用户名: 密码: 验证码:
预应力混凝土斜拉桥施工监控概率方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力混凝土斜拉桥是应用十分广泛的一种大跨度桥型。该类桥梁的施工工艺复杂,影响因素众多,施工调整方式多样,因此该类桥梁的施工监控也是各类桥梁施工监控中相对复杂的,所发挥的作用也是最显著的。大跨度预应力混凝土斜拉桥施工监控传统理论体系在工程实践中已得到广泛应用,但对于施工监控中各种因素的不确定性影响机理,目前的理论体系还无法从概率可靠度方面给出科学、合理的解释,导致对实际施工中结构响应的变异性以及各种测量项目的测试精度认识不足,对于参数识别的可靠性以及施工调整措施的有效性把握不准。
     为此,迫切需要建立以概率可靠度理论为基础的施工监控非确定性分析理论体系,以随机分析和可靠度理论贯穿施工监控各个环节,使施工监控各个环节环环相扣,形成一个有机的整体,以便在施工监控工程实践中制定科学合理的施工控制精度,科学合理地判断和衡量各测量项目的测试精度以及主要设计参数的识别精度,最终达到安全有效地调整施工误差的目的,高质量、高效率地指导复杂繁重的施工监控工作。
     本文拟在现有的预应力混凝土斜拉桥施工监控传统理论体系基础上,结合概率论和数理统计理论,开展施工监控各环节的概率分析方法研究。本文主要工作包括:
     (1)对现有的预应力混凝土斜拉桥施工监控理论系统进行了全面综述。对预应力混凝土斜拉桥施工过程中存在的随机因素,以及结构随机分析方法和结构可靠度相关概念进行了介绍。总结了在随机因素影响下,预应力混凝土斜拉桥施工监控所面临的困难,以及预应力混凝土斜拉桥施工监控随机分析的研究现状。
     (2)介绍了索力测量方法和混凝土应力测量方法,在此基础上结合概率论与数理统计理论,提出了预应力混凝土斜拉桥内力测量概率分析方法,为确定实测内力的统计特性,获取不同测量精度下的内力测量可靠度提供了有效的方法。通过甘竹溪大桥内力测量概率分析,确定了甘竹溪大桥实测内力的概率分布类型和数字特征,并获得了达到不同测量精度的可靠性概率信息,验证了内力测量概率分析方法的可行性。
     (3)介绍了施工控制的内容和目标,以及施工过程的模拟方法,在此基础上结合概率论与数理统计理论,提出了预应力混凝土斜拉桥施工控制概率分析方法,为确定施工过程结构响应的统计特性,获取不同施工控制精度下的施工控制可靠度提供了有效的方法。通过甘竹溪大桥施工控制概率分析,确定了甘竹溪大桥理想施工过程中结构响应的概率分布类型和数字特征,并获得了达到不同施工控制精度的可靠性概率信息,验证了施工控制概率分析方法的可行性。
     (4)介绍了主梁自重识别的最小二乘法,并在此基础上结合概率论与数理统计理论,提出了预应力混凝土斜拉桥主梁自重识别概率分析方法,为确定主梁自重识别结果的统计特性,获取不同识别精度下的主梁自重识别可靠度提供了有效的方法。通过甘竹溪大桥主梁自重识别概率分析,确定了甘竹溪大桥主梁自重识别结果的概率分布类型和数字特征,并获得了达到不同识别精度的可靠性概率信息,验证了主梁自重识别概率分析方法的可行性。
     (5)详细介绍了几种常用的优化设计方法,并结合施工过程误差调整的特点,提出了基于约束非线性规划方法的施工过程索力调整分析方法。在此基础上,引入概率可靠度设计方法的思想,提出了基于可靠度约束优化的索力调整分析方法,为寻求满足给定结构安全可靠度下的施工过程误差调整方案提供科学有效的方法。以主梁安全可靠度为约束条件,针对假定的施工误差状态进行了甘竹溪大桥施工过程索力调整分析,获得了满足可靠度约束条件,且能使塔偏位和主梁标高误差大幅减小的索力调整方案,验证了方法的可行性。
     (6)根据预应力混凝土斜拉桥施工监控概率分析各组成模块之间的相互影响机理,明确了各个分析模块之间的数据流动规律,从而构建了施工监控概率分析的总体框架。以甘竹溪大桥17#节段施工监控为例,按照所提出的施工监控概率分析整体框架,实现了该节段施工监控全过程概率分析。
Prestressed concrete cable-stayed bridge is a type of large-span bridge used widely. Withcomplicated construction technology, numerous influencing factors and various methods ofconstruction adjustment, the construction monitoring of this type of bridge is complexrelatively and also most significant. The traditional theoretical system of constructionmonitoring of large-span prestressed concrete cable-stayed bridge has been widely applied inengineering practices. But for the influence mechanisms of uncertainty of various influencingfactors in construction monitoring, the present theoretical system cannot provide a scientificand rational explanation in terms of probabilistic reliability. It results in lacks of recognition onthe variability of structural responses in practical construction and the measuring accuracies ofdifferent measuring items, which leads that the reliability of parameter identification as well asthe efficiency of measures taken in construction adjustment cannot grasped exactly.
     Therefore, it is urgently needed to establish a theoretical system based on probabilisticreliability theory for uncertainty analysis of construction monitoring. Stochastic analysis andreliability theory will be applied throughout every link of construction monitoring, whichmakes the links of construction monitoring linked each other and being an organic whole, andSo as to establish scientific and reasonable accuracies of construction control in engineeringpractices of construction monitoring, judge and measure the measuring accuracies of variousmeasuring items as well as the identification precisions of main design parameters. Eventually,the goal of the construction errors adjusted safely and effectively can be achieved, then thecomplex and heavy work of construction monitoring can be conducted with high quality andefficiency.
     In this dissertation, on the basis of the present traditional theoretical system ofconstruction monitoring of prestressed concrete cable-stayed bridge, and combined withprobability theory and mathematical statistics theory, the study on the probability analysismethods for each links of construction monitoring is developed. The following research resultsare achieved in this dissertation:
     (1) Current theoretical systems of construction monitoring of prestressed concretecable-stayed bridge are reviewed comprehensively. The uncertainty factors existing in the construction of prestressed concrete cable-stayed bridge, as well as structural stochasticanalysis methods and the related concepts of structural reliability are presented. The difficultiesfaced in the construction monitoring of prestressed concrete cable-stayed bridge withinfluences of uncertainty factor, as well as the current status of probability analysis for theconstruction monitoring of prestressed concrete cable-stayed bridge are summarized.
     (2) Measurement methods for internal forces and concrete stress are presented. On thebasis of the methods, and combined with probability theory and mathematical statistics theory,the probability analysis method for the internal force measurement of prestressed concretecable-stayed bridge is proposed, so as to provide an effective method for determining thestatistical characteristics of measured internal forces and obtaining the probabilities of internalforce measurement within different measuring accuracies. With the probability analysis of theinternal forces of Ganzhuxi Bridge, the type of probability distribution and statisticalcharacteristics of the measured internal forces of Ganzhuxi Bridge are determined, and theprobability information with different measuring accuracies are acquired too. That proves thatthe probability analysis method for internal force measurement is feasible.
     (3) The contents and objective of construction control, as well as the simulation method ofconstruction, are discussed. On the basis of that, and combined with probability theory andmathematical statistics theory, the probability analysis method for construction control ofprestressed concrete cable-stayed bridge is proposed, so as to provide an effective method fordetermining the statistical characteristics of structural responses in the process of constructionand obtaining the probability of the construction control within different control accuracies ofconstruction. With the probability analysis of the internal forces of Ganzhuxi Bridge, the typeof probability distribution and statistical characteristics of structural responses in the idealconstruction process of Ganzhuxi Bridge are determined, and the probability information withdifferent accuracies of construction control are acquired too. That proves that the probabilityanalysis method for construction control is feasible.
     (4) The least squares method for girder self-weight identification is presented. On the basisof the least squares method, and combined with probability theory and mathematical statisticstheory, the probability analysis method for girder self-weight identification of prestressedconcrete cable-stayed bridge is proposed, so as to provide an effective method for determining the statistical characteristics of the result of girder self-weight identification and obtaining theprobability of the girder self-weight identification within different identification accuracies.With the probability analysis of the girder self-weight identification of Ganzhuxi Bridge, thetype of probability distribution and statistical characteristics of the girder self-weightidentification result of Ganzhuxi Bridge are determined, and the probability information withdifferent identification accuracies are acquired too. That proves that the probability analysismethod for girder self-weight identification is feasible.
     (5) Several common methods for optimization design are presented in detail. Andcombined with the characteristic of construction error adjustment, an analysis method for cableforce adjustment in the process of construction, which based on the constrained nonlinearprogramming method, is proposed. Based on that and the thought of probability reliabilitydesign method, the analysis method for cable force adjustment which based on reliabilityconstrained optimization is proposed, to provide an scientific and effective method forsearching a construction error adjustment plan meet the given structural safety reliability. Thesafety reliability of girder is taken as the constraint condition, the adjustment analysis for cableforces in the process of the construction of Ganzhuxi Bridge is developed according to theassumed construction error state. Then the adjustment plan of cable forces, which meet thereliability constrained condition and can rapidly reduce the errors of the deflexion of tower andthe elevation of girder, is obtained. It proves the method feasible.
     (6) According to the inner relations among the various modules of probability analysis forconstruction monitoring of prestressed concrete cable-stayed bridge, the law of data flowamong different analysis modules is explicit, thus the general framework of the probabilityanalysis of construction monitoring is established. With the example of the constructionmonitoring of17#segment of Ganzhuxi Bridge, according to the proposed general frameworkof the probability analysis of construction monitoring, the probability analysis for the wholeprocess of construction monitoring of the segment is realized.
引文
[1.1] Virlogeux M.. Recent evolution of cable-stayed bridges [J]. Engineering Structures,1999,(21):737-755
    [1.2]林元培.斜拉桥[M].北京:人民交通出版社,2004
    [1.3]刘士林,梁智涛,侯金龙,孟凡超.斜拉桥[M].北京:人民交通出版社,2002
    [1.4]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996
    [1.5]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000
    [1.6]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [1.7]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003
    [1.8]顾安邦,张永水.桥梁施工监测与控制[M].北京:机械工业出版社,2005
    [1.9]颜东煌.斜拉桥合理设计状态确定与施工控制[D].长沙:湖南大学,2001
    [1.10] Seki F., Tanaka S.. Construction control system for cable-stayed bridges. Proceeding ofIABSE,1988
    [1.11] Chen W. F., Duan L.. Bridge Engineering Handbook [M]. New York: CRC Press,2000
    [1.12] Tesar A., Melcer J.. Structural monitoring in advanced bridge engineering [J]. InternationalJournal for Numerical Methods in Engineering,2008,(74):1670-1678
    [1.13]陈伟德,郑信光,项海帆.混凝土斜拉桥的施工控制[J].土木工程学报,1993,(1):1-11
    [1.14]韩大建,苏成,王卫锋.崖门大桥施工监控技术流程与主要成果[J].桥梁建设,2003,(1):5-8
    [1.15]徐郁峰.大跨度预应力混凝土斜拉桥施工控制理论与核心技术研究及软件开发[D].广州:华南理工大学,2004
    [1.16]田启贤,袁建新,王戒躁.沈阳市富民桥施工监控[J].桥梁建设,2004,(3):58-61
    [1.17]孙建渊,石雪飞.漳州战备大桥施工工程控制[J].桥梁建设,2002,(1)38-40
    [1.18]石雪飞,项海帆.斜拉桥施工控制分类分析[J].同济大学学报,2001,29(1):55-59
    [1.19]韩大建,苏成,邓江.崖门大桥施工过程的参数识别与调整措施[J].桥梁建设,2003,(1):35-39
    [1.20]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002
    [1.21]颜东煌,刘光栋.确定斜拉桥合理施工状态的正装迭代法[J].中国公路学报,1999,(2):32-37
    [1.22] Lozano-Galant J. A., Paya-Zaforteza I., Xu D., Turmo J.. Forward algorithm for theconstruction control of cable-stayed bridges built on temporary supports [J].Engineering Structures,2012,40(7):119-130
    [1.23]梁志广,李建中,石现峰.斜拉桥施工初始索力的确定[J].工程力学,2000,17(3):121-126
    [1.24]程进,江见鲸,肖汝诚,项海帆.Ansys二次开发技术及在确定斜拉桥成桥初始恒载索力中的应用[J].公路交通科技,2002,19(3):50-52
    [1.25]颜东煌,李学文,刘光栋,易伟建.用应力平衡法确定斜拉桥主梁合理成桥状态[J].中国公路学报,2000,13(3):49-52
    [1.26] Chen D. W., Au F. T. K., Tham L. G., Lee P. K. K.. Determination of initial cableforces in prestressed concrete cable-stayed bridges for given design deck profile usingthe force equilibrium method [J]. Computers&Structures,2000,74(1):1-9
    [1.27] Fleming J. F.. Nonlinear static analysis of cable-stayed bridge structures [J]. Computer&Structures,1979,(4):621-635
    [1.28]陈务均,关福玲,袁飞行,陈向阳.斜拉桥施工控制分析中的线性与非线性影响分析[J].中国公路学报,1998,(4):52-58
    [1.29]辛克贵,冯仲.大跨度斜拉桥的施工非线性倒拆分析[J].工程力学,2004,(5):31-35
    [1.30] Wang P. H., Lin H. T., Tang T. Y.. Study on nonlinear analysis of a highly redundantcable-stayed bridge [J]. Computers&Structures,2002,80(2):165-182
    [1.31] Freire A. M. S., Negrao J. H. O., Lopes A. V.. Geometrical on nonlinearities on thestatic analysis of highly flexible steel cable-stayed bridges [J]. Computers&Structures,2006,84(31-32):2128-2140
    [1.32] Wang P. H., Tang T. Y., Zheng H. N.. Analysis of cable-stayed bridges duringconstruction by cantilever methods [J]. Computers&Structures,2004,82(4):329-346
    [1.33]李传习,杨飞跃,张建仁.节段施工桥梁的徐变变形及内力重分布[J].中国公路学报,2000,(4):47-52
    [1.34]陈太聪,苏成,韩大建.桥梁节段施工过程中混凝土收缩徐变效应仿真计算[J].中国公路学报,2003,(4):56-59
    [1.35]颜东煌,田仲初,李学文,涂光亚.混凝土桥梁收缩徐变计算的有限元方法与应用[J].中国公路学报,2004,(2):55-58
    [1.36]苏成,朱毅德.预应力混凝土收缩徐变效应的块体有限元分析[J].中外公路,2008,28(4):105-110
    [1.37]朱毅德.预应力混凝土桥梁施工过程仿真分析[D].广州:华南理工大学,2006
    [1.38] Robertson I. N.. Prediction of vertical deflections for a long-span prestressed concretebridge structure [J]. Engineering Structures,2005,27(12):1820-1827
    [1.39]郭棋武,方志,裴炳志,邓海,刘光栋.混凝土斜拉桥的温度效应分析[J].中国公路学报,2002,(4):48-51
    [1.40]苏成,徐郁峰,邓江.崖门大桥施工过程中温度影响的分析、实测与补偿[J].桥梁建设,2003,(1):19-22
    [1.41]刘君来,贺拴海,宋一凡.大跨径桥梁施工控制温度应力分析[J].中国公路学报,2004,(1):53-56
    [1.42]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报,2004,(1):49-52
    [1.43]江涌,李兴华,秦顺全.宁波招宝山大桥重建工程的温度监测和施工应力监测[J].桥梁建设,2001,(3):57-60
    [1.44]向木生,刘志雄,张开银,沈成武.大跨度预应力混凝土桥梁监测监控技术研究[J].公路交通科技,2002,(4):52-56
    [1.45]韩大建,徐郁峰,王卫锋,王卫兵.大跨度混凝土斜拉桥主梁应力监测中徐变系数的分离[J].桥梁建设,2003,(1):55-58
    [1.46]苏成,徐郁峰,韩大建.频率法测量索力中的参数分析与索抗弯刚度的识别[J].公路交通科技,2005,(5):75-78
    [1.47]吴康雄,刘克明,杨金喜.基于频率法的索力测量系统[J].中国公路学报,2006,(2):62-65
    [1.48] Ham H., Nghia N. T.. Estimation of cable tension using measured natural frequencies[J]. Procedia Engineering,2011,14:1510-1517
    [1.49]龙跃,邓年春,朱万旭,李居泽.磁通量传感器及其在桥梁监测中的应用[J].预应力技术,2007,(2):3-6
    [1.50]江修,张焕春,经亚枝.振弦式传感器的频率敏感机理与应用[J].传感器技术,2003,(12):22-24
    [1.51]储海宁.混凝土坝内部观测技术[M].北京:水利电力出版社,1989
    [1.52] Raphael J. M.. Determination of Stress from Measurement in concrete Dams [J]. ICOLD,1998
    [1.53]吴康雄,刘克明,杨金喜.基于频率法的索力测量系统[J].中国公路学报,2006,19(2):62-66
    [1.54]蔡永仕,王振龙,季英瑞.振弦式压力传感器在桥梁索力监测中的应用[J].筑路机械和施工机械化,2009,(1):62-64
    [1.55]张戌社,杜彦良,孙宝臣.光纤光栅压力传感器在斜拉索索力监测中的应用研究[J].铁道学报,2002,24(6):47-49
    [1.56]陆兆峰,陈禾,林立,等.压电式加速度传感器在振动测量系统的应用研究[J].仪表技术与传感器,2007,(7):3-9
    [1.57]刘胜春,姜德生,李盛.新型光纤光栅振动传感器测试斜拉索索力[J].武汉理工大学学报,2006,28(8):110-112
    [1.58]郝超,裴岷山,强士中.斜拉索索力测试新方法-磁通量法[J].公路,2000,(11):30-31
    [1.59]何利,邓年春.磁通量传感器在宜宾长江大桥斜拉索监测中的应用[J].公路交通技术,2010,(1):95-97
    [1.60]邓年春,龙跃,孙利民,等.磁通量传感器及其在桥梁工程中的应用[J].预应力技术,2008,(2):17-20
    [1.61]韩大建,苏成,邓江.崖门大桥施工过程的参数识别与调整措施[J].桥梁建设,2003,(1):35-38
    [1.62]陈太聪.结构自适应控制的参数分析新方法研究及其在大跨度斜拉桥施工中的应用[D].华南理工大学博士学位论文,2003
    [1.63]陈太聪,韩大建,苏成.参数灵敏度分析的神经网络方法及其工程应用[J].计算力学学报,2004,21(6):752-756
    [1.64]陈建阳,向木生,郭峰祥,沈成武.大跨度桥梁施工控制中的神经网络方法[J].桥梁建设,2001,(6):42-45
    [1.65]石雪飞.斜拉桥结构参数估计及施工控制系统[D].同济大学博士学位论文,1999
    [1.66]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990
    [1.67]胡召音.灰色理论及其应用研究[J].武汉理工大学学报(交通科学与工程版),2003,7(3):405-411
    [1.68] Fujisawa N., H. Tom. Computer-Aided Cable Adjustment of Stayed Bridge [C].Proceedings of IABSE,1985,4
    [1.69] Tomaka H., Kamei M.. Cable Tension Adjustment by Structural System Identification[J]. Bangkok: Asian Institute of Technology,1987,856-868
    [1.70]吴国胜,卜一之.基于最小二乘法的斜拉桥施工控制中的参数识别[J].四川建筑,2008,(4):180-181
    [1.71]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1999
    [1.72]何玉彬,李新忠.神经网路控制技术及其应用[M].北京:科学出版社,2000
    [1.73]王科俊,王克成.神经网络建模、预报与控制[M].哈尔滨:哈尔滨工程大学出版社,1996
    [1.74]孙勇.城市独塔斜拉桥的施工监控研究与计算分析[D].北京:北京交通大学,2007
    [1.75]周家刚.BP神经网络在大跨径斜拉桥施工控制中的应用研究[D].西安:长安大学,2003
    [1.76]田伟雄.人工神经网络在连续梁桥施工控制中的应用[D].武汉:华中科技大学,2005
    [1.77] Kalman R. E.. A new approach to linear filter and prediction problems[J]. Journal ofBasic Engineering,1960,82(1):35–45
    [1.78]郑自立.卡尔曼滤波与维纳滤波——现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2003
    [1.79]林元培.卡尔曼滤波法在斜拉桥施工中的应用[J].土木工程学报,1983,16(3):7-14
    [1.80]陈太聪,韩大建.结构施工过程中节段参数的连续识别[J].工程力学,2005,22(1):229-234
    [1.81]邓聚龙.灰色控制系统[J].华中工学院学报,1982,10(3):9-17
    [1.82]邓聚龙.灰色控制系统[M].武汉:华中科技大学出版社,1999,
    [1.83] Michel P.. Probabilistic Analysis of Resistance Degradation of Reinforced ConcreteBridge Beams under Corrosion[J]. Engineering Structures,1998,(11):960-971
    [1.84]程霄翔,韩晓林,缪长青,等.基于灰色理论悬臂施工中连续梁桥的应力预测与控制[J].世界桥梁,2009,(4):46-49
    [1.85]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,(3):235-239
    [1.86]郝超.大跨度钢斜拉桥施工误差调整方法研究[J].浙江大学学报(工学版),2003,(3):310-313
    [1.87]钟万勰,刘元芳,纪峥.斜拉桥施工中的张拉控制和索力调整[J].土木工程学报,1992,25(3):9-15
    [1.88]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1983
    [1.89]钱令希.工程结构优化设计[M].北京:水利电力出版社,1983
    [1.90] Kasuga A., Arai H., Breen J. E., Furukawa K.. Optimum cable-force adjustments inconcrete cable-stayed bridges [J]. Journal of Structural Engineering,1995,121(4):685-694
    [1.91] Baldomir A., Hernandez S., Nieto F., Jurado J. A.. Cable optimization of a long span-cable stayed bridge in La Coruna (Spain)[J]. Advances in Engineering Software,41(7-8):931-938
    [1.92] Cassis J. H., Schmit L. A.. On implementation of the extended interior penalty Function [J].International Journal for Numerical Methods in Engineering,1976,(1):1-23
    [1.93]施光燕,钱伟懿,庞丽萍.最优化方法(第二版)[M].北京:高等教育出版社,2007
    [1.94]李明,袁向荣,陈锋.斜拉桥施工阶段索力的最优化调整[J].石家庄铁道学院学报,2002,(3):14-17
    [1.95]张建民,肖汝诚.斜拉桥合理成桥状态确定的一阶分析法[J].力学季刊,2004,25(2):297-303
    [1.96]巩春领,陶海,吴文明,常英.斜拉桥合理成桥状态确定的序列二次规划法[J].7-8力学季刊,2005,26(2)305-309
    [1.97]杜蓬娟,张哲,孙建刚,谭素杰.凝聚函数法求解斜拉桥成桥后误差调整问题研究[J].大连理工大学学报,2009,49(4):536-539
    [1.98]李刚,程耿东.基于性能的结构抗震设计——理论、方法和应用[M].北京:科学出版社,2004
    [1.99]赵国藩,贡金鑫,赵尚传.我国土木工程结构可靠性研究的一些进展[J].大连理工大学学报,2005,40(3):253-258
    [1.100]李杰.随机结构系统——分析与建模[M].北京:科学出版社,1996
    [1.101] Handa K., Anderson K.. Application of finite element methods in statistical analysisof structures [C]. Proceedings of the Third International Conference on StructureSafety and Reliability, Norway,1981
    [1.102] Hisada T., Nakagiri S.. Stochastic finite element method developed for structuresafety and reliability [C]. Proceedings of the Third International Conference onStructure Safety and Reliability, Norway,1981:395~408
    [1.103] Hisada T., Nakagiri S.. Role of the stochastic finite element method in structural saftyand reliability [C]. Proceedings of the Forth International Conference on StructureSafety and Reliability, Kobe, Japan,1985
    [1.104] Astill C. J., Noisseir S. B., Shonozuka M.. Impact loading on structures with randomproperties [J]. Journal of Structure and Mechanic,1972,1(1):63-67
    [1.105] Shonozuka M.. Monte Carlo solution of structural dynamics [J]. Journal ofComputers And Structures,1972,(2):855-874
    [1.106] Shonozuka M., Jan C. M.. Digtal simulation of random processers and itsapplications [J]. Journal of Sound and Vibration,1972,25:111-128
    [1.107] Shonozuka M., Wen Y. K.. Mote Carlo Solution of nonlinear vibration [J]. AmericanInstitute of Aeronautics and Astronautics Journal,1972,10(4):456-462
    [1.108] Shinozuka M.. Deodatis G.. Response variability of stochastic finite element system[J]. Journal of Engineering Mechanics,1988,114(3):499-519
    [1.109] Yamazaki F., Shinozuka M., Dasgupta G.. Neumann expansion for stochastic finiteelement analysis [J]. Journal of Engineering Mechanics,1988,114(8):1335-1354
    [1.110]庞键.大跨度预应力混凝土斜拉桥收缩徐变效应随机分析与可靠度分析[D].广州:华南理工大学,2010
    [1.111]徐郁峰,苏成,陈兆栓,刘韶新.考虑施工过程的异形建筑结构概率分析[J].建筑结构学报,2011,32(8):120-126
    [1.112] Su C., Luo X. F., Yun T. Q.. Aerostatic reliability analysis of long-span bridges [J]. Journal ofBridge Engineering, ASCE,2010,15(3):260-268
    [1.113] Bucher C. G.., Bourgund U.. A fast and efficient response surface approach for structuralreliability problems [J], Structural Safety,1990,7(1):57-66.
    [1.114]梁冯珍,宋占杰,张玉环.应用概率统计[M].天津:天津大学出版社,2004
    [1.115]夏乐天.应用概率统计[M].北京:机械工业出版社,2008
    [1.116]王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007
    [1.117]中华人民共和国建设部,国家质量监督检验检役总局.建筑结构设计统一标准(GBJ68-84)[S].北京:中国建筑工业出版社,1984
    [1.118]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    [1.119]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007
    [1.120]吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990
    [1.121]中华人民共和国交通部.公路工程结构可靠度设计统一标准(GB\T50283-1999)[S].北京:中国计划出版社,1999
    [1.122]张建仁,刘扬,许福友等.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003
    [1.123]张新培.建筑结构可靠度分析与设计[M].北京:科学出版社,2001
    [1.124]刘扬,张建仁,李传习.混凝土斜拉桥施工期的时变可靠度计算[J].中国公路学报,2004,17(17):31-35
    [1.125]梁鹏,肖汝诚,徐岳.超大跨度斜拉桥施工过程随机模拟分析[J].中国公路学报,2006,19(4):53-58
    [1.126] Yang I. H.. Prediction of time-dependent effects in concrete structures using earlymeasurement data [J]. Engineering Structures,2007,29(10):2701-2710
    [1.127]潘钻峰,吕志涛,刘钊,孟少平.苏通大桥连续刚构收缩徐变效应的不确定性分析[J].工程力学,2009,26(9):67-73
    [1.128]陈建军,高伟,刘伟,王芳林.多工况下天线结构的可靠性优化设计[J].机械科学与技术,2002,21(3):373-379
    [1.129] Lee J. H., Kwak B. M.. Reliability-based structural optimal design using theNeumann expansion technique [J]. Computers&Structures,1995,55(2):287-296
    [1.130] Papadrakakis M., Lagaros N. D.. Reliability-based structural optimization usingneural networks and Monte Carlo simulation [J]. Computer Methods in AppliedMechanics and Engineering,2002,191(32):3491-3507
    [1.131] Tsompanakis Y., Papadrakakis M.. Large-scale reliability-based structural optimizati-on [J]. Structural and Multidisciplinary Optimization,2004,26(6):429-440
    [1.132] Papadrakakis M., Lagaros N. D., Plevris V.. Design optimization of steel structuresconsidering uncertainties [J]. Engineering Structures,2005,27(9):1408-1418
    [1.133] Padmanabhan D., Agarwal H., Renaud J., Batill S. M.. A study using Monte Carlosimulation for failure probability calculation in reliability-based optimization [J].Optimization and Engineering,2006,7(3):297-316
    [1.134] Cheng G. D., Xu L., Jiang L.. A sequential approximate programming strategy forreliability-based structural optimization [J]. Computers&Structures,2006,84(21):1353-1367
    [1.135] Chan K. Y., Skerlos S. J., papalambros P.. An adaptive sequential linear programmingalgorithm for optimal design problems with probabilistic constraints [J]. Journal ofMechanical Design,129(2):140-149
    [1.136] Ma H. T., Chen Y. X., Chen T. C., Wei P.. Reliability-based structural optimizationconsidering failure probability [J]. Proceedings of the sixth China-Japan-Korea JointSymposium on Optimization of Structural and Mechanical Systems, Tokyo,2010:22-25
    [1.137]陈宇旋.基于可靠度的结构优化设计研究[D].广州:华南理工大学硕士学位论文,2010
    [1.138]苏成,范学明.考虑材料与荷载变异时崖门大桥施工阶段随机分析[J].桥梁建设,2003,(1):62-65
    [1.139]苏成,范学明.斜拉桥施工控制参数灵敏度与可靠度分析[J].土木工程学报,2005,38(10):81-87
    [1.140]苏成,郭奋涛,徐郁峰.斜拉桥索力测量的可靠度研究[J].桥梁建设,2009,(6):27-30
    [1.141]徐郁峰,苏成,陈兆栓,郭奋涛.频率法索力测量的参数灵敏度概率分析[J].中外公路,2010,28(4):132-136
    [1.142] Su C., Chen Z. S., Chen Z. H.. Reliability of construction control of cable-stayedbridges [J]. Bridge Engineering, ICE,2010,164(1):15-22
    [2.1]王卫峰,徐郁峰,韩大建等.崖门大桥施工中的索力测试技术[J].桥梁建设.2003,(1):23-26
    [2.2]张建仁,王维安,余钱华.高墩大跨连续刚构桥收缩徐变效应的概率分析[J].长沙交通学院学报.2006,22(2):1-7
    [2.3]潘钻峰,吕志涛,刘钊等.苏通大桥连续刚构收缩徐变效应的不确定性分析[J].工程力学,2009,26(9):67~73
    [2.4]郭奋涛.频率法测量索力的参数分析与可靠度研究[D].广州:华南理工大学,2008
    [2.5]吴康雄,刘克明,杨金喜.基于频率法的索力测量系统[J].中国公路学报.2006,(2):62-66
    [2.6]周先雁,王智丰,冯新.基于频率法的斜拉索的斜拉索索力测试研究[J].中南林业科技大学学报.2009,29(2):102-106
    [2.7]王朝华,李国蔚,何祖发.斜拉桥索力测量的影响因素分析[J].世界桥梁.2004,(6):62-67
    [2.8]苏成,徐郁峰,韩大建.有限元法及样条拟合技术在频率法测量索力中的应用[J].公路,2004,(12):28-31
    [2.9]苏成,徐郁峰,韩大建.频率法测量索力中的参数分析与索抗弯刚度的识别[J].公路交通科技.2005,(5):75-78
    [2.10]王瑁成.有限元基本原理和数值方法[M].北京:清华大学出版社,1997
    [2.11]韩大建,徐郁峰,王卫峰.大跨度混凝土斜拉桥主梁应力监测中徐变应变的分离[J].桥梁建设.2003,(1):55-58
    [2.12]丁弢,陈常松.PC斜拉桥主梁应变测试技术研究[J].桥梁建设.2005,(6):79-82
    [2.13]王卫峰,徐郁峰,韩大建.崖门大桥施工中的应力及温度测量[J].桥梁建设,2003,(1):31~34
    [2.14] JTG D62—2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004:118-121
    [2.15]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1998
    [2.16]王卫峰,韩大建.PC斜拉桥施工过程中的主梁应力监测[J].昆明理工大学,2001,26(5):82-85
    [2.17]刘扬,涂荣辉.宜宾长江大桥主梁施工应力测试与分析[J].桥梁建设,2008,(2):71-77
    [2.18]罗家生,徐郁峰,谭林等.新光大桥施工中应力测量[J].中外公路,2008,28(2):121-124
    [2.19]罗秀峰.大跨度桥梁静风响应与气静力稳定性可靠度研究[D].广州:华南理工大学.2004
    [2.20]栾长福,梁满发.概率论与数理统计[M].广州:华南理工大学出版社,2004
    [2.21]苏成,郭奋涛,徐郁峰.斜拉桥索力测量可靠度研究[J].桥梁建设.2009,(6):27-30
    [2.22]广东省公路勘察规划设计研究院有限公司.国道主干线广州绕城公路南环段S16合同段甘竹溪特大桥两阶段施工图设计[R].广州:广东省公路勘察规划设计研究院有限公司,2005
    [2.23]江苏法尔胜新日制铁缆索有限公司.甘竹溪特大桥斜拉索制造资料[R].2009
    [2.24]徐郁峰,苏成,陈兆栓等.频率法索力测量的参数灵敏度概率分析[J].中外公路,2010,(4):132-136
    [2.25]华南理工大学城市建设研究中心.甘竹溪特大桥施工监控总结报告[R].广州:华理工大学城市建设研究中心,2010
    [2.26]饶瑞.大跨度混凝土箱梁徐变效应研究[D].广州:华南理工大学,2009
    [2.27]中华人民共和国国家统计局.广东统计年鉴[M].北京:中国统计出版社,1999-2011
    [3.1]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [3.2]中华人民共和国交通部.公路钢筋混凝土及预应力钢筋混凝土桥涵设计规范(JTG D62-2004)[S].北京:人民交通出版社,2004
    [3.3]陈太聪,苏成,韩大建.桥梁节段施工过程中混凝土收缩徐变效应仿真计算[J].中国公路学报,2003,(4):56-59
    [3.4]金成棣.混凝土徐变对超静定结构变形及内力的影响——考虑分段加载龄期差异及延迟弹性影响[J].土木工程学报,1981,14(8):19-33
    [3.5]周履,诸林,黎锡吾.长跨度预应力混凝土铁路连续梁的收缩徐变计算.桥梁建设,1984,(4):59-72
    [3.6] Fleming J. F.. Nonlinear static analysis of cable-stayed bridge structures[J]. Computerand Structures,1979,10(4):621-635
    [3.7] Nazmy A. S., Abdel-Ghaffar A. M.. Three-dimensional nonlinear static analysis ofcable-stayed bridges. Computer and Structures,1990,34(2):257-271
    [3.8]陈太聪.结构工程自适应控制的参数分析新方法及其在大跨度斜拉桥施工中的应用[D].广州:华南理工大学博士学位论文,2003
    [3.9]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [3.10]陈务军,关富玲,袁行飞,陈向阳.斜拉桥施工控制分析中线性与非线性影响分析[J].中国公路学报,1998,11(2):52-58
    [3.11]林元培.斜拉桥[M].北京:人民交通出版社,2004
    [3.12] Vanmarcke E.. Random Fields, Analysis and Synthesis[M]. Cambridge: MIT Press,1983
    [3.13] Liu P. L., Der Kiureghian A. Finite element reliability of geometrically non-linearuncertain structures[J]. Journal of Engineering Mechanics,1989,117(8):1806-1825
    [3.14] Liu P. L., Der Kiureghian A. Multi-variate distribution models with prescribedmarginals and covariances[J]. Probabilistic Engineering Mechanics,1986,1(2):105-112
    [3.15]欧俊豪,王家生,徐漪萍,刘嘉焜.应用概率统计[M].天津:天津大学出版社,1999
    [3.16]夏乐天.应用概率统计[M].北京:机械工业出版社,2008
    [3.17]王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,2007
    [3.18] Su C., Luo X. F., Yun T. Q.. Aerostatic reliability analysis of long-span bridges[J].Journal of Bridge Engineering, ASCE,2010,15(3):260-268
    [3.19]徐郁峰,苏成,陈兆栓,刘韶新.考虑施工过程的异形建筑结构概率分析[J].建筑结构学报,2011,32(8):120-126
    [3.20]苏成,范学明.斜拉桥施工控制参数灵敏度与可靠度分析[J].土木工程学报,2005,38(10):81-87
    [3.21]广东省公路勘察规划设计研究院有限公司.国道主干线广州绕城公路南环段S16合同段甘竹溪特大桥两阶段施工图设计[R].广州:广东省公路勘察规划设计研究院有限公司,2005
    [3.22]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007
    [3.23]饶瑞.大跨度混凝土箱梁桥徐变效应研究[D].广州:华南理工大学博士学位论文,2009
    [3.24]程进,肖汝诚.斜拉桥结构静力可靠度分析[J].同济大学学报(自然科学版),2004,32(12):1593-1598
    [3.25]中华人民共和国国家统计局.广东统计年鉴[M].北京:中国统计出版社,1999~2011
    [4.1]吴国胜,卜一之.基于最小二乘法的参数识别方法在斜拉桥施工控制中的应用[J].中外公路,2008,28(6):108~110
    [4.2]徐郁峰.大跨度预应力混凝土斜拉桥施工控制理论与核心技术研究及软件开发[D].广州:华南理工大学,2004
    [4.3] Sorenson H. W.. Parameter estimation: principles and problems [M]. New York:Dekker,1980
    [4.4] Ljung L.. Consistency of the least squares identification method [J]. Selected Paper onControl Theory,1979,1
    [4.5]陈太聪,韩大建.大跨度斜拉桥施工过程中的主梁节段自重识别[J].土木工程学报,2005,38(2):68~74
    [4.6]韩永利.最小二乘法在混凝土斜拉桥施工控制中的应用[D].成都:西南交通大学,2004
    [4.7]庞键.大跨度预应力混凝土斜拉桥收缩徐变效应随机分析与可靠度分析[D].广州:华南理工大学,2010
    [4.8]徐郁峰,苏成,陈兆栓.斜拉桥主梁节段施工过程标高与索力控制可靠度分析[J].华中科技大学学报(城市科学版),2010,27(2):34~39
    [4.9]张新培.建筑结构可靠度分析与设计[M].北京:科学出版社,2001
    [4.10]郭奋涛.频率法测量索力的参数分析与可靠度研究[D].广州:华南理工大学,2008
    [4.11]栾长福,梁满发.概率论与数理统计[M].广州:华南理工大学出版社,2004
    [4.12] Su C., Chen Z. S., Chen Z. H.. Reliability of Construction Control of Cable-StayedBridges [J]. Bridge Engineering, ICE,2011,164(1):15~22
    [5.1]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1983
    [5.2]钱令希.工程结构优化设计[M].北京:水利电力出版社,1983
    [5.3]施光燕,钱伟懿,庞丽萍.最优化方法[M].北京:高等教育出版社,2007
    [5.4]杜蓬娟,张哲,孙建刚,谭素杰.凝聚函数法求解斜拉桥成桥后误差调整问题研究[J].大连理工大学学报,2009,49(4):536-539
    [5.5] Hestenes M. R.. Multiplier and gradient methods[J]. Journal of Optimization Theoryand Applications,1969,(4):303-320
    [5.6] Powell M. J. D.. A method for nonlinear constraints in minimization problems[C].Optimization. New York: Academic Press,1969:283-298
    [5.7] Du X. W., Yang Y. J., Li M. M.. Further studies on the Hestenes-Powell AugmentedLagrangian Function for Equality constraints in nonlinear programming problems[J].OR Transactions,2006,10(1):38-46
    [5.8] Du X. W., Li Y., Li Q., Qin S.. Exactness properties or the Hestenes-Powellaugmented Lagrangian Function for inequality constrained optimization problems[J].Chinese Journal of Engineering Mathematics,2009,26(1):138-146
    [5.9]韩大建,苏成,王卫锋.崖门大桥施工监控技术流程与主要成果[J].桥梁建设,2003,(1),5~8
    [5.10] Kasuga A., Arai H., Breen J. E., Furukawa K.. Optimum cable-force adjustments inconcrete cable-stayed bridges[J]. Journal of Structural Engineering,1995,121(4):685-694
    [5.11]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,26(3):235-240
    [5.12]张建民,肖汝诚.斜拉桥合理成桥状态确定的一阶分析法[J].力学季刊,2004,25(2):297-303
    [5.13]项春领,陶海,吴文明,常英.斜拉桥合理成桥状态确定的序列二次规划法[J].力学季刊,2005,26(2):305-309
    [5.14]李明,袁向荣,陈锋.斜拉桥施工阶段索力的最优化调整[J].石家庄铁道学院学报,2002,15(3):14-22
    [5.15]唐祖宁,肖汝诚.既有预应力混凝土斜拉桥内力状态的优化调整[C].中国土木工程学会桥梁及结构工程学会第十六届年会论文集,2004
    [5.16]肖汝诚.关心截面内力与位移调整计算的影响矩阵法[J].华东公路,1991,(5):24-32
    [5.17]张建民.大跨度斜拉桥施工过程中的索力优化与线型控制[R].上海:同济大学,博士后研究工作报告,2004
    [5.18]陶全心,李著景.结构优化设计方法[M].北京:清华大学出版社,1985
    [5.19]陈宇旋.基于可靠度的结构优化设计研究[D].广州:华南理工大学,2010
    [5.20] Kuschel N., Rackwitz R.. Two basic problems in reliability-based structuraloptimization[J]. Mathematical Methods of Operations Research,1997,(46):309-333
    [5.21]李建生,谢英魁,蔡荫林.结构系统可靠度约束下的一种结构优化方法[J].哈尔滨船舶工程学院学报,1994,15(4):25-35
    [5.22]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    [5.23]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007
    [5.24]吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990
    [6.1]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000
    [6.2]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001
    [6.3]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003
    [6.4]顾安邦,张永水.桥梁施工监测与控制[M].北京:机械工业出版社,2005
    [6.5]韩大建,苏成,王卫锋.崖门大桥施工监控技术流程与主要成果[J].桥梁建设,2003,(1):5-8
    [6.6]李杰.随机结构系统——分析与建模[M].北京:科学出版社,1996
    [6.7]苏成,陈太聪,韩大建,邓江.崖门大桥主梁牵索挂篮施工模拟计算[J].桥梁建设,2003,(1):12-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700