用户名: 密码: 验证码:
粗粒土与结构接触面三维本构规律、机理与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗粒土与结构接触面的三维静动力本构规律、机理和模型研究,是解决复杂加载条件下土体与结构系统静动力相互作用问题的热点和难点课题之一。本文基于较为系统和精细的接触面试验成果,着重对粗粒土与结构接触面的三维静动力学响应的特性规律、影响因素、物理机制和数学描述诸方面进行系统的研究,主要取得了以下新成果:
     (1)开发了单剪型接触面试验容器及两个切向同时摄像分析技术,将非接触图像测量技术用于测量叠环间变位,系统进行了粗粒土与结构接触面三维静动力单剪型试验,证实了切向位移可分解为土体剪切变形引起的切向位移和接触界面处的滑动位移,测定了单剪试验条件下粗粒土与结构接触面厚度约为6~7D50。
     (2)完成了系列化的三维复杂加载条件下粗粒土与结构接触面直剪型试验,系统揭示了土体性质(颗粒形状)、结构面板特性(材料类型、粗糙度与异向性)、加载条件(试验类型、法向边界条件、法向刚度、法向应力、剪切路径、位移幅值比、应力幅值比、初始静剪应力与剪切方向角)等3种类型17个主要因素对粗粒土与结构接触面三维静动力学特性的影响规律。
     (3)发现了不同三维加载条件下粗粒土与结构接触面的主应力比与主切向位移关系曲线的形态、可逆性剪切体变与切向主参量关系曲线的形态以及不可逆性剪切体变与剪切功关系曲线均具有一致性,揭示了考虑三维效应的接触面强度规律、剪切规律、剪胀规律、压缩规律与物态演化规律等5个基本的三维接触面本构规律。
     (4)基于5个基本的三维接触面本构规律并借鉴现有土的本构理论模型的合理要素,建立了一个三维弹塑性接触面本构模型。该模型可统一描述单调和循环加载、二维和三维响应、共轴和非共轴变形、切向与法向耦合效应等接触面静动力学行为及本构关系。该模型基于试验规律,基本假定少、模型参数较少且易于确定,并可根据实际工程应用的精度要求,给出不同精度等级下的简化模式。初步的对比分析与试验验证表明了该模型的有效性和实用性。
An experimental and theoretical study on the3-D cyclic behaviors of gravel-structure interfaces is one of the most difficult and hot issues in dynamic soil-structureinteraction analysis. This dissertation is to present a cohesive theoretical framework ofdescribing the3D soil-structure interfaces with emphasis on the mechanical laws,physical mechanism and constitutive model. The main achievements can be drawn asfollows.
     1. A new large scale3-D simple-shear test system has been developed throughadding a simple-shear container and a synchronous photograph technique to the80-ton3-D multifunctional apparatus for soil-structure interface. A systematical and refinedseries of3-D simple-shear interface tests has been made by using this test system. Thethickness of the3-D interfaces was experimentally identified, which is approximately6~7D50. The total tangential displacement of the3-D interfaces is confirmed to becomposed of the deforming and sliding displacements that are easy to be separated fromthe test data.
     2. A more systematical and refined series of3-D direct-shear interface tests hasalso been conducted under conditions considering three types of main influencingfactors, including1) soil property (e.g. particle shape etc),2) features of structural plate(i.e., material type, roughness and anisotropy), and3) loading patterns (i.e., test type;normal boundary condition, normal stiffness, normal stress; shear path, tangentialdisplacement amplitude, shear stress amplitude, tangential displacement amplitude ratio,shear stress amplitude ratio, initial shear stress and orientation shear angle). Theinterplay among these facors is found to govern the3-D tangential and nornaldeformation of the interfaces.
     3. The revealing mechanism behind the above complex3-D interface behavior canbe summarized by five basic constitutive laws with distinctive physical background,including strength law, shearing law, dilatancy law, compression law and evolution law.Several unique relationships are also found to exist between the resultant shear stressand the resultant tangential displacement, between the revesible volumetric change andthe resultant shear stress, as well as between the irreversible volumetric change and the shear work, which are irrespective of various3-D loading conditions.
     4. A generalized3-D constitutive model for soil-structure interfaces has beendeveloped based mainly on the above five constitutive laws. The model is capable ofcapturing the monotonic and cyclic3-D constitutive responses with non-coaxial andnormal to tangential coupling effects for soil-structure interfaces. It can also be reducedto several simplified versions with fewer model parameters. Excellent capacibility of thenew constitutive model in the description of various experimental stress-strainrelationships of soil-structure interfaces has preliminarily shown its essentialeffectiveness, robustness and accessibility.
引文
Acar Y B, Durgunoglu H T, Tumay M T.1982. Interface properties of sands. Journal of theGeotechnical Engineering Division,108(4):648-654.
    Al-Douri R H, Poulos H G.1992. Static and cyclic direct shear tests on carbonate sands.Geotechnical Testing Journal,15(2):138-157.
    Ayari M L, Saouma V E.1991. Static and dynamic contact/impact problems using fictitious forces.Int J Numer Meth Engng,32:623-643.
    Bathe K J, Chaudhary A.1985. A solution method for planar and axisymmetric contact problems. IntJ Numer Meth Engng,21:65-88.
    Bosscher P J, and Ortiz C.1987. Frictional properties between sand and various constructionmaterials. Journal of Geotechnical Engineeng, ASCE,113(9):1035-1039.
    Boulon M.1989. Basic features of soil structure interface behaviour. Computers and Geotechnics,7(1-2):115-131.
    Boulon M, Ghionna V N, Mortara G.2003. A strain-hardening elastoplastic model for sand-structureinterface under monotonic and cyclic loading. Mathematical and Computer Modelling,37(5-6):623-630.
    Boulon M, Nova R.1990. Modeling of soil-structure interface behaviour-a comparision betweenelastoplastic and rate type laws. Computers and Geotechnics,9:21-46.
    Brandt J R T.1985. Behavior of soil-concrete interfaces. PhD thesis, Alberta, Canada: University ofAlberta.
    Brummund W F, Leonards G A.1973. Experimental study of static and dynamic friction betweensand and typical construction material. Journal of Testing and Evaluation, ASTM,1(2):162-165.
    Cho K H, Cho J R, Chin W J, et al.2006. Bond-slip model for coarse sand coated interface betweenFRP and concrete from optimization technique. Computers and Structures,84(7):439-449.
    Clemence S P, Brummund W F.1975. Large-scale model test of drilled pier in sand. J. Geotech. Div,ASCE,101(GT6):537-550.
    Clough G W, Duncan J M.1969. Finite element analyses of Port Allen and Old River Locks.Contract Report S-69-6, U.S. Army Engineers Waterway Experimental Station, Vicksburg,Mississipi.
    Clough G W, Duncan J M.1971. Finite element analyses of retaining wall behavior. ASCE Journalof the Soil Mechanics and Foundations Division,97(12):1657-1673.
    Coulomb C A.1776. Essis sur une application de Regles a l’Architeture,(An attempt to apply theRules of Maxima and Minina to Several Problems of Stablity Related to Architecture). Mem.Acad. Royal de Sciences, Paries,3.
    Coyle H M, Sulaiman I.1967. Skin friction for steel piles in sand. Journal of Soil Mechanics andFoundations Division, ASCE,93(6):261~278.
    Cundall P A.1971. A computer model for simulating progressive, large-scale movements in blockrock systems.//Int. Symp. On Rock Fracture, Nancy, France: II-8.
    Cundall P A, Strack O D L.1979a. Discrete numerical model for granular assemblies. Geotechnique,29(1):47-65.
    Cundall P A, Strack O D L.1979b. The distinct element method as a tool for research in granularmedia. Part11. Report to the National Science Foundation, Minnesota, University of Minnesota.
    Daniel M.2000. Finite element calculations of stresses and deformations in buried flexible pipes.MS thesis, Ottawa, Canada: University of Ottawa.
    DeJong J T.2001. Investigation of particulate-continuum interface mechanisims and theirassessment through a multi-friction sleeve penetrometer attachment. PhD thesis, Atlanta, USA:Georgia Institute of Technology.
    DeJong J T, Randolph M F, White D J.2003. Interface load transfer degradation during cyclicloading: a microscale investigation. Soils and Foundations,43(4):81-93.
    DeJong J T, Westgate Z J.2009. Role of initial state, material properties, and confinement conditionon local and global soil-structure interface behavior. Journal of Geotechnical andGeoenvironmental Engineering,135(11):1646-1660.
    DeJong J T, White D J, Randolph M F.2006. Microscale observation and modeling of soil-structureinterface behavior using particle image velocimetry. Soils and Foundations,46(1):15-28.
    De Mello V F B.1977. Refelction on design decisions of practical significance to embankment dams.Geotechnique,27(3):281-355.
    Desai C S.1979. Some aspects of constitutive models for geologic media. SAE Preprints,1:299-308.
    Desai C S, Armaleh S, Katti D, et al.1991a. Disturbed state concept for modelling soils and joints.//Proceedings of the International Conference on Computer Methods and Advances inGeomechanics:321.
    Desai C S, Drumm E C, Zaman, M M.1985. Cyclic testing and modeling of interfaces. Journul ofGeotechnical Engineering, ASCE,111(6):793-815.
    Desai C S, Fishman K L.1991b. Plasticity-based constitutive model with associated testing for joints.Int. J. Rock Mech. and Min. Sci.,28(1):15-26.
    Desai C S, Ma Y.1992. Modeling of joints and interfaces using the disturbed-state concept.International Journal for Numerical and Analytical Methods in Geomechanics,16(9):623-653.
    Desai C S, Muqtadir A, Scheele F.1986. Interaction analysis of anchor-soil systems. Journal ofGeotechnical Engineering,112(5):537-553.
    Desai C S, Pradhan S K, Cohen D.2005. Cyclic testing and constitutive modeling of saturatedsand-concrete interfaces using the disturbed state concept. International Journal ofGeomechanics,5(4):286-294.
    Desai C S, Rigby D B.1997. Cyclic interface and joint shear device including pore pressure effects.Journal of Geotechnical and Geoenvironmental Engineering,123(6):568-579.
    Desai C S, Siriwardane H J.1982. Numerical models for track support structures. Journal of theGeotechnical Engineering Division, ASCE,108(3):461-480.
    Desai C S, Zaman M M, Lightner J G et al.1984. Thin-layer element for interface and joint.International Journal for Numerical and Analytical Methods in Geomechanics,8:19-43.
    Drumm E C, Desai C S.1983. Testing and constitutive modeling for interface behavior in dynamicsoil-structure interaction. Report to National Science Foundation, University of Arizona, U.S.A.
    Ebeling R M, Mosher R L.1996. Red River U-Frame Lock No.1backfill-structure-foundationinteraction. Journal of Geotechnical Engineering, ASCE,122(3):216-225.
    Ebeling R M, Peters J F, Mosher R L.1997. The role of non-linear deformation analyses in thedesign of a reinforced soil berm at Red River U-Frame Lock No.1. International Journal forNumerical and Analytical methods in Geomechunics,21:753-787.
    El-Mhaidib A I.2006. Influence of shearing rate on interfacial friction between sand and steel.Engineering Journal of the University of Qatar,19:1-16.
    Esterhuizen J J.1997. Progressive failure of slopes in lined waste impoundments. PhD thesis,Geotechnical Engineering Division, Department of Civil Engineering, Virginia PolytechnicInstitute and State University, Blacksburg.
    Evgin E, Fakharian K.1996. Effect of stress paths on the behaviour of sand-steel interfaces.Canadian Geotechnical Journal,33(6):853-865.
    Fakharian K.1996. Three-dimensional monotonic and cyclic behavior of sand-steel interfaces:testing and modeling. PhD thesis, Ottawa, Canada: University of Ottawa.
    Fakharian K, Evgin E.1993. Three dimensional apparatus for cyclic testing of interfaces.//Canadian Geotechnical Conferenc:485-493.
    Fakharian K, Evgin E.1996. Automated apparatus for three-dimensional monotonic and cyclictesting of interfaces. Geotechnical Testing Journal,19(1):22-31.
    Fakharian K, Evgin E.2000. Elasto-plastic modelling of stress-path-dependent behaviour ofinterfaces. International Journal for Numerical and Analytical Methods in Geomechanics,24(2):183-199.
    Feng Da-Kuo, Hou Wen-Jun, Zhang Ga, et al.2007. Seismic Response Analysis on Upper ReservoirDam of Yixing Power Station. New Frontiers in Chiniese and Japanese Geotechniques:145~150.
    Feng Da-kuo, Zhang Ga, Zhang Jian-min.2010. Seismic response analysis of a CFRD on deepoverburden layers. Frontiers of Architecture and Civil Engineering in China,4(2):258-266.
    Fishman K L, Desai C S.1987. A constitutive model for hardening behavior of rock joints.Constitutive Laws for Engineering Materials, Theory and Application:1043-1050.
    Flaate K.1972. Effects of pile driving in clay. Canadian Geotechnical Journal,9(1):81-88.
    Frantziskonis G, Desai C S.1987. Elasto-plastic model with damage for strain softeninggeomaterials. Acta Mechanica,68:151-170.
    Frost J D, DeJong J T.2005. In situ assessment of role of surface roughness on interface response.Journal of Geotechnical and Geoenvironmental Engineering,131(4):498-511.
    Frost J D, Hebeler G L, Evans T M, et al.2004. Interface behavior of granular soils. Engineering,Construction and Operations in Challenging Environments, Houston, TX,8:65-72.
    Fu Tieming.1998. Experimental study and discrete element simulation of sand-steel interfacebehaviour. MS thesis, Ottawa, Canada:University of Ottawa.
    Fu P C, Walton O R, Harvey J T.2011. Polyarc discrete element for efficiently simulating arbitrarilyshaped2D particles. International Journal for Numerical Methods in Engineering,89(5):599-617.
    Garrido J A, Foces A, Paris F.1994. An incremental procedure for three-dimensional contactproblems with friction. Comput Struct,(2):201-215.
    Gens A, Carol I, Alonso E E.1989. Interface element formulation for the analysis ofsoil-reinforcement interaction. Computers and Geotechnics,7(1-2):133-151.
    Gens A, Carol I, Alonso E E.1990. Constitutive model for rock joints formulation and numericalimplementation. Computers and Geotechnics,9(1-2):3-20.
    Ghaboussi J, Wilson E L, Isenberg J.1973. Finite element for rock joints and interfaces. Journal ofthe Soil Mechanics and Foundations Division, ASCE,99(10):833-848.
    Gómez J E, Filz G M, Ebeling R M.2003. Extended hyperbolic model for sand-to-concreteinterfaces. Journal of Geotechnical and Geoenvironmental Engineering,129(11):993-1000.
    Gómez J E, George M F, Robert M E.2000. Development of an improved numerical model forconcrete-to-soil interfaces in soil-structure interaction analyses. Report to Computer-AidedStructural Engineering Project, US Army Corps of Engineers, U.S.A.
    Goodman R E, Taylor R L, Brekke T L.1968. A model for the mechanics of jointed rock. Journal ofSoil Mechanics and Foundation Division, ASCE,94(3):637-659.
    Gregory L H.2005. Multi-scale behavior at geomaterial interfaces. PhD thesis, Georgia, U.S.A:Georgia Institute of Technology,.
    Gutierrez M, Ishihara K, Towhata I.1991. Flow theory for sand during rotation of principal stressdirection. Soils and Foundations,31(4):121-132.
    Guyon E, Troadec J P.1994. Du sac de billes au tas de sable, Editions Odile JACOB Sciences.
    Hamid T B, Miller G A.2008. A constitutive model for unsaturated soil interfaces. InternationalJournal for Numerical and Analytical Methods in Geomechanics,32(13):1693-1714.
    Hamid T B, Miller G A.2009. Shear strength of unsaturated soil interfaces. Canadian GeotechnicalJournal,46(5):595-606.
    Hardin B O.1985. Crushing of soil particles. Journal of Geotechnical Engineering, ASCE,111(10):1177-1192.
    Haug D, Saxce G.1980. Frictionless contact of elastic bodies by finite element method andmathematical programming technique. Comput Struct,11:55-67.
    Heuze F E, Barbour T G.1982. New models for rock joints and interfaces. Journal of theGeotechnical Engineening Division, ASCE,108(5):757-776.
    Hryciw R D, Irsyam M.1993. Behavior of sand particles around rigid ribbed inclusions during shear:Soils and Foundations,33(3):1-13.
    Hu Li-ming, Pu Jia-liu.2004. Testing and modeling of soil-structure interface. Journal ofGeotechnical and Geoenvironmental Engineering,130(8):851-860.
    Huck P J, Libert T, Chiapetta R L, et al.1974. Dynamic Response of Soil/Concrete Interface at HighPressure. Report(AIWL-TR-73-264), Illinois Institute of Technical Research Institute forDefense Nuclear Agency, Washington D.C., USA.
    Huck P J, Saxena S K.1981. Response of soil-concrete interface at high pressure.//Proc. of10thICSMFE. Sockholm, Sweden.
    Huo H, Bobet A, Fernandez G, et al.2005. Load transfer mechanisms between underground structureand surrounding ground: evaluation of the failure of the daikai station. Journal of Geotechnicaland Geoenvironmental Engineering,131(12):1522-1533.
    Jensen R P, Bosscher P J, Plesha M E, et al.1999. DEM simulation of granular media-structureinterface: effects of surface roughness and particle shape. International Journal for Numericaland Analytical Methods in Geomechanics,23,531-547.
    Jensen R P, Edil T B, Bosscher P J, et al.2001a. Effects of particle shape on interface behavior ofDEM-simulated granular materials. International Journal of Geomechanics,1(1):1-19.
    Jensen R P, Plesha M E, Edil T B et al.2001b. DEM simulation of particle damage in granularmedia-structure interfaces. International Journal of Geomechanics,1(1):21-39.
    Jesús E G, George M F, Robert M E.2000. Development of an improved numerical model forconcrete-to-soil interfaces in soil-structure interaction analyses. Technical Report ITL-99-1, U.S.Army Corps of Engineers, Washington.
    Justo J L, Segovia F, Jaramillo A.1995. Three dimensional joint elements applied to concrete-faceddams. International Journal for Numerical and Analytical Methods in Geomechanics,19:615-636.
    Kaliakin V N, Li J.1995. Insight into deficiencies associated with commonly used zero-thicknessinterface elements. Computers and Geotechnics,(17):225-252.
    Kishida H, Uesugi M.1987. Tests of the interface between sand and steel in the simple shearapparatus. Geotechnique,37(1):45-52.
    Kulhawy F H, Peterson M S.1979. Behavior of sand-concrete interfaces.//Proceedings of the6thPanamerican Conference on Soil Mechunics and Foundation Engineering II, Lima Peru:225-236.
    Lee K L, Farhoomand I.1967. Compressibility and crushing of granular soils in anisotropic triaxialcompression. Canadian Geotechnical Journal,(14):65-56.
    Lee P A, Kane W F, Drum E C, et al.1989. Investigation and modeling of soil-structure interfaceproperties. Foundation engineering: Current principles and practice, ASCE, GeotechnicalSpecial Publication,22:580-587.
    Leonards G A.1965. Experimental study of static and dynamic friction between soil and typicalconstruction materials. Report, Purdue University, West Lafayette, U.S.A.
    Li B C.2001. An experimental study and numerical simulation of sand-steel interface behaviour. MSthesis, Ottawa, Canada: University of Ottawa.
    Li M, Sha D, Tamma K K.1997. Linear complementary formulations involving frictional contact forelastoplastic deformable bodies. J Appl Mech,64:80-89.
    Lings M L, Dietz M S.2005. The peak strength of sand-steel interfaces and the role of dilation. Soilsand Foundations,45(6):1-14.
    Lin X, Ng T T.1997. A three-dimensional discrete element model using arrays of ellipsoids.Geotechnique,47(2):319-329.
    Maheshwari B K, Watanabe H.2006. Nonlinear dynamic behavior of pile foundations: effects ofseparation at the soil-pile interface. Soils and Foundations,46(4):437-448.
    Marsal R J.1967. Large-scale testing of rockfill materials. Journal of Soils Mechanics andFoundation Division, ASCE,93(2):27-43.
    Matsui T, San K C.1989. An elastoplastic joint element with its application to reinforced slopecutting. Soils and Foundations,29(3):95-104.
    Misra A.1995. Interfaces in particulate materials. In Mechanics of Geomaterial Interfaces,Selvadurai A P S and Boulon M (eds.), Elsevier Science B V, Amsterdam:513-536.
    Miller G A, Hamid T B.2007. Interface direct shear testing of unsaturated soil. Geotechnical TestingJournal,30(3):182-191.
    Morrison C S.1995. The development of a modular finite element program for analyses ofsoil-structure interaction. PhD thesis, Geotechnical Engineering Division, Department of CivilEngineering, Virginia Polytechnic Institute and State University, Blacksburg.
    Mohan D, Chandra S.1961. Friction resistance of bored piles in expansive clays. Geotechnique,11(4):194-301.
    Mortara G, Mangiola A, Ghionna V N.2007. Cyclic Shear stress degradation and post-cyclicbehaviour from sand-steel interface direct shear tests. Canadian Geotechnical Journal,44(7):739-752.
    Nam S H, Song H W, Byun K J, et al.2006. Seismic Analysis of Underground Reinforced ConcreteStructures Considering Elasto-Plastic Interface Element with Thickness. Engineering Structures,28(8):1122-1131.
    Navayogarajah N.1990. Constitutive modeling of static and cyclic behavior of interfaces andimplementation in boundary value problems. PhD thesis, Department of Civil and EngineeringMechanics, University of Arizona, U.S.A.
    Navayogarajah N, Desai C S, Kiousis P D. Hierarchical single-surface model for static and cyclicbehavior of interfaces. Journal of Engineering Mechanics,1992,118(5):990-1011.
    Ng T T, Dobry R.1992. Non-linear numerical model for soil mechanics. International Journal forNumerical and Analytical Methods in Geomechanics,16(4):247-263.
    Ngo D, Scordelis A C.1967. Finite element analysis of reinforced concrete beams. AmericanConcrete Institute Journal,64(3):152-163.
    Oumarou T A, Evgin E.2005. Cyclic behaviour of a sand-steel plate interface. CanadianGeotechnical Journal,42(6):1695-1704.
    Pascoe S K, Mottershead J E.1989. Two new finite element method contact algorithms. ComputStruct,32:137-144.
    Peterson M S, Kulhawy F H, Nucci L R, et al.1976. Stress deformation behavior of soil-concreteinterfaces. Contract report B-49to Niagara Mohawk Power Corporation, Syracuse, NY.
    Potyondy J G.1961. Skin friction between various soils and construction materials. Geotechnique,11(4):339-353.
    Pradhan S K, Desai C S.2006. DSC model for soil and interface including liquefaction andprediction of centrifuge test. Journal of Geotechnical and Geoenvironmental Engineering,132(2):214-222.
    Rahman M U, Rowlands R E, Cook R D, et al.1984. An iterative procedure for finite-element stressanalysis of frictional contact problems. Computers and Structures,18:947-954.
    Reddy E S, Chapman D N, Sastry V V.2000. Direct shear interface test for shaft capacity of piles insand. Geotechnical Testing Journal,23(2):199-205.
    Rothenburg L, Bathurst R J.1989. Analytical study of induced anisotropy in idealized granularmaterials. Geotechnique,39(4):601-614.
    Shahrour I, Rezaie F.1997. An elastoplastic constitutive relation for the soil-structure interface undercyclic loading. Computers and Geotechnics,21(1):21-39.
    Shallenberger W C, Filz G. M.1996. Interface strength determination using a large displacementshear box.//Proceedings of the Second International Congress on Environmental Geotechnics,Osaka, Japan,1:147-152.
    Shao C, Desai C S.2000. Implementation of DSC model and application for analysis of field piletests under cyclic loading. International Journal for Numerical and Analytical Methods inGeomechanics,24(6):601-624.
    Sharma K G, Desai C S.1992. Analysis and implementation of thin-layer element for interfaces andjoints. Journal of Engineering Mechanics,118(12):2442-2462.
    Simo J C, Laursen T A.1992. An augmented lagrangian treatment of contact problems involvingfriction. Computers&Structures,42(1):97-116.
    Simo J C, Wrigger P, Tayor R L.1985. A perturbed Lagrangian formulation for the finite elementsolution of contact problems. Comput Meth Appl Mech Engng,50:163-180.
    Stark T D, Williamson T A, Eid H T.1996. HDPE geomembrane/geotextile interface shear strength.Journal of Geotechnical Engineering,122(3):197-203.
    Tejchman J, Wu W.1995. Experimental and numerical study of sand-steel interfaces. InternationalJournal for Numerical and Analytical Methods in Geomechanics,19(8):513-536.
    Tomlinson M J.1957. The adhesion of piles driven in clay soils.//Proc.5th Int. Conf. Soil Mech.And Found. Engrg, London,2:66-71.
    Tsubakihara Y, Kishida H.1993a. Frictional behaviour between normally consolidated clay and steelby two direct shear type apparatuses. Soils and Foundations,33(2):1-13.
    Tsubakihara Y, Kishida H, Nishiyama T.1993b. Friction between cohesive soils and steel. Soils andFoundations,33(2):145-156.
    Tuncer B E, Peter J B, Aaron J S.2005. Soil-structure interface shear transfer behavior.Geomechanics II: Testing, modeling, and simulation:528-543.
    Uddin N, Gazetas G.1995. Dynamic response of concrete-faced rockfill dams to strong seismicexcitation. Journal of Geotechnical Engineering, ASCE,121(2):185-197.
    Uesugi M, Kishida H.1986a. Frictional resistance at yield between dry sand and mild steel. Soilsand Foundations,26(4):139-149.
    Uesugi M, Kishida H.1986b. Influential factors of friction between steel and dry sands. Soils andFoundations,26(2):33-46.
    Uesugi M, Kishida H, Tsubakihara Y.1988. Behavior of sand particles in sand-steel friction. Soilsand Foundations,28(1):107-118.
    Uesugi M, Kishida H, Tsubakihara Y.1989. Friction between sand and steel under repeated loading.Soils and Foundations,29(3):127-137.
    Uesugi M, Kishida H, Uchikawa Y.1990. Friction between dry sand and concrete under monotonicand repeated loading. Soils and Founations,30(1):115-128.
    Underhill W R L, Dokainis M A, Oravas G E.1997. A method for contact problems using virtualelements. Comput Meth Appl Mech Engng,143:229-247.
    Wang J F, Dove J E, Gutierrez M S.2007a. Determining particulate-solid interphase strength usingshear-induced anisotropy. Granular Matter,9:231-240.
    Wang J F, Dove J E, Gutierrez M S.2007b. Anisotropy-based failure criterion for interphase systems.Journal of Geotechnical and Geoenvironmental Engineering,133(5):599-608.
    Wang J F, Gutierrez M S, Dove J E.2007c. Numerical studies of shear banding in interface sheartests using a new strain calculation method. International Journal for Numerical and AnalyticalMethods in Geomechanics,31:1349-1366.
    Wang Y, Renaud J P, Anderson M G, et al.2004. A Boundary and soil interface conformingunstructured local mesh refinement for geological structures. Finite Elements in Analysis andDesign,40(11):1429-1443.
    Williams J R, Rege N.1997. The development of circulation cell structures in granular materialsundergoing compression. Power Technology,90:187-194.
    Wijewickreme D, Vaid Y P.1993. Behavior of loose sand under simultaneous increase in stress ratioand principal stress rotation. Canadian Geotechnical Journal,30(6):953-964.
    Wong P C, Kulhawy F H, Ingraffea A R.1989. Numerical modeling of interface behavior for drilledshaft foundations under generalized loading. Foundation Engineering: Current Principles andPractice, ASCE, Geotechnical Special Publication,22:565-579.
    Yin Zong-ze, Zhu Hong, Xu Guo-hua.1995. A study of deformation in the interface between soiland concrete. Computers and Geotechnics,17(1):75-92.
    Yoshimi Y, Kishida T.1981. A ring torsion apparatus for evaluating friction between soil and metalsurfaces. Geotechnical Testing Journal,4(4):145-152.
    Zaman M M, Desai C S, Drum E C.1984. Interface model for dynamic soil-structure interaction.Journal of Geotechnical Engineering, ASCE,110(9):1257-1273.
    Zeghal M, Edil T B.2002. Soil structure interaction analysis: modeling the interface. CanadianGeotechnical Journal,39(3):620-628.
    Zienkiewicz O, Best B, Dullage C, et al.1970. Analysis of nonlinear problems in rock mechanicswith particular reference to jointed rock systems.//Congress Int. Soc. for Rock Mechanics.Belgrade:501-509.
    Zhang Ga, Zhang Jian-Min.2006. Large-Scale apparatus for monotonic and cyclic soil-structureinterface test. Geotechnical Testing Journal,29(5):401-408.
    Zhang, Ga, Zhang, Jian-Min.2008. Unified modeling of monotonic and cyclic behavior of interfacebetween structure and gravelly soil. Soils and Foundations,48(2):231-245.
    Zhang, Ga, Zhang, Jian-Min.2009a. Constitutive rules of cyclic behavior of interface betweenstructure and gravelly soil. Mechanics of Materials,41(1):48-59.
    Zhang, Ga, Zhang, Jian-min.2009b. State of the art: Mechanical behavior of soil-structure interface.Progress in Natural Science,19(10):1187-1196.
    Zhang Ga, Zhang Jian-Min.2009c. Numerical modeling of soil-structure interface of aconcrete-faced rockfill dam. Computers and Geotechnics,36(5):762-772.
    Zhang Hong-wu, Zhong Wan-xie, Gu Yuan-xian.1995. A combined programming and iterationalgorithm for finite element analysis of contact problems. Acta Mech Sinica,11:314-326.
    Zhang L, Thornton C.2002. Numerical simulations of the direct shear test.//The4th WorldCongress of Particle Technology, No473, Sydney.
    Zhong Wan-xie, Sun Su-ming.1998. A finite element method for elastoplastic structure and contactproblem by parametric quadratic programming. Int J Numer Meth Engng,26:2723-2738.
    柏树田,崔亦昊.1997.堆石的力学性质.水力发电学报,(3):21-30.
    岑威钧,李星.2007.面板坝数值分析中接触面模型与接缝模型述评.水力发电,33(2):38-41.
    陈国芳.1995.挡土墙与填土间接触面的大型直剪仪试验.路基工程,(1):34-37.
    陈曼琪.1983.用拟弹性叠加双重迭代法解弹塑性接触问题.固体力学学报,(3):365-374.
    陈万吉,陈国庆.1996.接触问题的互补变分原理与非线性互补模型.计算结构力学及其应用,13(2):138-146.
    冯大阔,张建民.2012.循环直剪条件下粗粒土与结构接触面颗粒破碎研究.岩土工程学报,34(4):767-773.
    冯皎,刘增荣,王瑜.2009.原状黄土与混凝土接触面特性的大型单剪试验研究.水利与建筑工程学报,7(3):120-122.
    高俊合,于海学,赵维炳.2000.土与混凝土接触面特性的大型单剪试验研究及数值模拟.土木工程学报,33(4):42-46.
    郭熙灵,胡辉,包承刚.1997.堆石料颗粒破碎对剪胀性及抗剪强度的影响.岩土工程学报,19(3):83-88.
    郭庆国.1998.粗粒土的工程特性及应用,黄河水利出版社.
    韩国城,邵龙潭.1994.混凝土防渗墙与砂之间静力剪切特性试验研究.岩土工程学报,16(3):112-115.
    胡黎明.2000.土与结构物接触面力学特性研究和工程应用[博士学位论文].北京:清华大学,水利水电工程系.
    胡黎明,濮家骝.2001.土与结构物接触面物理力学特性试验研究.岩土工程学报,23(4):431-435.
    胡黎明,濮家骝.2002.损伤模型接触面单元在有限元计算分析中的应用.土木工程学报,35(3):73-76.
    胡黎明,濮家骝,王刚.2002.接触面损伤模型应用于三维有限元分析.水利学报,(3):44-49.
    胡黎明,马杰,张丙印,等.2007.粗粒料与结构物接触面力学特性缩尺效应.清华大学学报(自然科学版),47(3):1-4.
    侯文峻.2008.土与结构接触面三维静动力变形规律与本构模型研究[博士学位论文].北京:清华大学,水利水电工程系.
    侯文峻,张建民,张嘎.2008.采用挤压式边墙结构的面板堆石坝的动力反应分析.水力发电学报,27(2):50-54.
    介玉新,许延春,李广信.2007.固结计算中接触面渗流问题的模拟.工程力学,24(增1):104-107.
    李登华,郦能惠.2009.土与混凝土结构接触面力学特性试验研究.水电能源科学,27(5):114-118.
    李广信.2006.岩坛六弊.岩土工程界,9(3):20-22.
    李世海,高波,燕琳.2002.三峡永久船闸高边坡开挖三维离散元数值模拟.岩土力学,23(3):272-277.
    李志斌,徐超,叶观宝,等.2006.影响hdpe膜与砂土接触面摩擦特性因素的斜板试验研究.岩土力学,27(12):2289-2293.
    刘汉龙,秦红玉,高玉峰,等.2005.堆石粗粒料颗粒破碎试验研究.岩土力学,26(4):562-566.
    卢廷浩,鲍伏波.2000.接触面薄层单元耦合本构模型.水利学报,(2):71-75.
    栾茂田,武亚军.2004.土与结构间接触面的非线性弹性-理想塑性模型及其应用.岩土力学,25(4):507-513.
    罗刚,张建民,沈珠江.2002.紫坪铺混凝土面板堆石坝三维应力位移分析.水力发电学报,76(1):13-18.
    罗佳,姚仰平.2006.土与结构物接触面的剪胀、剪缩特性及其描述.工业建筑,36(8):36-38.
    吕和祥,马莉颖.1996.三维接触问题的拟二维序列解法.固体力学学报,17(1):31-37.
    麦家煊,薛继乐,王津龙.2002.三维接触面单元在堆石坝面板应力位移分析中的应用研究.水力发电学报,76(1):39-45.
    沈宝堂,王泳嘉.1989.边坡破坏机制的离散单元法研究.东北工学院学报,10(4):349-354.
    史文清,王建华,陈锦剑.2006.考虑桩土接触面特性的水平受荷单桩数值分析.上海交通大学学报,40(8):1457-1460.
    宋和平,张克绪,胡庆立.2000.考虑桩-土接触面及桩底土非线性的单桩q-s曲线分析.哈尔滨建筑大学学报,33(1):41-45.
    孙吉主,施戈亮.2007.循环荷载作用下接触面的边界面模型研究.岩土力学,28(2):311-314.
    孙吉主,王勇.2006.钙质砂与结构接触面的本构模型研究.力学季刊,27(3):476-480.
    孙林松,王德信,谢能刚.2001.接触问题有限元分析方法综述.水利水电科技进展,21(3):18-20.
    孙苏明,钟万勰.1991.摩擦接触弹塑性分析的数学规划方法.力学学报,23(3):323-331.
    王刚,张建民.2007.砂土液化大变形的弹塑性循环本构模型.岩土工程学报,29(1):51-59.
    王水林,邓建辉,葛修润.1998.改进的拉氏乘子法在接触摩擦问题中的应用.岩土工程学报,20(5):64-67.
    王泳嘉,刘连峰.1996.三维离散单元法软件系统TRUDEC的研制.岩石力学与工程学报,15(3):201-210.
    王伟.2006.基于能量耗散原理的土与结构接触面模型研究及应用[博士学位论文].南京:河海大学.
    王伟,卢廷浩,宰金珉,等.2009.土与混凝土接触面反向剪切单剪试验.岩土力学,30(5):1303-1306.
    魏松,朱俊高,钱七虎,等.2009.粗粒料颗粒破碎三轴试验研究.岩土工程学报,31(4):533-538.
    吴鸿遥.1986.损伤力学的基本内容与进展.力学与实践,(4):2-10.
    吴军帅,姜朴.1992.土与混凝土接触面的动力剪切特性.岩土工程学报,14(2):61-66.
    夏红春,周国庆,商翔宇.2007.基于Weibull分布的土-结构接触面统计损伤软化本构模型.中国矿业大学学报,36(6):734-737.
    谢定义,姚仰平,党发宁.2008.高等土力学.高等教育出版社,北京.
    徐泽友,卢廷浩.2009.高塑性黏土与混凝土接触面剪切特性.河海大学学报(自然科学版),37(1):71-74.
    杨大方,刘希亮.2009.砂土与钢材接触面剪切特性的试验研究.路基工程,6:77-78.
    杨林德,刘齐建.2006.土-结构物接触面统计损伤本构模型.地下空间与工程学报,2(1):79-82.
    杨有莲,朱俊高,余挺,等.2009.土与结构接触面力学特性环剪试验研究.岩土力学,30(11):3256-3260.
    叶建忠,周健.2004.桩土协同工作的接触面研究现状.西部探矿工程,93(2):9-11.
    叶建忠,周健,韩冰.2007.考虑不同成桩方式单桩特性的颗粒流数值模拟.岩土工程学报,29(6):894-900.
    殷宗泽,朱泓,许国华.1994.土与结构材料接触面的变形及其数学模拟.岩土工程学报,16(3):14-22.
    于丙子,陈连礼,叶伟泉.1983.三维空间的节理单元.岩土工程学报,5(3):1-11.
    俞培基,秦蔚琴.1992.粗糙接触面上土的动剪模量.水利学报,(11):37-42.
    俞培基,秦蔚琴.1995.在共振柱仪上研究接触面的动力变形特性.水利学报,(1):81-85.
    张丙印,付建,李全明.2004.散粒体材料间接触面力学特性的单剪试验研究.岩土力学,25(10):1522-1526.
    张丙印,师瑞锋,王刚.2003.高面板堆石坝面板脱空问题的接触力学分析.岩土工程学报,25(3):361-364.
    张冬霁,卢廷浩.1998.一种土与结构接触面模型的建立及其应用.岩土工程学报,20(6):62-66.
    张嘎.2002.粗粒土与结构接触面静动力学特性及弹塑性损伤理论研究[博士学位论文].北京:清华大学,水利水电工程系.
    张嘎,张建民.2003.大型土与结构接触面循环加载剪切仪的研制及应用.岩土工程学报,25(2):149-153.
    张嘎,张建民.2004a.粗粒土与结构接触面单调力学特性的试验研究.岩土工程学报,26(1):21-25.
    张嘎,张建民.2004b.循环荷载作用下粗粒土与结构接触面变形特行的试验研究[J].岩土工程学报,26(2):254-258.
    张嘎,张建民.2004c.粗粒土与结构接触面受载过程中的损伤.力学学报,36(3):322-327.
    张嘎,张建民.2005a.夹有泥皮粗粒土与结构接触面力学特性试验研究.岩土力学,26(9):1374-1378.
    张嘎,张建民,梁东方.2005b.土与结构接触面试验中的土颗粒细观运动测量.岩土工程学报,27(8):903-907.
    张嘎,张建民.2005c.粗粒土与结构接触面的可逆性与不可逆性剪胀规律.岩土力学,26(5):699-704.
    张嘎,张建民.2005d.粗粒土与结构接触面的静动本构规律.岩土工程学报,27(5):516-520.
    张嘎,张建民.2005e.粗粒土与结构接触面统一本构模型及试验验证.岩土工程学报,27(10):1175-1179.
    张嘎,张建民.2005f.用接触面弹塑性损伤模型分析群桩基础.清华大学学报(自然科学版),45(6):780-783.
    张嘎,张建民.2005g.接触面弹塑性损伤模型在面板堆石坝应力变形分析中的应用.水力发电学报,24(4):5-10.
    张嘎,张建民.2006.土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析.工程力学,23(2):72-77.
    张嘎,张建民.2007.粗粒土与结构接触面三维本构关系及数值模型.岩土力学,28(2):288-292.
    张振国.1990.垂直受荷桩工作机制渗水力土工模型试验研究[博士学位论文].北京:清华大学,水利水电工程系.
    张晓锋,袁聚云.2007.土与钢材料接触面性能的试验研究.岩土工程技术,21(3):131-133.
    张建民.2000.砂土的可逆性和不可逆性剪胀规律.岩土工程学报,22(1):12-17.
    张建民.2012.砂土动力学若干基本理论探究.岩土工程学报,34(1):1-50.
    张建民,侯文峻,张嘎,等.2008.大型三维土与结构接触面试验机的研制与应用[J].岩土工程学报,30(6):889-894.
    张治军,饶锡保,龚壁卫,等.2006.砂砾石与沥青混凝土接触面力学特性试验研究.长江科学院院报,23(2):38-41.
    张治军,饶锡保,丁红顺,等.2007.不同含水率泥皮对接触面力学特性影响的试验研究.长江科学院院报,24(5):60-67.
    张治军,饶锡保,苏华.2008a.大型叠环式接触面单剪试验及数值模拟.水电能源科学,26(2):116-118.
    张治军,苏华,饶锡保,等.2008b.砂砾石与结构接触面强度与变形特性试验研究.三峡大学学报(自然科学版),30(1):64-68.
    张治军,饶锡保,王志军,等.2008c.泥皮厚度对结构接触面力学特性影响的试验研究.岩土力学,29(9):2433-2438.
    钟万勰.1985.弹性接触问题的变分原理及参数二次规划求解.计算结构力学及其应用,2(2):1-10.
    周爱兆,卢廷浩,吴世龙.2008.土与结构接触面等应力增量比路径单剪试验力学特征分析.水利水电科技进展,28(5):32-35.
    周爱兆,卢廷浩,丁明武,等.2009.接触面等应力增量比路径单剪试验及模型研究.四川大学学报(工程科学版),41(4):76-81.
    周小文,龚壁卫,丁红顺,等.2005.砾石垫层-混凝土接触面力学特性单剪试验研究.岩土工程学报,27(8):876-880.
    周健,屈俊童,李怡闻.2005.爆炸法密实饱和砂的模型试验研究.岩石力学与工程学报,24(S2):5443-5448.
    朱昌铭.1995.基于虚功原理的弹性接触问题的线性互补方法.力学学报,27(2):189-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700