用户名: 密码: 验证码:
移动机器人覆盖问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆盖问题是目前移动机器人与控制学科研究的前沿课题之一,它反映了机器人移动、感知和协作之间的关系。覆盖问题的本质是机器人或机器人团队利用其移动性将其感知范围逐步覆盖整个环境。在覆盖过程中,每个机器人个体只利用其所能得到的信息来决策其运动,在多个或群体机器人问题中,则可进一步通过有限的通信获取其邻居的信息协助其自身决策,并在整体上实现覆盖任务。研究覆盖的目的是,发现机器人模型和任务本质之间的关系,发现机器人个体通过协作产生整体行为的规律,并应用这些规律设计移动机器人系统和解决实际应用中的问题。
     本文对单个、多个和群体移动机器人的覆盖问题研究了其建模、控制设计与分析,主要包括以下三个方面:
     1、针对单个机器人的目标探测和动态覆盖任务,在理论和算法层次利用其约束运动模型和可达区进行问题描述和求解。首先建立了移动机器人约束运动模型和传感器模型用于描述机器人的移动和感知,给出了可达区定义,即机器人在有限步内可能到达的区域,在此基础上证明了在k步不同运动模式下多达2k个可达区的计算可以降为k+1个可达区的计算,并提出了k步可达区由k+1个扇形组成的计算算法。基于约束运动模型和k步可达区,给出了目标探测和动态覆盖的问题描述和求解。针对目标探测问题,定义了可探测区,即机器人在有限步内可能探测到的区域,并提出了探测目标点和最优路径规划算法。对于动态覆盖问题,采用k步已探测区表示机器人通过运动已经探测到的区域,提出了动态覆盖策略和递归算法,并通过仿真结果验证了算法覆盖多边形环境的有效性。
     2、针对多个机器人如何充分利用通信信息完成覆盖任务的问题,在算法和应用层次提出一种改进市场法实现多机器人覆盖的任务分配。针对市场法只根据本地地图计算代价的局限性,使用标的信息,采用数据融合中的Bayes统计方法更新本地地图,这种改进市场法在连通条件下用以计算原先无法计算的目标点代价,并且没有增加额外的通信量。地图创建采用带有占有概率的栅格地图,同时利用概率论处理不确定性信息,在使用标的信息更新地图时,同样采用概率方法,从而达到整体方法的一致性。我们还提出用目标点切换率这一新指标来衡量机器人间的协作程度。仿真实验以及实机实验结果验证了本算法优于原先的市场法。
     3、针对群体机器人编队和覆盖任务中机器人缺失和加入情况,在理论和算法层次提出了移动机器人网络接力式切换拓扑控制方法,从整体和个体关系的新角度研究覆盖问题,形成大规模机器人群体建模和控制的理论框架。我们首先建立了结合基于图论的网络拓扑和基于交互动力模型的个体运动模型的移动机器人网络模型。对应地,控制设计也分为上述两个层次:在拓扑层次,通过分析增加和缺失机器人个体对于网络拓扑影响,提出具有自愈性和可扩展性的接力式拓扑控制;在个体层次,将拓扑控制转化为基于局部交互的具有分布式特征的个体控制算法。此外,还提出了一套评价控制算法的指标体系,包括:连通性、收敛性、自愈性、可扩展性、鲁棒性和稳定性,表明了在相同恢复结果下所提出算法的自愈性比已有算法高,关于通信连接缺失的鲁棒性也较高,在切换拓扑的过程中可以保证网络是连通的,并且该算法是收敛的和可扩展的,还给出了具有切换拓扑网络同步稳定性判据。最后分别针对编队和覆盖任务,通过仿真验证了接力式切换拓扑控制算法的有效性,和其它方法比较具有较高的自愈性、可扩展性和鲁棒性。
Coverage problem is one of the most challenging research topics in the mobile robotics and control theory, and represents the relationship among mobility, perceptivity and cooperation of robots. Coverage problem is defined as follows: to find a path or paths of the robot or robot groups such that its or their detected region could cover the whole environment with its or their motion. During the process of covering environments, each robot individual can only use the information which could be obtained to decide its motion. For multi-robot or swarm robot, each robot can furthermore obtain the information of its neighbors with finite communication to help its decision, and the whole system shows a collective behavior. The objective of this thesis is to discover the natural relationship between robot models and coverage tasks, to find the natural laws that networked individuals with local interactions can perform different collective behaviors, and to apply these laws to design mobile robot systems and solve problems in practical applications.
     This thesis provides an in-depth understanding on modeling as well as control method of coverage tasks for single, multi and swarm mobile robot systems, which are fundamental yet challenging issues in this research field. The main contributions in this thesis are divided into the following three aspects:
     1) For tasks of target detecting and dynamic coverage of single robot, we use mobile robot constrained motion model and reachable region to formulate and solve these problems in a theoretical and algorithmic level. This thesis establishes constrained motion model and sensor model of a mobile robot to represent mobility and perceptivity, respectively, and defines the k step reachable region to describe the states that the robot may reach. We show that the calculation of the k step reachable region can be reduced from that of 2k reachable regions with the fixed motion styles to k + 1 such regions, and provide an algorithm for its calculation. Based on the constrained motion model and the k step reachable region, the problems associated with target detecting and dynamic coverage are formulated and solved. For target detecting, the k step detectable region is used to describe the area that the robot may detect, and an algorithm for detecting a target and planning the optimal path is proposed. For dynamic coverage, the k step detected region is used to represent the area that the robot has detected during its motion, and the dynamic coverage strategy and algorithm are proposed. Simulation results demonstrate the efficiency of the coverage algorithm in both convex and concave environments.
     2) For the problem of efficiently using finite communication information of multi-robot coverage, we propose an improved market method for task allocation of multi-robot cooperative coverage in an algorithmic and practical level. For the limitation that market-based method only considers costs in the local map of each robot, we update the local maps through fusion of both the local sensor data and the bid information, and thus the extended parts in maps enable robots to calculate costs of other robots’targets. No extra communication is needed. Probability theory is used for occupancy grid maps, uncertain data processing and map update with bids information, which shows the consistency of the whole method. Moreover, we propose a new performance metric, called target point exchanged ratio, to reflect the degree of collaboration. The results of practical robot experiments and simulations demonstrate that the improved method is more efficient than the original market-based approach.
     3) For the problem of formation and coverage with failed or added robots of swarm robot, we propose a relay switched topology control for mobile robot networks in a theoretical and algorithmic level, which is a novel view of relationship between individuals and the whole system to deal with coverage problem, and becomes a theoretical frame of coopration coverage for large scale of mobile robot systems. Based on the graph and complex network theories, we establish the model of a mobile robot network which combines switched network topologies with an interaction dynamic model for describing the motion of the robots. Correspondingly, the control method is also divided into two levels: in the topology level, we analyze the effect of failed robots and added ones upon the network topology, and propose a relay switched topology control with self-healing ability and scalability; in the individual level, we transform the topology control into individual control algorithm with local interactions. We propose a set of metrics to evaluate control methods, including connectivity, convergence, self-healing ability, scalability, robustness and stability. We show that the proposed algorithm can prevent the network topology from being separated into two or more disconnected parts, and maintain the performance of the network. Based on the Lyapunov exponent, we further provide a criterion of the stability of the network with the proposed distributed control. Finally, we demonstrate the advantages of our method by performing simulations of formation and coverage. The advantages of our approaches over other methods are presented which include lower recovery time, lower power-consumption, more robust against communication failure, and zero blind zones for the coverage task.
引文
[1] Choset H. Coverage for robotics—a survey of recent results. Ann. Math. and AI. 2001, 31: 113-126.
    [2]蔡自兴,崔益安.多机器人覆盖技术研究进展.控制与决策, 2008, 23(5): 486-490.
    [3]郝宗波,洪炳镕.多简单机器人协作覆盖规划研究.机器人, 2007, 29(1): 18-22.
    [4] Low K H, Leow W K, Ang Jr M H. Reactive, distributed layered architecture for resource-bounded multi-robot cooperation: application to mobile sensor network coverage. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), New Orleans: IEEE Press. 2004, 3747-3752.
    [5] Batalin M A, Sukhatme G S. Sensor network-based multi-robot task allocation. In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS), Las vegas: IEEE Press. 2003, 1939-1944.
    [6] Hazon N, Kaminka G A. Redundancy, efficiency and robustness in multi-robot coverage. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain. April 2005, 735-741.
    [7] Rekleitis I, Lee-Shue V, New A P, Choset H. Limited communication, multi-robot team based overage. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleasn, LA. 2004, 3462-3468.
    [8] Murphy R. Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man and Cybernetics. Part C, Appl. Rev., 2004, 34(2): 138-153.
    [9] Thrun S, Hahnel1 D, Ferguson D, Montemerlo M, Triebel R, Burgard W, Baker C, Omohundro Z, Thayer S, Whittaker W. A system for volumetric robotic mapping of abandoned mines. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). 2003, 4270-4275.
    [10] Huntsberger T, Pirjanian P, Trebi-Ollennu A, Nayar Das H, Aghazarian H, Ganino A J, Garrett M, Joshi S S, Schenker P S. CAMPOUT: a control architecture for tightly coupled coordination of multirobot systems for planetary surface exploration. IEEE Transactions on Systems, Man and Cybernetics, Part A. 33(5): 550-559, 2003.
    [11] Weisbin C R, Rodriguez G. NASA robotics research for planetary surface exploration. IEEE Transactions on Robotics and Automation. 2000, 7(4): 25-34.
    [12] Dalgalarrondo A, Dufourd D, Filliat D. Controlling the autonomy of a reconnaissance robot. Unmanned Ground Vehicle Technology Conference No. 6, Orlando FL. 2004, 5422: 314-325.
    [13] Rybski P E, Papanikolopoulos N P, Stoeter S A, Krantz D G, Yesin K B, Gini M, Voyles R, Hougen D F, Nelson B, Erickson M D. Enlisting rangers and scouts for reconnaissance and surveillance. Robotics & Automation Magazine. Dec. 2000, 7(4): 14-24.
    [14]唐鸿儒,宋爱国.危险环境侦察机器人的研究进展.机器人技术与应用, 2007(3): 29-35.
    [15] Holman R, Stanley J, Ozkan-Haller T. Applying video sensor networks to nearshore environment monitoring. IEEE Pervasive Computing. Oct. 2003, 2(4): 14-21.
    [16] Lins A, Nakamura E F, Loureiro A A F, Coelho C J N. BeanWatcher: a tool to generate multimedia monitoring applications for wireless sensor networks. In Proceedings of 6th IFIP/IEEE International Conference on Management of Multimedia Networks and Services (MNMS 03). 2003, 128-141.
    [17] Hall E L, Oh S J, Kattan E U. Experience with a robot lawn mower. Society ofManufacturing Engineers. 2000, MS86-386(4): 1-26.
    [18]高学山,徐殿国,王炎,周大威.全方位地面移动清扫机器人.机械工程学报, 2008, 44(3): 228-233.
    [19] Simoncelli M, Zunino G, Christensen H I, Lange K. Autonomous pool cleaning: self localization and autonomous navigation for cleaning. Autonomous Robot, 2000, 9(3): 261-270.
    [20] Yamauchi B. Frontier-based exploration using multiple robots. In Proceedings of the Second International Conference on Autonomous Agents, Minneapolis/St. Paul. 1998, 47-53.
    [21] Burgard W, Moors M, Stachniss C, Schneider F E. Coordinated multi-robot exploration. IEEE Transaction on Robotics. June 2005, 21(3): 376-386.
    [22] Zlot R, Stentz A, Dias M B, Thayer S. Multi-robot exploration controlled by a market economy. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Washington DC: IEEE Press. 2002, 3016-3023.
    [23]张飞,陈卫东,席裕庚.多机器人协作探索的改进市场法,控制与决策, 2005, 20(5): 516-520.
    [24] Albers S, Kursawe K, Schuierer S. Exploring unknown environments with obstacles. Algorithmica, 2008, 32(1): 123-143.
    [25] Cao Y, Fukunaga A, Kahng A, Meng F. Cooperative mobile robotics: antecedents and directions. Autonomous Robots. 1997, 4(1): 7-27.
    [26] Mataric M J, Sukhatme G. S. Task-allocation and coordination of multiple robots for planetary exploration. In Proceedings of the International Conference on Advanced Robotics. 2001, 61-70.
    [27]姜健,闫继宏,臧希喆,赵杰.基于信息素的多机器人协作任务分配.计算机工程与应用, 2008(2): 20-22.
    [28] Schneider-Fontan M, Mataric′M. Territorial multi-robot task division. IEEE Transaction on Robotics and Automation. 1998, 14(5): 815-822.
    [29]姚俊武,王建中.基于协商的多机器人协作决策方法研究.计算机应用, 2007(S1): 48-50.
    [30] Hu T, Lin Z. Control Systems with Actuator Saturation. Birkh?user, Boston, 2001.
    [31] Hu T, Miller D E, Qiu L. Null controllable region of LTI discrete-time systems with input saturation. Automatica. 2002, 38: 2009-2013.
    [32] Soueres P, Fourquet J Y, Laumond J P. Set of reachable positions for a car. IEEE Transaction on Automatic Control, Aug. 1994, 39(8): 1626-1630.
    [33] Simmons R, Apfelbaum D, Burgard W, Fox D, Moors M, Thrun S, Younes H. Coordination for multi-robot exploration and mapping. In Proceeding of the National Conference on Artificial Intelligence (AAAI). 2000, 852-858.
    [34] Grabowski R, Navarro-Serment L E, Paredis C J J, Khosla P K. Heterogeneous teams of modular robots for mapping and exploration. Journal of Autonomous Robots. 2000, 8(3): 293-308.
    [35]周光明,陈宗海,刘年庆,贾梦雷.基于主动探测的室内未知环境下移动机器人地图创建算法.模式识别与人工智能. 2006, 19(5): 591-597.
    [36]罗荣华,洪炳镕,厉茂海.基于局部特征预测的栅格地图创建.哈尔滨工业大学学报. 2004, 36(7): 877-879.
    [37] Dellaert F, Fox D, Burgard W, Thrun S. Monte carlo localization for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). 1999, 53-60.
    [38] Fox D, Burgard W, Kruppa H, Thrun S. A probabilistic approach to collaborative multi-robot localization. Autonomous Robots. 2000, 8(3): 532-544.
    [39] Gonzalez-Banos H H, Latombe J C. Navigation strategies for exploring indoor environments. International Journal of Robotics Research. 2002, 21(10-12): 829-848.
    [40]战强,吴佳.未知环境下移动机器人单目视觉导航算法.北京航空航天大学学报. 2008, 34(6): 613-617.
    [41]张捍东,王丽华,岑豫皖.基于势场的移动机器人自主导航研究综述.自动化与仪表. 2007, 22(4): 8-12.
    [42] Buck S, Weber U, Beetz M, Schmitt T. Multi-robot path planning for dynamic environments: a case study. In Proceedings of IEEE Conference on Intelligent Robots and Systems. 2001, 3: 1245-1250.
    [43] Xi Y (席裕庚), Zhang C (张纯刚). Robot path planning in globally unknown environments based on rolling windows. Science in China (E), 2001, 44(2): 131-139.
    [44]张亚鸣,雷小宇,杨胜跃,樊晓平,瞿志华,贾占朝.多机器人路径规划研究方法.计算机应用研究. 2008, 25(9): 2565-2569.
    [45] Shaw E. The schooling of fishes. Scientific American. 1962, 206: 128-138.
    [46] Reynolds C W. Flocks, herds, and schools: a distributed behavioral model. Computer Graphics (ACM SIGGRAPH’87 Conference Proceedings). 1987, 21(4): 25-34.
    [47] Vicsek T, Cziroók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters. 1995, 75(6): 1226-1229.
    [48] Parrish J K, Viscido S V, Grunbaum D. Self-organized fish schools: an examination of emergent properties. Boil. Bull. 2002, 202: 296-305.
    [49] Topaz C M, Bertozzi A L. Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 2004, 65(1): 152-174.
    [50]薛颂东,曾建潮.群机器人研究综述.模式识别与人工智能. 2008, 21(2): 177-185.
    [51]熊举峰,谭冠政.基于人工物理的群机器人网格分布仿真.系统仿真学报, 2008, 20(3): 692-696.
    [52] Arai T, Pagello E, Parker L E. Editorial: advances in multi-robot systems. IEEE Transaction on Robotics and Automatic. Oct. 2002, 18(5): 655-661.
    [53] Pirjanian P, Mataric M. Multi-robot target acquisition using multiple objective behavior coordination. In Proceedings of IEEE International Conference on Robotics and Automation. 2000, 3: 2696-2702.
    [54]周彤,洪炳镕,朴松昊,周洪玉.基于多机器人自组织协作的多目标跟踪.高技术通讯. 2007, 17(12): 1250-1255.
    [55] Estrin D, Govindan R, Heidemann J, Kumar S. Next century challenges: scalable coordination in sensor networks. In Proc. of ACM Inter. Conf. on Mobile and Computing Networks (Mobicom), Seattle, WA, USA. August 1999, 263-270.
    [56] Sohrabi K, Ailawadhi V, Ailawadhi V. Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 2000, 7(5): 16-27.
    [57]张颖,郭鹏,周宗仪.移动传感器网络覆盖算法研究.计算机工程与科学. 2008, 2: 81-83.
    [58]宋光明,庄伟,魏志刚,宋爱国.用于未知环境的移动传感器网络自部署算法.华南理工大学学报:自然科学版. 2006, 34(9): 26-30.
    [59] Li D, Jia X, Liu H. Energy efficient broadcast routing in static ad hoc wireless networks. IEEE Transactions on Mobile Computing. 2004, 3(2): 144-151.
    [60] Jain K, Padhye J, Padmanabhan1 V N, Qiu L. Impact of interference on multi-hop wireless network performance. Wireless Networks. 2005, 11(4): 471-487.
    [61] Parker G, Parashkevov I. Cyclic genetic algorithm with conditional branching in a predator-prey scenario. In Proceedings of 2005 IEEE International Conference on Systems, Man and Cybernetics. 2005, 3: 2923-2928.
    [62] Castellanos J A, Montiel J M M, Neira J, Tard′os J D. The SPmap: a probabilistic framework for simultaneous localization and map building. IEEE Transactions on Robotics and Automation. 1999, 15(5): 948-953.
    [63] Choset H. Topological simultaneous localization and mapping (slam): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation. 2001, 17(2): 125-137.
    [64]魏振华,厉茂海,胡黎明,罗荣华. Rao-Blackwellized滤波器实现机器人同时定位和地图创建.哈尔滨工业大学学报. 2008, 40(3): 401-406.
    [65]王耀南,余洪山.未知环境下移动机器人同步地图创建与定位研究进展.控制理论与应用. 2008, 25(1): 57-65.
    [66] Dissanayake M W M G, Newman P, Clark S, Durrant-Whyte H F, Csorba M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
    [67] Sheng W, Yang Q, Ci S, Xi N. Multi-robot area exploration with limited-range communications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2004, 1414-1419.
    [68] Klavins E. Communication complexity of multi-robot systems. Algorithmic Foundations of Robotics V, Springer, 2003.
    [69]孙亮,张永强,乔世权.多移动机器人通信技术综述.中国科技信息. 2008, 5: 112-114.
    [70] Jones C, Mataric M J. Automatic synthesis of communication-based coordinated multi-robot systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, 1: 381-387.
    [71] Kalman R E, HO. Y C, Narendra K S. Controllability of linear dynamic systems. Contributions to Differential Equations, New York. 1963, 1.
    [72] Balkcom D J, Mason M T. Time optimal trajectories for differential drive vehicles. Inter. Journal of Robotics Research. 2002, 21(3): 199-217.
    [73] Mitchell I M, Bayen A M, Tomlin C J. A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. on Automatic Control. 2005, 50(7): 947-957.
    [74] Krishna M K, Hexmoor H, Soqani S. A t-step ahead constrained optimal target detection algorithm for a multi sensor surveillance system. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2005, 357-362.
    [75] Liao E, Hollinger G, Djugash J, Singh S. Preliminary results in tracking mobile targets using range sensors from multiple robots. In Proceedings of the 8th International Symposium on distributed Autonomous Robotic Systems. 2006, 125-134.
    [76] Elfes A. Using occupancy grids for mobile robot perception and navigation. IEEE Computer Magazine, Special Issue on Autonomous Intelligent Machines. 1989, 22(6): 46-57.
    [77] Moravec H. Sensor fusion in certainty grids for mobile robots. AI Magazine, 1988, 9(2): 61-74.
    [78] Rabin S. A* speed optimizations,”In M. DeLoura ed., Game Programming Gems, Rockland MA: Charles River Media. 2000, 272-287.
    [79] Stentz A. Optimal and efficient path planning for partially-known environments. InProceedings of IEEE International Conference on Robotics and Automation (ICRA). 1994, 3310-3317.
    [80] Kambhampati S, Davis L S. Multiresolution path planning for mobile robots. IEEE Journal of Robotics and Automation. 1986, 2(3): 135-145.
    [81] Choset H, Burdick J, Walker S, Diamsa-Ard K. Sensor based exploration: incremental construction of the hierarchical generalized voronoi graph. International Journal of Robotics Research. 2000, 19(2): 126-148.
    [82] Hwang Y K, Ahuja N. A potential field approach to path planning. IEEE Transaction on Robotics and Automation, 1992, 8(1): 23-32.
    [83]金雷泽,杜振军,贾凯.基于势场法的移动机器人路径规划仿真研究.计算机工程与应用. 2007, 43(24): 226-229.
    [84] Sugihara K, Smith J. Genetic algorithms for adaptive motion planning of an autonomous mobile robot. In Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997, 138-143.
    [85] Adams M, Ibanez-Guzman J. Limiting velocity & acceleration commands for dynamic control of a large vehicle. In Proceedings of Seventh International Conference on Control, Automation, Robotics and Vision (ICARCV’02), Singapore. 2002, 1475-1480.
    [86] Adams M. High speed target pursuit and asymptotic stability in mobile robotics. IEEE Transactions on Robotics and Automation, 1999, 15(2): 230-237.
    [87] Nagatani K, Choset H. Toward robust sensor based exploration by constructing reduced generalized Voronoi graph. In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 1999, 3: 1687-1693.
    [88] Wang S, MacDonald B. A topological coverage algorithm for mobile robots. In Proceeding of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2003, 2: 1685-1690.
    [89] Rekleitis I, Lee-Shue V, New A P, Choset H. Limited communication, multi-robot team based coverage. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA), Piscataway, U.S.A. 2003, 3462-3468.
    [90] Acar E, Choset H, Lee J. Sensor-based coverage with extended range detectors. IEEE Trans. on Robotics. 2006, 22(1): 189-198.
    [91] Bourgault F, Makarenko A A, Williams S B, Grocholsky B, Durrant-Whyte H F. Information based adaptive exploration. In Proceedings of the 2002 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems (IROS). 2002, 1: 540-545.
    [92] Lagoudakis M G, Berhault M, Koenig S, Keskinocak P, Kleywegt A J. Simple auctions with performance guarantees for multi-robot task allocation. In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS). 2004, 698-705.
    [93] Simmons R, Smith T, Dias M B, Goldberg D, Hershberger D, Stentz A, Zlot R. A layered architecture for coordination of mobile robots. Multi-Robot Systems: From Swarms to Intelligent Automata, A. Schultz and L. Parker (eds.), Kluwer, 2002.
    [94] Singh S P N, Thayer S M. Immunology directed methods for distributed robotics: a novel, immunity-based architecture for robust control & coordination. In SPIE: Mobile Robots XVI, 2001, 4573.
    [95] Lee D W, Jun H B, Sim K B. Artificial immune system for realization of cooperative strategies and group behavior in collective autonomous mobile robots. In Proceedings of Fourth International Symposium on Artificial Life and Robotics (AAAI). 1999, 231-235.
    [96] Chella A, Sorbello A, Vitabile S. Fuzzy Coordination of a society of robot agents. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Switzerland. 2002, 1452-1457.
    [97] Thrun S. Probabilistic algorithms in robotics. AI Magazine. 2000, 21(4): 93-109.
    [98] Billard A, Ijspeert A J, Martinoli A. A multi-robot system for adaptive exploration of a fast changing environment: probabilistic modeling and experimental study. Connection Science. 2000, 11(3/4): 357-377.
    [99] Thrun S. A probabilistic on-line mapping algorithm for teams of mobile robots. The International Journal of Robotics Research. 2001, 20(5): 335-363.
    [100] Patkar A, Shirkhodaie A. Tactical mobility and navigational strategies of a group of mobile robots using fuzzy logic. In Proceedings of the IEEE, Southeastcon. 2000, 229-236.
    [101] Mu?noz-Salinas R, Aguirre E, Garc′?a-Silvente M, G′omez M. A multi-agent system architecture for mobile robot navigation based on fuzzy and visual behaviour. Robotica, 2005, 23: 689-699.
    [102] Aguirre E, Gonz′alez A. Integrating fuzzy topological maps and fuzzy geometric maps for behavior-based robots. International Journal of Intelligent Systems, 2002, 17(3): 333-368.
    [103] Zhang F, Chen W, Xi Y. Improving collaboration through fusion of bid information for market-based multi-robot exploration. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Barcelona. 2005, 1157-1162.
    [104] Ko J, Stewart B, Fox D, Konolige K, Limketkai B. A practical, decision-theoretic approach to multi-robot mapping and exploration. In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS), Las vegas: IEEE Press. 2003, 3232-3238.
    [105] Roumeliotis S I, Mataric M J. Small-world networks of mobile robots. In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI), Austin, Texas. 2000, 176-181.
    [106] Azarm K, Schmidt G. A decentralized approach for the conflict free motion of multiple mobile robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 1996, 1667-1675.
    [107] Svestka P, Overmars M H. Coordinated path planning for multiple robots. Robotics and Autonomous Systems. 1998, 23(33): 125-152.
    [108] Zheng Y, Chen W. Mobile robot team forming for crystallization of proteins. Autonomous Robots. 2007, 23(1): 69-78.
    [109] Gazi V, Passino K M. Stability analysis of swarms. IEEE Transactions on Automatic Control. 2003, 48(4): 692-697.
    [110] Liu Y, Passino K M, Polycarpou M. Stability analysis of one-dimensional asynchronous swarms. IEEE Transactions on Automatic Control. 2003, 48(10): 1848-1854.
    [111] Gazi V, Passino K M. Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems, Man, and Cybernetics, Part B. 2005, 35(4): 834-841.
    [112] Tanner H G, Jadbabaie A, Pappas G J. Stable flocking of mobile agents, part I: fixed topology. In Proceedings of IEEE Conference on Decision and Control, Hawaii, USA. 2003, 2: 2010-2015.
    [113] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. on Automatic Control. 2006, 51(3): 401-420.
    [114] Saber R O, Murray R M. Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. In Proceedings of 2003 42th IEEE Conference on Decision and Control. 2003, 2: 2022-2028.
    [115] Robinett III R D, Hurtado J E. Stability and control of collective systems. Journal of Intelligent and Robotic Systems. 2004, 39: 43-55.
    [116]吴正平,关治洪,吴先用.基于一致性理论的多机器人系统队形控制.控制与决策. 2007, 22(11): 1241-1244.
    [117] Spanos D P, Olfati-Saber R, Murray R M. Dynamic consensus for mobile networks. In 2005 IFAC World Congress, Prague. 2005.
    [118] Di Cairano S, Pasini A, Bemporad A, Murray R M. Convergence properties of dynamic agents consensus networks with broken links. In American Control Conference, 2008, 1362-1367.
    [119] Sundararaman B, Buy U, Kshemkalyani A D. Clock synchronization for wireless sensor networks: a survey. Ad Hoc Networks. 2005, 3(3): 281-323.
    [120] Sun K, Ning P, Wang c. Fault-tolerant cluster-wise clock synchronization for wireless sensor networks. IEEE Transactions on Dependable and Secure Computing, 2005, 2(3): 177-189.
    [121] Barahona M, Pecora L M. Synchronization in small-world systems. Phys. Rev. Lett. 2002, 89(5): 054101.
    [122]滑楠,史浩山,吴健,王福豹.无线传感器网络动态簇组织算法研究.计算机应用研究. 2006, 23(2): 26-30.
    [123] Kostelnik P, Samulka M, Janosik M. Scalable multi-robot formations using local sensing and communication. In Proceedings of 3rd International Workshop on Robot Motion and Control, Nov. 2002, 319-324.
    [124] Chuang Y, Huang Y R, D'Orsogna M R, Bertozzi A L. Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. In Proceedings of IEEE Conference on Robotics and Automation (ICRA), Rome, Italy: IEEE press, April 2007. 2292-2299.
    [125] Boonma P, Champrasert P, Suzuki J. BiSNET: A biologically-inspired architecture for wireless sensor network. In Proceedings of 2006 IEEE International Conference on Autonomic and Autonomous Systems (ICAS’06). 2006, 54-60.
    [126] Thrun S. Learning occupancy grids with forward models. In Proceedings of the IEEE Conference on Intelligent Robots and Systems (IROS), Hawaii. 2001, 1676-1681.
    [127] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans. on Automatic Control. 2004, 49(9): 1465-1476.
    [128]杨甜甜,刘志远,陈虹,裴润.移动机器人编队控制的现状与问题.智能系统学报, 2007, 2(4): 21-27.
    [129]俞辉,王永骥,徐建省.非完整移动机器人编队的滑模控制.机器人. 2006, 28(4): 428-432.
    [130] Zhang F, Chen W, Xi Y. Motion synchronization of mobile robot networks: robustness. In Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), Beijing, China. 2006, 5570-5575.
    [131] Zhang F, Chen W. Self-healing for mobile robot networks with on synchronization. In Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), San Diego. 2007, 3107-3112.
    [132] Bonabeau M D a G T E. Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press: Oxford. 1999.
    [133] Tomita K, Murata S, Kurokawa H, Yoshida E, Kokaji S. Self-assemble and self-repair method for a distributed mechanical system. IEEE Transactions on Robotics and Automation. 1999, 15(6): 1035-1045.
    [134] Kasahara H, Takadama K, Nakasuka S, Shimohara K. A reinforcement learning approach to fail-safe design for multiple space robots cooperation mechanism without communication and negotiation schemes. Advanced Robotics. 2003, 17(1): 21-39.
    [135] Ganeriwal S, Kansal A, Srivastava M B. Self aware actuation for fault repair in sensor networks. In Proceedings of IEEE Conference on Robotics and Automation (ICRA), New Orleans, USA. 2004, 5: 5244- 5249.
    [136] Cheng J, Cheng W, Nagpal R. Robust and self-repairing formation control for swarms ofmobile agents. In Proceedings of 20th National Conference on Artificial Intelligence (AAAI), Menlo Park, USA. 2005, 59-64.
    [137] Low K H, Leow W K, Ang, Jr. M H. Autonomic mobile sensor network with self-coordinated task allocation and execution. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2006, 36(3): 315-327.
    [138] Li X, Chen G. Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. on Circuits and Systems-I. 2003, 50(11): 1381-1390.
    [139] Callway D S, Newman M E J, Strogatz S H, Watts D J. Network robustness and fragility: percolation on random graphs. Physical Review Letters. 2000, 85(25): 5468-5471.
    [140] Carlson J M, Doyle J. Complexity and robustness. In Proceedings of the National Academy of Sciences of USA. 1999, Suppl. 1: 2538-2545.
    [141] Dekker A H, Colbert B D. Network robustness and graph topology. In Proceedings of the 27th Conference on Australasian Computer Science, Dunedin, New Zealand. 2004, 359-368.
    [142] Diestal R. Graph Theory, New York, NY: Springer-Verlag. 1997.
    [143] Xue F, Kumar P R. The number of neighbors needed for connectivity of wireless networks. Wireless Networks. 2004, 10(2): 169-181.
    [144] Kloetzer M, Belta C. Temporal logic planning and control of robotic swarms by hierarchical abstractions. IEEE Transactions on Robotics. 2007, 23(2): 320-330.
    [145] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research. 1986, 5: 90-98.
    [146] Wang X F, Chen G. Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. on Circuits and Systems-I, 2002, 49(1): 54-62.
    [147] Godsil C, Royle G. Algebraic Graph Theory, New York, NY: Springer-Verlag. 2001.
    [148] Santi P. Topology Control in Wireless Ad Hoc and Sensor Networks, John Wiley & Sons. Sep. 2005.
    [149] Egerstedt M, Hu X. Formation constrained multi-agent control. IEEE Transaction on Robotics and Automation. 2001, 17(6): 947-951.
    [150] Rangarajan G, Ding M Z. Stability of synchronized chaos in coupled dynamical systems. Phys. Lett. A. 2002, 296: 204-209.
    [151] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transaction on Automation Control. 1998, 43(4): 475-482.
    [152] Poduri S, Sukhatme G S. Constraint coverage for mobile sensor networks. In Proceedings of IEEE Conference on Robotics and Automation (ICRA), New Orleans, USA. 2004, 165-172.
    [153]苏厚胜.多智能体蜂拥控制问题研究. 2008.上海交通大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700