial stability to provide reference for code revision.
引文
[1] F.柏拉希.金属结构的屈曲强度[M].北京:科学出版社,1965.
    [2] S. P.铁摩辛柯,J. M.盖莱.弹性稳定理论[M].北京:科学出版社,1965.
    [3] Timoshenko, S. P. & Gere, J. M. Theory of Elastic Stability[M]. New York: McGraw-Hill, 1961.
    [4]吕烈武,沈世钊,沈祖炎,胡学仁.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [5]陈惠发.梁柱分析与设计[M].北京:人民交通出版社,1997.
    [6] Chen, W. F. & Atsuta, T. Theory of Beam-Columns[M]. McGraw-Hill, New York, 1977.
    [7]包世华,周坚.薄壁杆件结构力学[M].北京:中国建筑工业出版社,1991.
    [8]孙仁博,王天明.材料力学[M].北京:中国建筑工业出版社,1995.
    [9] Davies, J.M. & Leach, P. First-order Generalized Beam Theory[J]. Journal of Constructional Steel Research, 1994, 31(2-3): 187-220.
    [10] Davies, J.M. & Leach, P. & Heinz, D. Second-order Generalized Beam Theory[J]. Journal of Constructional Steel Research, 1994, 31(2-3): 221-241.
    [11] Leach, P. Calculation of modal cross-section properties for use in the generalized beam theory[J]. Thin-Walled Structures, 1994, 19(1): 61-79.
    [12] Schardt, R. Generalized beam theory-an adequate method for coupled stability problems[J]. Thin-Walled Structures, 1994, 19(2-4): 161-180.
    [13] Silvestre, N. & Camotim, D. First-order generalized beam theory for arbitrary orthotropic materials[J]. Thin-Walled Structures, 2002, 40(9): 755-789.
    [14] Silvestre, N. & Camotim, D. Second-order generalized beam theory for arbitrary orthotropic materials[J]. Thin-Walled Structures, 2002, 40(9): 791-820.
    [15] Simao, P. & Da Silva, L. S. A unified energy formulation for the stability analysis of open and closed thin-walled members in the framework of the generalized beam theory[J]. Thin-Walled Structures, 2004, 42(10): 1495-1517.
    [16] Leach, P. & Davies, J. M. Experimental verification of the generalized beam theory applied to interactive buckling problems[J]. Thin-walled Structures, 1996, 25(1): 61-79.
    [17] Thin-walled structures[EB/OL]. http://www.ce.jhu.edu/bschafer/gbt/index.htm. 2006-03-09.
    [18]李开禧.弹性薄壁杆件翘曲[M].北京:中国建筑工业出版社,1990.
    [19]李开禧.关于薄壁杆件翘曲变形的讨论[J].重庆建筑工程学院学报,1982,4(2):1-72.
    [20]李开禧,饶晓峰.单向偏心钢压杆弯扭屈曲临界力[J].重庆建筑工程学院学报,1983,5(4):1-21.
    [21]李开禧.弹性薄腹工形梁的临界双力矩[J].重庆建筑工程学院学报,1984,6(1):1-16.
    [22]李开禧.弹性薄腹工形截面柱的弯扭屈曲临界力[J].重庆建筑工程学院学报,1984,6(2):56-62.
    [23] Davies, J. M. Recent research advances in cold-formed steel structures[J]. Journal of Constructional Steel Research, 2000, 55(1-3): 267-288.
    [24]侯娟,叶志明,侯军林.轻钢结构中薄壁构件的应用研究[J].兰州铁道学院学报(自然科学版),2003,22(4):105-109.
    [25]侯娟,叶志明,张基涛.轻钢结构中梁及檩条稳定性的研究进展[J].建筑钢结构进展,2004,6(4):15-21.
    [26]王永华.开口薄壁截面梁柱空间稳定性分析[D].重庆:重庆大学土木工程学院,2002:1-70.
    [27]白洪源.开口薄壁柱空间理论及基于此的柱子曲线验算[D].重庆:重庆大学土木工程学院,2003:1-74.
    [28]温伏明.开口薄壁柱的空间稳定柱子曲线[D].重庆:重庆大学土木工程学院,2003:1-70.
    [29]余洋.薄壁构件空间稳定分析[D].重庆:重庆大学土木工程学院,2004:1-83.
    [30] Juraj, S. & Jerko, R. A critical review of Vlasov’s general theory of stability of in-plane bending of thin-walled elastic beams[J]. Meccanica, 2001, 36(2): 177-190.
    [31] Kounadis, A. N. Postbuckling analysis of bars with thin-walled cross-sections under simultaneous bending and torsion due to central thrust[J]. Journal of Constructional Steel Research, 1998, 45(1): 17-37.
    [32]周建春,刘光栋,魏琴.薄壁杆件截面几何特性计算的比拟有限元法[J].工程力学,2002,19(1):38-41.
    [33]赵勇,周竞欧,颜德姮.任意多边形薄壁杆断面几何参数计算方法[J].结构工程师,2004,20(4):38-41.
    [34]石琴,陈朝阳.任意形状薄壁截面的几何特性参数的计算[J].机械工程学报,2004,40(10):144-148.
    [35]蒋路.卷边槽形冷弯薄壁型钢轴压柱畸变屈曲的试验和理论研究[D].西安:西安建筑科技大学土木工程学院,2007:1-13.
    [36] Prokic, A. Computer program for determination of geometrical properties of thin-walled beams with open profile[J]. Advances in Engineering Software, 1999, 30(2): 109-119.
    [37] Yu, W. B. & Hodges, D. H. & Volovoi, V. V. & Fuchs, E. D. A generalized Vlasov theory for composite beams[J]. Thin-Walled Structures, 2005, 43(9): 1493-1511.
    [38] Katori, H. Consideration of the problem of shearing and torsion of thin-walled beams witharbitrary cross-section[J]. Thin-Walled Structures, 2001, 39(8): 671-684.
    [39] Gotluru, B. P. & Schafer, B.W. and Pekoz, T. Torsion in thin-walled cold-formed steel beams[J]. Thin-Walled Structures, 2000, 37(2): 127-145.
    [40]李开禧,刘坚,熊晓莉,金声,谢华.计算薄壁杆件翘曲变形的约束扭转理论只是广义弯曲理论中的一个特例[J].建筑结构,2004 (s):154-160.
    [41]李开禧,刘坚.钢结构稳定计算理论的新探索[J].结构工程师,2000,53(s):572-591.
    [42]刘坚,李开禧.薄壁构件二阶分析的新方法[J].重庆建筑大学学报,2000,22(4):71-75.
    [43]李开禧,王永华.翘曲理论的计算机验证[J].重庆建筑大学学报,2002,24(5):46-51.
    [44]赵广坡.薄壁结构的空间变形分析[D].重庆:重庆大学土木工程学院,2004:1-74.
    [45]谢华.梁柱体系的整体分析[D].重庆:重庆大学土木工程学院,2005:1-57.
    [46]李开禧,温伏明,赵广坡.两板件截面均匀受压柱的柱子曲线[J].建筑结构,2004,34(2):6-9.
    [47]李开禧,谢华,熊晓莉,余洋.薄壁构件空间变形计算理论浅议[J].力学与实践,2004,26(4):76-80.
    [48]李开禧,熊晓莉,王永华.考虑双力矩作用的钢梁柱空间稳定分析[J].建筑结构,2004(s):189-191.
    [49]李开禧,熊晓莉.两板型截面均匀受压柱双柱子曲线的概念及应用[J].建筑结构,2004(s):192-195.
    [50]中华人民共和国建设部. GB50017-2003.钢结构设计规范[R].北京:中国计划出版社,2003:129-133.
    [51] AISC. LRFD Specification for Structural Steel Buildings[R]. December 27, 1999.
    [52] European Committee for Standardisation. Eurocode 3: Design of steel structures[R]. May 7, 2003.
    [53]中华人民共和国建设部. GBJ17-88.钢结构设计规范[R].北京:中国计划出版社,1988:101-105.
    [54]湖北省发展计划委员会. GB50018-2002.冷弯薄壁型钢结构技术规范[R].北京:中国计划出版社,2002:14-30.
    [55]梁爱华,G.. J. van den Berg.冷弯薄壁不锈钢受压构件临界荷载的计算理论和方法[J].钢结构,1999,14(2):58-62.
    [56]汪礼顺,汪晓东.结构稳定性问题的级数解[J].江西科学,2002,(1):11-55.
    [57] Trahair, N.S. Lateral buckling strengths of steel angle section beams[J]. Journal of Structural Engineering, 2003, 129(6): 784-791.
    [58] Maalawi, K. Y. Buckling optimization of flexible columns[J]. International Journal of Solids and Structures, 2002, 39(23): 5865-5876.
    [59] Ojalvo, M. Wagner hypothesis in beam and column theory[J]. Journal of the Engineering Mechanics Division, ASCE, 1981, 107(4): 669-677.
    [60] Kittipornchai, S. & Dux, P. F. Discussion on“Wagner hypothesis in beam and column theory”[J]. Journal of the Engineering Mechanics Division, ASCE, 1982, 108(3): 570-572.
    [61] Leko, T. Discussion on“Wagner hypothesis in beam and column theory”[J]. Journal of the Engineering Mechanics Division, ASCE, 1982, 108(3): 572-573.
    [62] Studnicka, J. & Kristek, V. Discussion on“Wagner hypothesis in beam and column theory”[J]. Journal of the Engineering Mechanics Division, ASCE, 1982, 108(3): 573-574.
    [63] Trahair, N. S. Discussion on“Wagner hypothesis in beam and column theory”[J]. Journal of the Engineering Mechanics Division, ASCE, 1982, 108(3): 575-578.
    [64] Haaijer, G. Discussion on“Wagner hypothesis in beam and column theory”[J]. Journal of the Engineering Mechanics Division, ASCE, 1983, 109(3): 923-924.
    [65] Ojalvo, M. Closure of“Wagner hypothesis in beam and column theory”[J]. Journal of the Engineering Mechanics Division, ASCE, 1983, 109(3): 924-932.
    [66] Kittipornchai, S. & Wang, C. M. & Trahair, N. S. Closure to discussion by Ojalvo on“Buckling of monosymmetric I-beams under moment gradient”[J]. Journal of the Structure Division, ASCE, 1987, 113: 1391-1395.
    [67] Trahair, N. S. & Papangelis, J. P. Flexural-torsional buckling of monosymmetric arches[J]. Journal of the Structure Division, ASCE, 1987, 113: 2271-2288.
    [68] Goto, Y. & Chen, W. F. On the validity of Wagner hypothesis[J]. Journal of the Solids Structures, 1989, 25(6): 621-634.
    [69] Alwis, W. A. M. & Wang, C. M. Should load remain constant when a thin-walled open-profile column buckles?[J]. Journal of the Solids Structures, 1994, 31(21): 2945-2950.
    [70] Alwis, W. A. M. & Wang, C. M. Wagner term in flexural-torsional buckling of thin-walled open-profile columns[J]. Engineering Structures, 1996, 18(2): 125-132.
    [71]陈骥.钢结构稳定理论与设计[M].北京:科学出版社.2001.
    [72]熊晓莉,李开禧.开口薄壁柱弯扭屈曲时的Wagner效应问题研究[J].西安建筑科技大学学报(自然科学版),2007,39(3):379-385.
    [73]郭彦林,R. Schardt.冷弯薄壁槽形截面钢柱的优化设计[J].应用力学学报,1998,15(1):136-139.
    [74]聂国隽,钱若军.考虑约束扭转的薄壁梁单元刚度矩阵[J].计算力学学报,2002,19(3):344-348.
    [75]聂国隽,仲政.薄壁空间钢结构的非线性分析[J].同济大学学报,2004,32(3):357-361.
    [76]王孟鸿,方敏勇,郝际平.基于薄壁结构理论的三维空间钢结构整体稳定跟踪分析[J].西安建筑科技大学学报(自然科学版),2004,36(1):11-15.
    [77]魏明钟.钢结构[M].武汉:武汉理工大学出版社,2002.
    [78]蔡春生,王国周.初始缺陷对钢压弯构件稳定极限荷载的影响[J].郑州工学院学报,1989,10(4):29-37.
    [79]中华人民共和国建设部. GB50205-2001.钢结构施工质量验收规范[R].北京:中国计划出版社,2001:31-38.
    [80]李开禧,肖允徽.逆算单元长度法计算单轴失稳时钢压杆的临界力[J].重庆建筑工程学院学报,1982,4(4),26-45.
    [81]须宛明,李开禧.不等端弯矩作用下双角钢截面压弯构件的承载能力研究[J].重庆建筑工程学院学报,1989,11(2),13-26.
    [82]李开禧,须宛明.固端钢梁一柱的承载能力研究[J].重庆交通学院学报,1990,9(1),1-9.
    [83]李开禧,肖允徽,饶晓峰,崔佳,朱文.钢压杆的柱子曲线[J].重庆建筑工程学院学报,1985,7(1),24-33.
    [84]郭耀杰,方山峰.Ψy和Ψb非弹性不同步对压弯构件稳定性计算的影响[J].建筑结构学报,2000,21(5):48-53.
    [85]郭耀杰,方山峰.钢结构构件弯扭屈曲问题的计算和分析[J].建筑结构学报,1990,11(3):38-44.
    [86]童根树,张磊.薄壁钢梁稳定性计算的争议及其解决[J].建筑结构学报,2002,23(3):44-51.
    [87]童根树,张磊.薄壁钢梁中的横向正应力及其对强度和稳定性的影响[J].土木工程学报,2003,36(4):59-64.
    [88]张磊,童根树.工字形截面悬臂钢梁的稳定性研究[J].工程力学,2003,20(4):176-182.
    [89]郭耀杰,胡宝琳.关于《钢结构设计规范》(GB50017)T形截面受弯构件整体稳定系数取值的讨论[J].钢结构,2004,19(1):43-44.
    [90]郭耀杰,陈尚建,方山峰.平面内弯曲变形对构件弯扭屈曲的影响[J].钢结构,2000,15(3):28-30.
    [91]郭耀杰,方山峰.悬臂压弯钢构件整体稳定性计算[J].建筑结构,1998,(8):34-36.
    [92] Kwak, H. G. & Kim, D. Y. & Lee, H. W. Effect of warping in geometric nonlinear analysis of spatial beams[J]. Journal of Constructional Steel Research, 2001, 57(7): 729-751.
    [93] Batista, E. & Camotim, D. & Prola, L.C. & Vazquez, E. On the stability and strength of steel columns affected by distortional buckling[J]. Journal of Constructional Steel Research, 1998, 46(1-3): 129-131.
    [94] Ioannidis, G. I. & Kounadis, A. N. Flexural-torsional postbuckling analysis of centrally compressed bars with open thin-walled cross-section[J]. Engineering Structures, 1999, 21(1):55-61.
    [95] Wongkaew, K. & Chen, W. F. Consideration of out-of-plane buckling in advanced analysis for planar steel frame design[J]. Journal of Constructional Steel Research, 2002, 58(5-8): 943-965.
    [96] Thevendran, V. & Shanmugam, N. E. & Richard Liew, J. Y. Flexural torsional behaviour of steel I-beams curved in plan[J]. Journal of Constructional Steel Research, 1998, 46(1-3): 79-80.
    [97]奚绍中,郑世瀛.应用弹性力学[M].北京:中国铁道出版社,1981.
    [98]彭晓彤,陈绍蕃,顾强.剖分T型钢压杆的弯扭屈曲试验研究[J].建筑结构学报,2004,25(2):44-48.
    [99]陈绍蕃.钢结构设计原理[M].北京:科学出版社,1998.
    [100]《钢结构设计规范》编制组.《钢结构设计规范》专题指南[M].北京:中国计划出版社,2003:33-61.
    [101]兰勇,郭彦林,陈国栋.梭形钢管格构柱弹性屈曲性能[J].建筑结构学报,2002,23(5):18-24.
    [102]郭彦林,陈国栋,兰勇.三管梭形钢格构柱稳定极限承载力研究[J].建筑结构学报,2002,23(5):25-30.
    [103]张中权.冷弯薄壁型钢轴心受压构件稳定性的实验研究[J].钢结构研究论文报告选集(第一册),1982:152-190.
    [104]王世纪.开口薄壁压杆的弯扭屈曲理论和实验研究[J].钢结构研究论文报告选集(第一册),1982:191-207.
    [105]任重. ANSYS实用分析教程[M].北京:北京大学出版社,2003:43-176.
    [106] ANSYS Inc.. ANSYS Release 9.0 Documentation[Z]. USA, 2004.
    [107]尹泽民,丁春利.精通Matlab 6 [M].北京:清华大学出版社,2002.
    [108]陈绍蕃.剖分T型钢压杆的屈曲性能和应用[J].钢结构,2005,7(4):1-5.
    [109]赵峰.考虑残余应力影响冷弯薄壁型钢轴心压杆整体稳定的计算方法[J].工业建筑,1994,(5):50-55.
    [110]赵峰,刘华琛.冷弯薄壁型钢构件残余应力的模拟及其影响下的计算方法[J].工程建设与设计,2004,(8):35-37.
    [111]陈绍蕃.开口截面钢偏心压杆在弯矩作用平面外的稳定系数[J].陈绍蕃论文集,2004:33-57.
    [112]陈绍蕃. T形截面钢偏心压杆在弯矩作用平面外的稳定问题[J].陈绍蕃论文集,2004:58-72.
    [113]陈绍蕃.偏心压杆弯扭屈曲的相关公式[J].陈绍蕃论文集,2004:94-109.
    [114]陈绍蕃.钢压弯构件弯扭屈曲的研究[J].陈绍蕃论文集,2004:110-119.
    [115]陈绍蕃.钢压弯构件空间失稳的几个方面[J].西安冶金建筑学院学报,1990,22(1):1-10.
    [116]陈绍蕃.设计规范GBJ17-88第五章修订建议[J].钢结构,1997,12(4):3-11.
    [117]陈绍蕃.钢结构设计规范修订工作刍议[J].钢结构,1998,13(2):42-45.
    [118]陈绍蕃.角钢、剖分T形钢压杆的弯扭屈曲(1)[J].钢结构,2000,15(4):47-49.
    [119]陈绍蕃.角钢、剖分T形钢压杆的弯扭屈曲(2) [J].钢结构,2001,16(1):46-47.
    [120] Shaofan Chen. Buckling of T-strut subject to compressive force on its shear center[J]. Journal of Constructional Steel Research[J]. 2007, 63: 332-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700