用户名: 密码: 验证码:
提高本钢铸坯质量的生产实践与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的发展,各行业对钢材的需求越来越大,对钢材质量的要求也越来越高。连续铸钢是钢材生产流程中的重要环节,控制连铸钢坯质量,对提高最终产品质量具有重要的意义。
     本钢炼钢厂从1993年开始实施大规模设备改造,通过技术与装备的革新,产品种类逐年增加,质量逐步提高。然而,与国际、国内先进企业相比,在产品成份、性能、外形、尺寸精度等方面尚存在一定差距。本研究以本钢现有工艺条件为基础,围绕提高汽车板和高强钢铸坯质量,包括铸坯成分控制、内部质量控制、表面质量控制等展开一系列研究。主要内容如下:
     (1)铸坯高温塑性是与铸坯质量有关的重要参数。本研究选取本钢主要钢种(SPHC、DC01、A36-2、S235-JR、CRA2、DC53D+Z、BG420CL、Q235B)的连铸板坯,在Gleebe-2000型热模拟试验机进行700℃、750℃、800℃、900℃、1000℃、1100℃、1200℃、1300℃高温拉伸实验,测定各温度条件下的真应力-应变曲线,并确定其临界应变,掌握各钢种高温塑性特点。
     对所选择的中、低、超低碳钢和微合金钢钢种进行高温塑性模拟研究,测定其高温面塑率、零强度温度及脆化温度区间,分析并提出了适宜的板坯出结晶器及矫直温度,各钢种的合理拉坯速度,为优化工艺参数提供了理论依据。
     (2)连铸坯缺陷中约80%为铸坯裂纹。铸坯出现裂纹,既影响连铸机生产率,又影响产品质量,增加生产成本。论文分析了本钢高强钢铸坯产生裂纹的成因和特点,提出应严格控制钢中S质量分数、根据钢种选取过热度、调整拉坯速度和拉矫压力等措施,并进行了试验验证,提出钢水w[s]应控制<0.020%,w[Mn]/w[S]≥20,钢水过热度在30℃左右,拉速不超过1.2m/min;高于此拉速时,对过热度、二冷水分配进行调整;连续弯曲连续矫直,控制铸坯矫直温度≥900℃;在确保坯壳生成良好的前提下,相应减少一冷强度;合理匹配各区配水比例。
     根据试验结果,对车轮用钢(BG420CL)的连铸工艺参数进行了优化。兼顾本钢生产实际和铸坯质量要求,优选拉坯速度为1.0m/min;确定结晶器和二冷水适宜配水比例;通过添加稀土,夹杂物球化率提高到87.21%以上,铸坯质量显著提高,达到生产要求。
     (3)连续铸钢铸坯表面的实物质量水平,直接关系到后序产品的成材率。本钢连铸机自投产以来,铸坯表面裂纹缺陷一直困扰着铸机生产。论文采用六西格玛方法,对连铸过程中各参数进行分析,提出铸坯表面裂纹主要与钢种成份、结晶器振动及水量配比、二次冷却区、铸机辊子状态等因素有关,其实质是结晶器内部诱发形成,在二次冷却区扩展的过程;通过调整结晶器振幅、冷却水量、改变二冷配水模型、控制钢水中的N、S元素,有效控制了铸坯表面裂纹的发生,改善了铸坯质量。
     (4)对本钢现有技术装备和生产技术水平进行分析,确定了高级汽车板坯生产的工艺技术流程,制定了包括铁水预处理、炼钢、钢包处理、精炼、连铸、铸坯清理等各个工序的质量控制指标,为生产出合格的高级汽车用板连铸坯打下基础。
     (5)要获得高延展性、高r值以及优良表面性能的高级汽车板坯,要求钢中含碳、氮、氧量尽可能低,钢材铸坯侧面和角部振痕尽可能少。论文应用六西格玛管理方法对影响连铸过程的增碳因素进行分析,确定了影响增碳的主要因素为钢包砖衬、开浇渣种类、保护渣种类;在生产中采取了使用无碳砖衬钢包、无碳开浇渣、低碳结晶器保护渣等措施,铸坯增碳量显著降低,超低碳钢连铸工序增碳量小于0.0003%。
     论文分析了影响连铸过程的增氮因素,采取了改善密封圈密封、改进中包渣密封效果、改进中间包氩气密封等措施,增氮控制平均水平达到2.8×10-6,合格率达到90.7%,效果明显,经济效益显著。
     通过本文的研究,本钢炼钢厂高强钢和高级汽车板用钢的连铸工艺进一步完善,其中高强钢铸坯内部缺陷和表面缺陷显著减少,高级汽车板成分达到国内先进钢厂的水平,铸坯质量显著提高,为企业了创造可观的经济效益。
With the development of the national economy, the requirement for the steel output has become more and the demands for the steel quality become higher. Due to the quality of slab will effect on the quality of final product greatly, the process controlling to continuous casting slab is very important for steel manufacture.
     The steelmaking branch of Benxi Steel has made great efforts to renewal and improves production equipment since 1993; its product category and product quality has increased greatly. However, compared with the foreign and some of domestic factories, the composition of product, performance, shape and dimensional accuracy still have certain shortcomings. In order to improve the quality of automobile sheet and high strength steel slab in Benxi Steel, this study is carried out based on the existing process condition. The main contents are as follows:
     (1) The main steel grades for continuous casting slab in Benxi Steel were selected such as SPHC, DC01, A36-2, S235-JR, CRA2, DC53D+Z, BG420CL, Q235. Their hot ductility was measured using Gleebe-2000 Hot Simulation Test, because hot ductility is a very important parameter to continuous casting slab. The stretch test were carried at temperature of 700℃,750℃,800℃,900℃,1000℃,1100℃,1200℃, 1300℃, and the actual stress-strain at top of temperature, and the critical strain of selected steel were obtained.
     The selected steel, include carbon steel, low carbon steel, ultra low carbon steel and microalloy steel, was studied with hot ductility simulation test. The experimental parameters were determined and analyzed, and then the appropriate slab mould and the temperature straightening, as well as the withdrawal speed which suited for the steel above were put forward.
     (2) In all of casting slab shortcomings, the proportion of the slab cracks is about 80%. Casting slab cracks not only affect the productivity of continuous casting machine, but also affect the product quality and increase the production costs. This study analyzed the characteristics of slab cracks and the relevant factors, proposed measures for reducing the slab and conducted a production test, the results show that: the content of element S in steel should be controlled less than 0.020%, w[Mn]/w[S]≥20, superheat should be about 30℃, the pulling speed should not more than 1.2m/min. The superheat and secondary cooling water allocation should be adjusted when casting speed exceeds the speed limit. Casting slab straightening temperature should be controlled more than 900℃.
     According to the results, the continuous casting process parameters for wheels steel (BG420CL) were optimized:the casting speed was selected at 1.0m/min and the cooling water volume of mould and secondary section were determined, and the suitable surface temperature for high strength steel slab was obtained. The ratio of spheroidal inclusions has raise to 87.21% after RE added.
     (3) The surface quality of slab is directly related to the quality of the follow-up products. The slab surface crack has existed since the device been put into operation. In this research work, the parameters that may influence quality of casting slab were analyzed by the six sigma management method, such as the chemical composition, mould vibration, mass area ratio, secondary cooling zone and continuous casting roller. Then the relevant measures to solve the problem were put forward in practice. The result shows the slab surface crack was effectively controlled through adjustment of the mould amplitude, the water quantity, the content controlling to w[N] and w[S]. The quality of slab was improved greatly.
     (4) In order to produce qualified automobile steel sheet, the existing production technique level and equipment condition of Benxi Steel was analysised and discussed in detail. Then, the technological process for advanced automobile sheet was be proposed, the quality standard and main parameters of each process were made.
     (5) In order to produce advanced automobile slab with high ductility, high r and excellent surface properties, the content of C, N, O in steel should be as low as possible. The factor that may influence on carbon pick up during continuous casting process of ultra low carbon steel, such as ladle brick, front powder, tundish powder is analyzed by the six sigma management method. The results show that the ladle brick, starter flux, covering slag are the most influence factors on the carbon pick up. According to the results, the carbon-free brick ladle, carbon-free starter flux and carbon-free powder were applied and produced an obvious result; the carbon increment of the ultra low-carbon steel was lower than 0.0003%.
     The factor that influenced on nitrogen pick up also been analyzed, the corresponding technical measures, such as improving the seal of seal ring and the seal of slag of tundish, were applied in practice. The average nitrogen increment is reduced to 2.8 X 10'6; The qualified ratio reached 90.7%.
引文
1. 史寰兴.实用冶金连铸技术[M].北京:冶金工业出版社,1998,8-9.
    2. 朱苗勇.现代冶金学[M].北京:冶金工业出版社,2005,131-311.
    3. 蔡开科,程士富.连续铸钢与工艺[M].北京:冶金工业出版社,1994,2-5.
    4. 陈家祥.钢铁冶金学[M].北京:冶金工业出版社,2004,320-321.
    5. 奥村裕彦.连铸技术的动向和今后的展望[M].国外炼钢,1995,(2):56-31.
    6. 尚巍巍.略钢连铸坯缺陷成因分析及控制措施[D].西安建筑科技大学硕士论文,2007:1.
    7. 王剑.小方坯表面夹渣产生的原因及防止措施[J].炼钢.1999.5(3):23-25.
    8. Flinn A. Jet Penetration and Bath Circulation in the Basie Oxygen Furnace. Trans. Metal. Soc.AIME.1967,232:1776.
    9. 黄军,翟晓毅,李德辉等.连铸小方坯表面横裂的原因分析及控制措施[J].连铸,2005(5):27-29.
    10. 张龙超.改善连铸大方坯表面角部质量的技术措施[J].连铸,2005(6):30-32.
    11. 于艳,刘俊江,葛亮等.宝钢连铸坯针孔缺陷影响因素分析[J].连铸,2004(2):23-25.
    12. Chang-hee Yim etal. The Control of Internal Quaiity by the Reduction of Blooms with Liquid Cord. Steelmaking Conference Proceedings.1988:309-310.
    13. 吴华民,刘秀丽,卢红玉.连铸小方坯角部纵裂纹及角部纵裂漏钢的成因及防止措施[J].连铸,2004(5):20-21.
    14. 李文忠.铸坯表面缺陷产生原因分析及控制措施[J].连铸,2003(6):30-31.
    15. Schoop J. Influence of Lance-tip Design on BOF Steelmaking. ASIA Steel,1999,92-98.
    16. 陈绿英,朱义才.连铸板坯头部气孔产生的原因及对策[J].连铸,1999(2):19-20.
    17. 谭振宁.20管钢铸坯低倍组织缺陷控制[J].炼钢,2006,22(2):14-15.
    18. 唐立东,邵明天,柳润民等.耐火材料对钢水洁净度影响的试验研究[J].炼钢,2004,20(5):54-57.
    19. 李伟,刘永泰,潘汉平.提高20钢质量的生产实践[J].炼钢,2003,19(1):26-30.
    20. 蔡开科.连续铸钢[M].北京:科学出版社,1990.
    21. 纪绯绯,段东平.钢中外来夹杂物特征的研究[J].炼钢,2003,19(2):44-47.
    22. 李振兴,周应其,陈荣奎.低碳低硅钢连铸过程的非金属夹发杂物研究[J].炼钢,2002,18(6):30-32.
    23. 王建军.中间包夹杂物运动行为的数模研究[J].炼钢,2001,17(4):40-41.
    24. 王进,孙维.硅钡合金在炼钢脱氧中的应用研究[J].炼钢,2000,16(4):37-41.
    25. 宋献良,张泉.整体浇注钢包实践及使用中的问题[J].连铸,2006,(1):12-13.
    26. 李贵顺,靳秀礼,杜勇.挡渣工艺在转炉炼钢中的应用[J].连铸,2006,(2):18-19.
    27. Y. Shinsho. Influence of Secondary Steelmaking on Occurrence of Non-melallic Inclusion in High-Carbon Steel for Tire Cord W. J. I. Sept,1988:145-153.
    28. 于学斌,吴建鹏,时启龙等.残钙量对夹杂物变性效果的影响[J].炼钢,2006,22(01):49-51.
    29. 刘金刚,刘浏,王新华.中间包夹杂物的控制与去除新技术[J].炼钢,2006,22(2):30-33.
    30. 王立涛,张乔英,李正邦.中间包内流体流动及夹杂物去除的研究[J].炼钢,2005,21(2):26-29.
    31. 张美杰,汪厚植,顾华志等.中间包吹氩技术的研究进展[J].炼钢,2005,21(6):53-56.
    32. 罗伯钢,邵俊宁,曾立等.小方坯连铸中包长寿及定径水口快速更换技术[J].炼钢,2004,20(1):1-3.
    33. 时东生,刘立英.钢包吹氢工艺的优化与完善[J].炼钢,2001,17(1):31-34.
    34. 魏耀武,李楠.耐火材料对钢水洁净度的影响[J].炼钢,2001,17(3):58-62.
    35. T.M伊茨科维奇.钢脱氧及非金属夹杂物的变性处理[M].北京:冶金工业出版社,1986.
    36. 三本木贡治等著,王舒黎等译.炼钢技术[M].北京:冶金工业出版社,1980:26.
    37. 契斯捷尔.炼钢用耐火材料[M].东北工学院译.北京:冶金工业出版社,1958:18.
    38. 路迪民.金属学[M].西安:西北大学出版社,1994:55.
    39. 路迪民.金属材料及热处理[M].西安:陕西科学技术出版社,1994.
    40. 杨君胜.150mm方坯形状缺陷的成因与对策[J].连铸.1997(05):21-24.
    41. 周汉香,李小虎.程锐等.连铸方坯缺陷的成因分析及改进措施[J].钢铁研究.1998(06):15-18
    42. 卢盛意.连铸坯的形状缺陷[J].连铸.1997(05):21-24.
    43. 钟庆龙,梁玉梅六西格玛质量管理[J].经济师,2003,(3):124-125.
    44. 马林,何桢.六西格玛管理[M].北京:中国人民大学出版社,2007:7.
    45. 福里斯特W.布雷弗格三氏,阎国华等译.实施6西格玛[M].北京:机械工业出版社,2004:1.
    46. 王青峡.板坯连铸凝固壳厚度的研究及应力分析[D].重庆大学,2008:10.
    47. 许中波.我国连铸技术的现状与展望[J].炼钢,2000,16(06):1-5.
    48. 牛济泰.材料热加工领域的物理模拟技术[M].北京:国防工业出版社,1999:16.
    49. 孙齐松,王新华,江东才,白学军等.SS400铝镇静钢连铸板坯角横裂纹成因及对策[J].钢铁,2007,42(05):25-28.
    50. 干勇,仇圣桃,萧泽强.连铸钢过程数学物理模拟[M].北京:冶金工业出版社,1998,243-252.
    51. 干勇.薄板坯连铸连轧生产技术若干问题[J].钢铁,2004,39(08):24-33.
    52. 孙决定,丁世学.我国薄板坯连铸连轧生产技术特点[J].钢铁研究,2005,(03):58-62.
    53.定巍.薄板坯连铸凝固过程数值模拟[D].内蒙古科技大学,2007.
    54. Suzuki Hirowo G, Nishimura Satoshi, Nakamura Yasushi. Improvement of Hot Ductility of Continuously Cast Carbon Steels Received [J]. ISIJ International,1984,24:54.
    55.黄欣秋.弯月面的热分析—评价板坯表面质量的工具[J].宽厚板,2001,07(06):40-46.
    56.陈文.弯月面附近钢水流速对板坯表面质量的影响[J].武钢技术,2001,(06):54-56.
    57.王虹洁,周强.通过引进二冷动态控制系统提高了板坯铸坯表面质量[J].制造业自动化,2005,(05):65-69.
    58.高仲,张兴中,姚书芳.包晶钢铸坯裂纹形成机理的实验研究[J].钢铁研究学报,2009,21(10):8-11.
    59.孙洁,王汝琳,王俊霞.连铸坯裂纹的成因[J].河北理工大学学报(自然科学版),2008,30(03):41-46.
    60. T. J. H. Billany, A. S. Normanton, K. C. Mills, P. Grieveson. Surface cracking in continuously cast products. Ironmaking and Steelmaking,1991,18(06):403-410.
    61.朱诚意,李光强,饶江平,彭其春.连铸薄板坯的质量缺陷及其改善措施研究[J].上海金属,2006,28(02):15-20.
    62.高仲,张兴中,姚书芳.薄板坯表面纵裂研究进展[J].中国冶金,2007,17(12):4-8.
    63.贾生建,宋海,李强,郝振宇.方坯低碳钢内部裂纹缺陷的改善[J].包钢科技,2001,27(S1):64-65.
    64.李金,谭连兵.小方坯内部裂纹成因研究[J].湖南冶金,2002,(03):24-27.
    65.曾全胜,蒋云云,隋然.连铸钢方坯的内部裂纹[J].冶金标准化与质量,2003,(05):8-11.
    66.曾祖谦.连铸板坯内裂纹的防止[J].炼钢,1998,(03):13-15.
    67.汪晶,温铁光.连铸工艺对板坯裂纹的影响及防止措施[J].鞍钢技术,1997,(09):13-16.
    68.王作奇.酒钢连铸板坯内部裂纹研究[D].西安建筑科技大学,2003.
    69.张爱民,张英才,李建民等.连铸板坯内部裂纹的研究分析[J].包头钢铁学院学报,2001,20(04):309-311.
    70.张爱民,李建民,杨宪礼等.连铸板坯中夹杂物的行为研究[J].钢铁,2001,36(11):22-24.
    71.孙群,王荣,张锦刚.连铸板坯夹杂分析[J].钢铁,2002,18(02):29-30.
    72. Wolf M M, Kurz W. The Effect of Carbon Content on solidification of steel in the Continuous Casting Mold. Metallurgical Transactions [J].1981,12B:85-93.
    73.孙华平,倪红卫,张华,幸伟等.工艺参数对连铸坯表面振痕深度的影响[J].武汉科技大学学报,2008,31(04):340-344.
    74.陈贻宏,葛懋琦,程晓茹等.高韧性热轧管线用钢控轧控冷工艺的分析和研究[J].武汉冶金科技大学学报,1996,19(02):145-147.
    75.盛义平,孙蓟泉,章敏.连铸板坯鼓肚变形量的计算[J].钢铁,1993,28(03):20-25.
    76.朱国森,于会香,王新华等.连铸板坯凝固过程的应变分析[J].北京科技大学学报,2004,26(03):251-254.
    77. Hiebler H. Inner Crack Formation in Continuous Casting:Stress or Strain Criterion Steelmaking conference proceedings,1994:405-416.
    78.袁伟霞,韩志强,蔡开科等.连铸板坯凝固过程应变及内裂纹研究[J].炼钢,2001,17(02):48-51.
    79.王雨,王谦,谢兵,李明扬.连铸保护渣对溶解稀土氧化物速度的影响[J].钢铁,2000,35(增刊):276-279.
    80.王德永,姜茂发,刘承军等.稀土氧化物对连铸保护渣粘度的影响[J].中国稀土学报,2005,23(01):100-104.
    81.万恩同.稀土处理钢保护渣的研究与应用[J].稀土,2001,22(04):72-74.
    82.文放怀等.六西格玛入门[M].广东省出版集团,2005,(1).
    83.马林,何桢等.六西格玛管理[M].中国人民大学出版社,2004,(7).
    84.刘秀梅,谢中坤,庚立杰,李殿明.高强度钢表面裂纹产生原因分析[J],2007,29(12):8-10.
    85.蔡开科.连铸坯裂纹[J].钢铁,1982,17(09):45-55.
    86.杨才福,张永权.氮在非调质钢中的作用[J].钢铁钒钛,2000,21(03):16-22.
    87.王安东,刘国权,杨才福等.C和N含量对V-N-Ti微合金非调质钢组织的影响[J].材料热处理学报,2007,(05):51-56.
    88.康卓,马党参,刘建华等.钒氮微合金化技术在高强度钢中的应用[J].天津冶金,2008(6):34-36.
    89.潘秀兰.连铸板坯裂纹的成因及防止措施[J].鞍钢技术,1997,(02):15-22.
    90.魏立国,朱岩,徐国栋等.宝钢厚板边裂成因分析和改善[J].宝钢技术,2006,(06):47-50.
    91.谭振宇.20管钢铸坯低倍缺陷控制[J].炼钢,2006,22(02):14-22.
    92.张洪波.结晶器正弦振动参数的取值限度及其与拉速的匹配关系[J].连铸,2000,(03):18-22.
    93.米源.板坯连铸结晶器非正弦振动技术的应用[J].炼钢,2006,22(03):6-9
    94.沈昶,李建中.减少异型坯裂纹的工艺研究[J].炼钢,2004,20(05):51-53.
    95.顾家强,刘军占,林俊.控制钢中A1203夹杂物的工艺实践[J].上海钢研,2006,(02):7-9.
    96.常锷.连铸过程钢中夹杂物行为的研究[D].武汉科技大学,2003.
    97.戴云阁,蔡锡年,郭仲文,杜德信.连铸坯中的非金属夹杂物[J].钢铁钒钛,1997,18(03):35-39.
    98.孙决定等.我国IF钢的研究与生产[J].冶金信息导刊.2006,(5):6-9.
    99.王利等.汽车用高强度IF薄板钢[J].宝钢技术.1997,(1):58-61.
    100.傅杰,周德光等.低碳超级钢中氧硫氮的控制及其对钢组织性能的影响[J].云南大学学报(自然科学版),2002,(1):158-162.
    101.王雅贞,张岩等.新编连续铸钢工艺及设备[M].冶金工业出版社,2007,(1).
    102.张志强,张炯明等.连铸坯表面振痕形成机理的研究[J].钢铁研究,2008,(1):19-22.
    103.蒋晓放,朱立新.宝钢纯净钢冶炼技术[J].宝钢技术.2000,(03):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700