用户名: 密码: 验证码:
聚驱油井杆管偏磨机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆油田自实施聚合物驱以来,在采油工艺上暴露出一个严重的问题,即抽油杆与油管偏磨较水驱时速度和程度加剧,其主要原因是聚驱油井比水驱油井的采出液粘度增加,导致与粘度有关的各种摩擦力增加,聚合物驱抽油机井见聚后悬点最大载荷较水驱时增大,悬点最小载荷较水驱时变小,抽油杆柱受力状况变坏,而且抽油杆在下行程时纵向压缩载荷增大,使得抽泊杆柱失稳产生纵向弯曲的屈曲变形波数增加,因此抽油杆与油管偏磨加重,杆断率增大,作业井次明显增加,影响聚驱油井生产;同时作业费用增加,使得采油成本加大。
     本论文针对此问题,进行了聚驱油井杆管偏磨机理分析,根据现场数据得出偏磨的影响因素,首先从聚驱井产出液的流变性研究,给出了聚驱油井产出液粘度计算公式;其次建立了抽油杆柱受力模型及上、下冲程阻力计算模型,得出采出液流变性是影响悬点载荷变化的重要因素;推导了计算抽油杆屈曲变形的临界载荷公式的系数,得出抽油杆柱轴向分布力和抽油杆直径是影响临界载荷的主要变量,进而对防偏措施,主要是下加重杆及扶正器,进行了设计与计算;并根据以上理论编制了聚驱抽油机井杆管偏磨诊断分析和防偏磨措施设计系统软件,分析了偏磨影响因素,通过对现场实际数据的检验,符合率较高,表明该软件理论正确,设计合理,实用性强,对聚驱采油井延长检泵周期具有重要的指导意义。
A problem has been put forward that the rate and degree of eccentric wear between sucker rod and oil tube aggravated in polymer flooding wells than which in water flooding wells since polymer wells put into production in Daqing oil field. The main reason is that the viscosity of produced liquid increases in polymer flooding wells than water flooding wells, it makes for all the frictional resistances increased correspondingly, the result is the maximal load become larger during upstroke and the minimum load become smaller during downstroke than water flooding after polymer output from polymer flooding well, force status of the rod turn too bad, and the lengthways buckling load increased in downstroke, make the buckling numbers brought by lose stability of sucker rod also increased, eccentric wear between sucker rod and oil tube become serious, the rate of sucker rod broken be increased, operating wells obvious add a lot, so it must influence the production of polymer flooding well. While operating charge increase, and the production cost enhanced also.
    This paper aimed at the problem, carry through the mechanism analysis of eccentric wear between sucker rod and oil tube for polymer flooding, based on datum on-site and educed influencing factors of eccentric wear. At first, study rheological property of produced liquid in polymer flood well, presented the formula of viscosity calculation of produced liquid; Second established the force model of sucker rod and the resistance calculating model on up and down stroke, we can conclude that the rheological property of produced liquid is an important factor to influence the hanging load; Educed the coefficient of critical load equation while sucker rod flexure transformed, the conclusion is that the distributing force along the axis direction and the diameter of sucker rod are main variables to influence critical load, advanced to bring forward measures of protection eccentric wear, mainly is lower sinker rod and centralizer, and based on the above-mentioned theories, programmed the software of eccentric wear, analyzed the influencing factors, through verified by datum on-site, the rate of accordance can be reached 80% or so, it can well direct the work of oil field.
引文
[1] 王常斌 郑俊德 机械采油工艺原理 北京:石油工业出版社,1998
    [2] 金鸿章 张洪春.计入聚合物溶液粘弹性效应的聚合物驱油一维模拟.国外油田工程,1994(1):1-5
    [3] 盛敬超.液压流体力学.北京:机械工业出版社,1980
    [4] 夏惠芬 郑凤萍.油藏注水开发期间聚合物拉伸粘度的影响.国外油田工程,1996(12):23-26
    [5] 王振平.聚合物溶液粘弹效应的定量分析与优化.国外油田工程,1996(4):7-10
    [6] 赵洪激.抽油泵柱塞与泵筒摩擦力计算的讨论.《石油机械》,1993年第2期:37-37
    [7] 万邦烈主编.采油机械的设计计算.北京:石油工业出版社,1988
    [8] 田云龙 侯玉芳.抽油井杆管偏磨原因的理论分析.大庆石油管理局采油二厂工程技术大队,1998
    [9] 王鸿勋 张琪.采油工艺原理.北京:石油工业出版社,1981,56-65
    [10] 陈涛平 胡靖邦主编.石油工程.第一版.北京:石油工业出版社,2000
    [11] 刘文章.高粘原油机械开采工艺研究.《石油钻采工艺》,1982年第3期
    [12] 朱君 刘合.聚合物驱抽油机井杆管偏磨,《大庆石油学院学报》,2000年第1期,69-72
    [13] 杨超 范士娟.直井中抽油杆柱的偏磨计算.《大庆石油学院学报》,2000年第4期,68-70
    [14] J.F.Lea著.杜敏译.分析计算作用在抽油杆上的力.《石油工艺情报》,1994年第2期,71-78
    [15] 王鸿勋 衣同春.抽油常规开采的几个问题.《石油钻采工艺》,1985年第1期:1-7
    [16] 郝俊芳 龚伟安编著.套管强度计算与设计.北京:石油工业出版社,1987,199
    [17] 刘鸿文.材料力学.北京:高等教育出版社,1983,162-168
    [18] 张永弘 刘恩.管柱螺旋屈曲时接触压力的研究.《石油学报》,1997年第10期,131-134
    [19] 金国梁 陈琳.抽油杆的变形分析及滚轮接箍的合理安放.《石油学报》,1990年第11期,106-116
    [20] 李子丰 马兴瑞.油气井杆管柱的静力稳定性.《工程力学》,1997年第1期,17-25
    [21] Rapier Dawson and P R Paslay. Drillpipe buckling in inclined holes. Journal of Petroleum Technology, 1984(10), 1734-1738
    [22] 崔衍领 杨福成.管杆偏磨机理研究及其防治.《断块油气田》,1999年第五期,58-60
    [23] 靳从起 吕树章.抽油机井偏磨腐蚀机理及防治对策.《石油矿场机械》,1999,28(5):15-19
    [24] 崔孝秉 张宏.套管柱稳定性问题研究.《石油学报》,1998,1
    [25] Paslay P R and Bogy B D. The stability of a circular rod laterally constrained to be in contact with an inclined cylinder. J. of applied Mechanics, Transactions of the ASME, 1964, 605-610
    [26] Lubinski A ,Althanse and Lagan W S, Helical buckling of tubing sealed in parker. J.Pet. Tech. 1962, 655-670
    [27] Dawson R and Paslay P R. Drill pipe buckling in inclined holes. SPE 11167, 1982
    [28] Mitchell R F. Buckling behavior of well tubing, the packer effect . Society of Petroleum engineers Journal, 1982, 616-624
    [29] Sorenson K G and Cheatham J B. Jr. Post-buckling behavior of a constraind with a circular cylinder. J of Applied Mechanics, 1986,53,929-934
    [30] Cheatham J B and Chen Y C. New design considerations for tubing and casing buckling in inclined well. OTC 5826,1988, 187-192
    [31] Chen Y C and Cheathan J B. Wall contact forces on helically buckled tubulars in inclined wells. J of Energy Resources Technology, Transactons of ASME, 1990,112, 142-144
    [32] 王殿科.直井中抽油杆柱和油管柱的扶正问题.《石油机械》,1992年第7期,34-41
    [33] 宋明涛 阮亭忠.加重杆选择和多级抽油杆组合设计方法.《石油矿场机械》,1985年第4期:43-49
    [34] 邬亦炯.关于抽油杆下部加重的计算.《石油矿场机械》,1985年第6期:8-14
    
    
    [35] Rameg H.J.Jr: "Well—bore Heat transmission",JPT 1962, April
    [36] 李淑芳 甘子泉.直井抽油杆柱扶正器安装位置及安装间距.《石油机械》,1999年第1期:52-55
    [37] 覃成锦 徐秉业.垂直井中管杆柱的扶正器安放问题研究.《石油钻采工艺》,2000年第3期:8-12
    [38] Lea J F, Pattillo P D, Studenmund W R, Interpretation of Calculated Forces On Sucker Rods. SPE Production & Facilities, Feb. 1995:41-45
    [39] 冯定 赵志超.竖直井油管扶正器的安装间距研究.《江汉石油学院学报》,1999年第1期,64-65
    [40] 万邦烈.新系列游梁式抽油机—抽油泵装置用大泵抽油时抽油杆柱下部加重杆的选择图解[J].《石油矿场机械》,1982年第5期,12-20
    [41] 王增进.斜井抽油杆扶正器间距计算.《石油钻采工艺》,1991年第2期,87-90
    [42] C.M. Matthews et al, Drilling and Production Practices To Mitigate Sucker-Rod/Tubing-Wear-Related Failures in Directional Wells, SPE Production & Facilities, November 1993
    [43] S.D.L. Lekia and R. D. Evans, A Coupled Rod and liquid Dynamic Model for Predicting the Behavior of Sucker-Rod Pumping Systems—Part 1: Model Theory and Solution Methodology, SPE Production & Facilities, February 1995
    [44] A.B. Csaszar et al, Sucker-Rod Pump Diagnosis with Fluid Inertia Considerations, SPE 21663
    [45] S.G. Gibbs, A General Methods for Predicting Rod Pumping System Performance, SPE 6850

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700