用户名: 密码: 验证码:
气动力有理函数识别与颤振稳定性的多因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接识别气动力有理函数可以同时满足时域和频域颤振分析对前期气动力信息的需求,相应的理论体系和试验技术的建立具有重要的工程实用价值。随着桥梁结构向轻柔大跨方向发展,有必要深入研究拉索振动和拉索气动力形成的拉索效应、风的静力附加攻角效应、气动控制措施等因素对颤振稳定性的影响。为此,本文开展了以下几方面的工作:
     (1)建立了基于三自由度节段模型自由振动法和强迫振动法气动力有理函数识别的理论体系,编制了强迫振动气动力有理函数的识别程序。强迫振动法试验结果证明适当选择两个试验风速即可有效识别气动力有理函数及与之对应的气动导数,为气动导数识别提供了一条新途径,能显著降低风洞试验工作量,可在工程中推广应用。
     (2)提出了快速拟合气动力有理函数系数的粒子群优化算法,算法为全局最优。在有理函数表达的气动力基础上,提出了在ANSYS中实现纯时域颤振分析的新方法,其中气动力中的气动刚度及气动阻尼部分通过MATRIX27单元实现,而递推部分则作为外部荷载处理。
     (3)给出了拉索非定常气动力矩阵的显示表达式,编制了相应的程序模块,并嵌入到现有NACS程序中,实现了计入拉索气动力的颤振分析程序开发。建立了一种凝聚拉索质量的斜拉桥有限元新模型,解决了拉索分段之后扭转振型阶次过高的问题。在ANSYS中,通过在新模型的索单元节点处设置MATRIX27(?)单元,考虑了拉索气动力和拉索振动对斜拉桥颤振稳定性的影响,结果表明这两项因素的联合作用使颤振临界风速提高。通过强迫振动法装置识别气动导数有效克服了传统自由振动法中存在的附加攻角问题,并进行了加密攻角变化步长的气动导数识别试验,实现了在ANSYS中自动计入附加攻角效应的颤振计算方法,能有效考虑气动力非线性。
     (4)基于有限元三维颤振分析,从能量原理的角度明确了中央稳定板对桁架梁悬索桥颤振的作用机理是增加了竖弯自由度的参与程度,使颤振形态由单自由度扭转振动向弯扭耦合振动转移。将三维桁架结构简化成二维模型,通过CFD数值模拟以及PIV风洞试验从细观的角度探明了中央稳定板对桁架梁悬索桥断面绕流的作用机理。
Direct identification of aerodynamic rational function can meet the preliminary information of aerodynamic force for time domain and frequency domain of flutter analysis. So the establishment of corresponding theory and test technique has important practical engineering value. In order to investigate the influence factors to flutter stability, it is necessary to investigate the effect of cables caused by aerodynamic force and the vibration of cables, and the aerodynamic nonlinear effect induced by aerostatic additional Angle of attack, and the aerodynamic control measures. Therefore, this thesis carried out the following aspects of work:
     (1) The aerodynamic rational function identification theory which is based on three degrees of freedom sectional model both for free vibration and forced vibration was established, and aerodynamic rational functions identification program was developed. The analysis results show that proper selection of two test wind speed can identify rational functions and the corresponding aerodynamic derivatives. It is evident that this method reduces drastically wind tunnel experiment work, and can be applied in actual projects
     (2) The fast technique for fitting rational function coefficients by particle swarm optimization algorithm for global optimum is presented, and it provides global optimal values. Based on the rational functions-based unsteady forces identified above, a complete time-domain method for analyzing bridge is developed and implemented in ANSYS. The aerodynamic stiffness and damping portions of aerodynamic forces is modeled by Matrix27in ANSYS while the remaining recursive portions are treated as external loadings during time-domain simulation.
     (3) The explicit expressions for unsteady aerodynamic forces were derived for stay cables and a FORTRAN program based on this theory was implemented in special flutter analysis program NACS to consider the effect of unsteady aerodynamic forces of cables on flutter. A new finite element model of cable-stayed bridges is developed that condenses the mass of multiple elements of a cable to cable end node to effectively eliminate the local cable modes during modal analysis. By attaching MATRIX27element at cable elements' nodes, the aerodynamic and cable vibration effects on flutter stability of cable-stayed bridge were taken into account. It is shown that the combined effect of these two factors promote flutter critical wind velocity. The forced vibration device for flutter derivatives identification can circumvents the additional attack angles which exists inherently for free vibration device. The flutter analysis accounting for the additional attack angle effect can be realized in ANSYS automatically for considering aerodynamic nonlinearity effectively.
     (4) The mechanism of central stabilizer for improving flutter performance is investigated based on modal energy participation in flutter state and3D flutter analysis. It is the increase of the energy participation of vertical bending degrees of freedom that leads to energy transfer of unstable torsion modes to the stable bending modes, and therefore promoting flutter velocity. Through the CFD numerical simulation and PIV wind tunnel test, micro mechanism of aerodynamic mechanism of improvement of flutter stability of long-span truss-girder suspension bridge using central stabilizer was studied.
引文
[1]项海帆,葛耀君,朱乐东等.现代桥梁抗风理论与实践.北京:人民交通出版社,2005,1-450
    [2]陈政清.桥梁风工程.北京:人民交通出版社,2005,1-190
    [3]BOONYAPINYO V, YAMADA H, MIYATA T. Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges. Journal of Structural Engineering,1994,120(2):486-506,
    [4]MIYATA T, YAMADA H. On an application of the direct flutter FEM analysis for long-span bridges. In:Proc 9th Int Conf on Wind Engineering. New Delhi. 1995,1033-1041
    [5]方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论研究:[同济大学博士论文].上海:同济大学,1997,20-36
    [6]方明山,项海帆,肖汝城.超大跨径悬索桥空气静力非线性行为研究.重庆交通学院学报,1999,18(2):1-7
    [7]程进.缆索承重桥梁非线性空气静力稳定性研究:[同济大学博士学位论文].上海:同济大学,2000,1-100
    [8]CHENG J, JIANG J J. Nonlinear aerostatic stability analysis of Jiangjin suspension bridge. Engineering structure,2002,24:773-781
    [9]张志田.大跨度桥梁非线性抖振及其对风致稳定性影响的研究:[同济大学博士学位论文].上海:同济大学,2004,59-79
    [10]张志田,葛耀君.考虑抖振影响的大跨度桥梁静风稳定性分析.工程力学,2006,23(8):96-101
    [11]胡晓伦.大跨斜拉桥颤抖振响应及静风稳定性分析:[同济大学博士学位论文].上海:同济大学,2006,22-125
    [12]宋锦忠,曹丰产,丁泉顺等.鄂东长江公路大桥主桥抗风稳定性试验研究.见:第十三届全国结构风工程学术会议论文集.北京:2007,534-539
    [13]Schewe G., Larsen A. Reynolds number effects in the flow around a bluff bridge deck cross section. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74-76:829-838
    [14]Larsen A., Esdahl S, et al. Storebelt suspension bridge-vortex shedding excitation and mitigation by guide vanes. Journal of Wind Engineering and Industrial Aerodynamics,2000,88:283-296
    [15]Battista R C, Pfeil M S. Reduction of vortex-induced oscillations of Rio-Niteroi Bridge by dynamic control devices. Journal of Wind Engineering and Industrial Aerodynamics,2000,84:273-288
    [16]Fujino Y, Yoshida Y. Wind-induced vibration and control of Trans-Tokyo Bay Crossing Bridge. Journal of Structural Engineering,2002,128(8):1012-1025
    [17]Shiraishi N, Matsumoto M. On classification of vortex-induced oscillation and its application for bridge structures. Journal of Wind Engineering and Industrial Aerodynamics,1983,15:419-430
    [18]Nakamura Y, Nakashima M. Vortex excitation of prisms with elongated rectangular, H and+ cross-sections. Journal of Fluid Mechanics,1986,163: 149-169
    [19]Matsumoto M, Ihizakih H, et al. Aerodynamic effects of the angle of attack upon a rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics,1988,77-78:531-542
    [20]Nagao F, Utsunomiya H, et al. Effects of handrails on separated shear flow and vortex-induced oscillation. Journal of Structural Engineering,1997,69-71: 819-827
    [21]Diana G, Resta F, et al. On the vortex shedding forcing on suspension bridge deck. Journal of Wind Engineering and Industrial Aerodynamics,2006,94, 341-363
    [22]王骑,陶奇,廖海黎等.鄂东大桥主梁大尺度节段模型涡激振动特性试验研究.见:第十三届全国结构风工程学术会议论文集.大连:2007,546-549
    [23]杜柏松,葛耀君,李永军.桥梁断面涡激振动的尾流测试方法.见:第十一届全国结构风工程学术会议论文集.三亚:2003,189-194
    [24]李永军,葛耀君,杜柏松.大跨度桥梁广义非线性涡激力模型及其试验研究.见:第十一届全国结构风工程学术会议论文集,三亚:2003,229-234
    [25]Ge Y J, Xiang H F. Recent development of bridge aerodynamics in China. Journal of Wind Engineering and Industrial Aerodynamics,2008,96:736-768
    [26]张伟,葛耀君等.分离双箱高低雷诺数涡振的试验研究.空气动力学学报,2008,26(3),356-359
    [27]Davenport A G. The application of statistical concepts to the wind loading of structures. In:Proc ICE,1961,19:449-472
    [28]Davenport A G. Buffeting of a suspension bridge by storm winds. Journal of Struct Engrg Div,1962,88(6):233-264
    [29]Scanlan R H. The action of flexible bridges under wind, I:flutter theory. Journal of Sound and Vibration,1978,60(2):201-211
    [30]陈伟.大跨度桥梁抖振反应谱研究:[同济大学博士学位论文].上海:同济大学,1993,1-86
    [31]Jain A, Jones N P, Scanlan R H. Coupled flutter and buffeting analysis of long-span bridges. Journal of Structure Engineering,1996,122(7):716-725
    [32]Xu Y L, Sun D K, Ko J M, Lin J H. Buffeting analysis of long-span bridges:a new algorithm. Computers and Structures,1998,68:303-313
    [33]Minh N N, Miyata T, Yamada H, Sanada Y. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:301-315
    [34]Katsuchi H, Jones N P, Scanlan R H. Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge. Journal of Struct Engrg ASCE, 1999,125(1):60-70
    [35]Chen X, Matsumoto M, Kareem A. Aerodynamic coupled effects on flutter and buffeting of bridges. Journal of Engrg Mech ASCE,126(1),2000,17-26
    [36]Ding Q S, Chen A R, Xiang H F. Coupled buffeting response analysis of long-span bridges by the CQC approach. Structural Engineering and Mechanics, 2002,14(5):505-520
    [37]Lin Y K, Ariaratnam S T. Stability of bridge motion in turbulent wind. J. Struct. Mech,1980,108(1):1-15
    [38]Lin Y K, Yang J N. Multimode bridge response to wind excitation. J. Engrg Mech. Vol 109(2),1983,586-603
    [39]Kovacs I, Svensson H S. Jordet E, Analytical aerodynamic investigation of cable-stayed Helgeland Bridge. J. Struct. Engrg. ASCE,1992,118(1):147-168
    [40]Chen X, Matsumoto M, Kareem A. Time domain flutter and buffeting response analysis of bridges. J Engrg Mech ASCE,2000,126(1):7-16
    [41]丁泉顺.大跨度桥梁耦合颤抖振响应的精加密分析:[同济大学博士学位论文].上海:同济大学,2001,1-66
    [42]Denhartog, J P. Mechanical vibration.1956, New York:McGaw Hill
    [43]Nigol O, Buchan P G. Conductor galloping-partl denhartog mechanicasm,1981, 100(2):699-707
    [44]Nigol O, Buchan P G. Conductor galloping-part2 Torsional mechanicasm. IEEE Power Apparatus and Systems,1981,100(2):708-720
    [45]John H G, Macdonalda, Larose G L. Two-degree-of-freedom inclined cable galloping-Part 1:General formulation and solution for perfectly tuned system, 2008,96(3):291-307
    [46]John H G, Macdonalda, Laroseb G L. Two-degree-of-freedom inclined cable galloping-Part 2:Analysis and prevention for arbitrary frequency ratio,2008, 96(3):308-326
    [47]Simiu E, Scanlan R H Wind Effects on Structures third edition John Wiley Sons: New York,1996,1-262
    [48]Kazakevich M I, Vasilenko A G, Closed analytical solution for galloping aeroelastic self-oscillations,1996,65:353-360
    [49]李寿英,陈政清.斜拉桥拉索安装亮化灯具的风致稳定性研究.工程力学,2008,25(s1):94-98
    [50]李胜利,欧进萍.大跨径悬索桥施工期暂态主缆驰振分析.土木工程学报,2009,42(9):74-81
    [51]顾明,项海帆.斜拉桥桥塔的驰振响应分析.空气动力学学报,1991,9(4):488-494
    [52]黄斌,刘文军.高耸结构的驰振响应分析.特种结构,2004,21(3):63-66
    [53]Theodorson T. General theory of aerodynamic instability and the mechanism of flutter. NACA Report No.496, US National Advisory Committee for Aeronautics, Langley, VA,1935,1-6
    [54]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,2002,416-418
    [55]Bleich F. Dynamic instability of truss-stiffened suspension bridges under wind action. Proc. ASCE,1948,74(7):1269-1314
    [56]Selberg A. Aerodynamic effects on suspension bridges. In:Proceeding of International Symposium on Wind Effects on Buildings and Structures, Teddington,1963,2:462-486
    [57]Kloppel K, Thield F. Modell ver suche in wind kanal zur bemessng vorucken gegen die gefahr winderregter schwingungen. Stahlbau,1967,20(12):2-10
    [58]Van D P. Rigidity of structures against aerodynamic forces. International Association of Bridge and Structural Engineering,1976,1-9
    [59]于向东.大跨桥梁气动导数识别的强迫振动法研究:[博士学位论文].长沙:中南大学,1-18
    [60]Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives, Journal of Engineering. Mechanics.1971,97(6):1717-1737
    [61]Huston D. R. The effects of upstream gusting on the aeroelastic behavior of long suspended-span bridges:[dissertation]. Princeton:University of Princeton,1986, 82-99
    [62]Jones N P, Jain A, Scanlan R H. Multi-mode aerodynamic analysis of long-span bridges. Proceeding of Structure Congress, ASCE, Atlanta, Georgia, April,1994
    [63]Scanlan R H. The action of flexible bridges under wind, I:flutter theory. Journal of Sound and Vibration,1978,60(2):187-199
    [64]谢霁明,项海帆.桥梁三维颤振分析的状态空间法.同济大学学报,1985,3:1-13
    [65]Agar T J A. Aerodynamic flutter analysis of suspension bridges by a modal technique. Journal of Engineering Structure,1989,11(2):75-82
    [66]Namini A, Albrecht P, Bosch H. Finite element-based flutter analysis of cable-suspended bridges. Journal of Structure Engineering,1992,118 (6):1509-1526
    [67]陈政清.桥梁颤振临界风速值上下限预测与多模态参与效应,1993结构风工程研究的新进展及应用,197-203
    [68]陈政清.桥梁颤振临界状态的三维分析与机理研究.见:1994年斜拉桥国际学术会议论文集.上海,1994,302-306
    [69]华旭刚,陈政清.桥梁风致颤振临界状态的全域自动搜索法.工程力学,2002,19(2):68-72
    [70]Miyata T, Yamada H. Coupled flutter estimate of a suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics,1990,33(1-2):341-348
    [71]Ge Y J, Tanaka H. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches. Journal of Wind Engineering and Industrial Aerodynamics,2000,86(2-3):123-153
    [72]Ge Y J, Xiang H F, Tanaka H. Application of a reliability analysis model to bridge flutter under extreme winds. Journal of Wind Engineering and Industrial Aerodynamics,2000,86(2-3):155-167
    [73]Ding Q, Chen A, Xiang H. Coupled flutter analysis of long-span bridges by multimode and full-order approaches. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(12-15):1981-1993
    [74]华旭刚,陈政清.基于ANSYS的桥梁全模态颤振频域分析方法.中国公路学报,2007,20(5):41-47
    [75]Hua X G, Chen Z Q, Ni Y Q, et al. Flutter analysis of long-span bridges using ANSYS. Wind and Structures,2007,10(1):61-82
    [76]Agar T T A. The analysis of aerodynamic flutter of suspension bridges. Computer and Structure,1988,30:593-600
    [77]Scanlan R H. Indicial aerodynamic functions for bridges decks. Journal of Engineering Mechanics,1974,100:657-672
    [78]Lin Y K, Yang J N. Multimode bridge response to wind excitations. Journal of Engineering Mechanics,1983,109(2):586-603
    [79]张志田.大跨度桥梁非线性抖振及其对抗风稳定性影响的研究:[同济大学博士学位论文].上海:同济大学,2004,59-79
    [80]张志田,卿前志,陈政清.桥梁颤振稳定峡谷效应时域分析.工程力学,2010,27(11):113-119
    [81]华旭刚,陈政清,祝志文.在ANSYS中实现颤振时程分析的方法.中国公路学报,2002,15(4):32-34
    [82]Santos J C, Miyata T, Yamada H. Gust response of a long span bridge by the time domain approach. In:Proceedings of the third Asia Pacific Conference on Wind Engineering. Hong Kong,1993,137-142
    [83]Wilde K, Fujino Y, Masukawa J. Time domain modeling of bridge deck flutter. Structure. Engineering/Earthquake Engineering,1996,13 (2):93-104
    [84]Chen X Z, Matsumoto M, Kareem A. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics,2000,126(1): 7-16
    [85]黄汉杰,李明水,贺德馨.大气湍流中的悬索桥颤振时域分析.空气动力学学报,2005,23(1):10-15
    [86]Costa C, Borri C. Application of indicial functions in bridge deck aeroelasticity. Journal of Wind Engineering and Industrial Aerodynamics,2006,94:859-881
    [87]Diana G, Bruni S, Collina A, et al. Aerodynamic challenges in super long span bridges design. Bridge aerodynamics.1998,131-144
    [88]谢霁明.识别非定常气动力模型的初始脉冲耦合振动法.空气动力学学报,1986,4(3):258-268
    [89]Chowdhury A, Sarkar P. Experimental identification of rational function coefficients for time-domain flutters analysis. Engineering structures,2005,27: 1349-1364
    [90]Cao B C, Sarkar P. Identification of rational functions by forced vibration method for time-domain analysis of flexible structures.In:The 5th International Symposium on Computational Wind Engineering,2010,525-533
    [91]Cheng S H. Structural and aerodynamic stability analysis of long-span cable-stayed bridges:[dissertation]. Ottawa:University of Carleton, 1999,20-125
    [92]许福友,陈艾荣.苏通大桥三维颤振分析.工程力学,2008,25(8):139-144
    [93]陈艾荣,许福友,马如进.苏通大桥成桥状态气弹模型失稳分析.见:第十 二届全国结构风工程学术会议论文集.西安:2005,307-311
    [94]曹丰产,葛耀君.桥梁节段模型试验的风攻角与静力扭转发散.见:第十届全国结构风工程学术会议论文集.西安:2005,302-306
    [95]朱青,朱乐东,郭震山.节段模型静风附加攻角对颤振性能的影响.见:第十四届全国结构风工程学术会议论文集.北京:2009,719,724
    [96]张新军.缆索承重桥梁颤振稳定性研究:[浙江大学博士后出站报告].杭州:浙江大学,2003,28-71
    [97]徐洪涛,廖海黎.特大跨径桁架加劲梁桥颤振稳定性气动优化措施风洞试验研究.公路交通科技,2010,27(2):48-53
    [98]Sato H, Ogiham K. Aerodynamic characteristics of slotted box girders, In:Proc of Bridges into 21st century,1995,721-72
    [99]Ued A O, Tanaka H, Matsushita Y. Aerodynamic stabilization for super long-span suspension bridge. In:Proc IABSE Symposium Long-span and High-Rise Structures. kode,1998,721-728
    [100]Xiang H F, Ge Y J. On aerodynamic limit to suspension bridge.In:Proc of the 11th International Conference of Wind Engineering, Lubbock, USA,2003,65-79
    [101]Ge Y J. Xiang H F, Bluff body aerodynamics application in challenging bridge spans length. BBAA VI International Colloquium on Bluff Bodies Aerodynamics and Applications. Italy,2008,20-24
    [102]谭潇,朱乐东.中央稳定板对大跨度开槽桁架梁悬索桥颤振稳定性的影响.结构工程师,2009,24(2):66-71
    [103]Wilde K, Fujino Y, Kawakami T. Analytical and experimental study on passive aerodynamic control of utter of a bridge deck Journal of Wind Engineering and Industrial Aerodynamics,1999,80:105-119
    [104]Hasan A, Uwe S. Passive control of bridge deck flutter using tuned mass dampers and control surfaces In:7th European Conference on structural dynamics,2008, E298
    [105]曾宪武,韩大建.基于多模态耦合颤振理论桥梁颤振MTMD控制鲁棒性分析.工程力学,2005,22(4):74-83
    [106]顾明,吴炜,项海帆等.大跨桥梁颤振控制的试验研究.同济大学学报,1996,24(2):124-129
    [107]孙洪鑫,王修勇,陈政清等.磁流变式调谐液柱阻尼器对桥梁风致扭转振动的控制效果.中国公路学报,2010,23(1):58-65
    [108]Matsumoto M, Kobayashi Y, Niihara Y H, Shirato, Hamasaki H. Flutter mechanism and its stabilization of bluff bodies. In:Proc of 9ICWE. New Delhi, 1995,109-116
    [109]Matsumoto M, Yoshizumi F, Yabutani T, Nakajima K N. Flutter stabilization and heaving-branch flutter. Journal of Wind Engineering and Industrial Aerodynamics,1999,83,42-56
    [110]Matsumoto M, Shirato H, Shijo R, Eguchi A, Hikida T. Flutter stabilization of long span bridges. In:Proc of the 2nd International Symposium on Advances in Wind and Structures,2002,62-66
    [111]杨詠听.大跨度桥梁二维颤振机理及其应用研究:[同济大学博士学位论文].上海:同济大学,2002,1-58
    [112]杨詠听,葛耀君,项海帆.中央稳定板颤振控制效果和机理研究.同济大学学报自然科学版,2007,35(2):149-155
    [113]杨詠听,葛耀君,曹丰产.大跨悬索桥中央开槽箱梁断面的颤振性能.中国公路学报,2007,20(3):35-40
    [114]丁泉顺,朱乐东.主梁断面气动耦合颤振分析与颤振机理研究.土木工程学报,2007,40(3):69-73
    [115]Larsen A. Aerodynamics of the Tacoma Narrows Brigde-60 years later. Journal of Structural Engineering International,2000,10:243-252
    [116]Watanabe S, Fumoto K. Aerodynamic study of slotted box girder using computational fluid dynamics. Journal of Wind Engineering and Industrial Aerodynamics,2008,10-11:1885-1894
    [117]SARWAR M W, ISHIHARA T. Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures. Journal of Wind Engineering and Industrial Aerodynamics, 2010, in press
    [118]辛大波,李惠,欧进萍.提高大跨桥梁风致颤振稳定性的定常吸气方法.见:第十四届全国结构风工程学术会议论文集.北京,2009,208-212
    [119]北京立方天地发展科技有限公司粒子图像分析系统V2.3使用手册.北京:20-21
    [120]Palombi E G, Kopp A, Gurka R. Particle image velocimetry measurements of wake flows of various bridge sections. In:The fourth international symposium on computational wind engineering. Yokohama 2006,65-73
    [121]张伟,葛耀君.H形断面桥梁风致振动的流场机理.土木工程学报,2009,42(5):90-95
    [122]张伟.基于粒子图像测速技术的桥梁风致振动细观机理研究:[同济大学博士学位论文].上海:同济大学,2008,25-156
    [123]刘祖军.大跨桥梁颤振过程中的能量转化机理:[同济大学博士学位论文].上海:同济大学,2011,111-137
    [124]Fujino Y, Wilde K, Masukawa J, Bhartia B. Rational approximation of aerodynamic forces on bridge deck application to active control of flutter. In: Proc 9th int conWiley Eastern Ltd,1995,994-1005
    [125]罗延忠,陈政清.桥梁气动导数自由振动识别的分段扩阶最小二乘迭代算法.振动与冲击,2006,25(3):48-53
    [126]郭震山.桥梁断面气动导数识别的三自由度强迫振动法:[同济大学博士学位论文].上海:同济大学,2006,42-68
    [127]牛华伟.气动导数识别的三自由度强迫振动法及颤振机理研究:[湖南大学博士学位论文].长沙:湖南大学,2007,85-96
    [128]丁泉顺.大跨桥梁耦合颤抖振分析.上海:同济大学出版社,2007,104-105
    [129]张志田,卿前志,陈政清.桥梁颤振稳定峡谷效应时域分析.工程力学,2010,27(11):113-119
    [130]张志田,胡海波,陈政清.桥梁气动阶跃函数及颤振时域算法中的数值问题.见:第十四届全国结构风工程学术会议论文集.北京,2009,637-648
    [131]Kwok N M, Ha Q P, Nguyen T H, et al. A novel hysteretic model for magetorheological fluid dampers and parameter identification using particle swarm optimization. Sensors and Actuators A,2006,132:441-451
    [132]Lin Y K, Li Q C, Su T C. Application of a new wind turbulence model in predicting motion stability of wind-excited long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics,199349:507-516
    [133]Shi Y, Eberhart R. A Modified particle swarm optimizer. In:IEEE world congress on computational intelligence. anchorage,1998,69-73
    [134]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1999,126-186
    [135]Bathe K J. Finite element procedurces.simon and schuster/A Viacom company, 1996,780-786
    [136]Miyat T, YAMADAH, et al. On an application of the direct flutter FEM analysis for long-span bridges. In:Proc Int Conf on Wind Enering. New Delhi,1995, 1033-1041
    [137]Diana G, Resta F, Zasso A, et al. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:441-462
    [138]Zdravkovich M M. Flow around circular cylinders. London:Oxford University, 1997,46-98
    [139]Cheng S, Irwin P A, Jakobsen J B et al. Divergent motion of cables exposed to skewed wind. In:Proceedings of the 5th International Symposium on Cable Dynamics, Santa Margherita,2003,271-278
    [140]Larose G L, Jakobsen J B, Savage M G etl. Wind tunnel experiments on an inclined and yawed stay cable model in the critical Reynolds number range. In: Proc of the 5th International Symposium on Cable Dynamics, Santa Margherita, 2003,279-286
    [141]吴鸿庆,任侠.结构有限元分析.北京:中国铁道出版社,2000,19-26
    [142]中交公路规划设计院.公路桥梁抗风设计规范.北京:人民交通出版社,2004,62-69
    [143]陈艾荣,马如进.苏通长江公路大桥主桥结构抗风性能研究.同济大学土木工程防灾国家重点实验室.
    [144]常岭,李振邦.结构动力学.北京:人民交通出版社,1996,306-312
    [145]刘慕广.两类大长细比桥梁构件的风振特性研究:[湖南大学博士学位论文].长沙:湖南大学,2008,127-131
    [146]Kazama K, Yamada H, Miyata T. Wind resistant design for long span suspension bridges. Journal of Wind Engineering and Industrial Aerodynamics,1995,54: 65-74
    [147]陈政清,张志田,廖建宏.矮寨大桥悬索桥抗风设计研究.见:第十八届全国桥梁学术会议会议论文集.天津:2008,734-742
    [148]Meter F, Zonal. Two Eguation Turbulence Models for Aerodynamic Flows, AIAA Paper 1993 1993-2906,
    [149]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004,126-128
    [150]Xie Z T, Li J C. An SGS model and its application. Communications in Nonlinear Science and Numerical Simulation,1999,4(2):87-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700