用户名: 密码: 验证码:
西部黄土沟壑区采动地裂缝发育规律及治理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着东部矿区资源的日渐衰竭,煤炭西进战略已成现实,西部矿区地下资源开采造成的地裂缝灾害日益引起人们的关注。西部矿区具有埋藏浅、基岩薄、厚松散层覆盖、地形起伏大等特点,地裂缝受到地质采矿环境及地形地貌条件的双重胁迫作用,发育规律复杂。
     本文针对西部黄土沟壑区采动地裂缝灾害,在现场实测的基础上,辅以土力学实验、岩石力学实验、数值模拟等实验手段,基于开采沉陷理论、覆岩破坏理论、坡体滑移理论,提出了采动地裂缝的分类方法,研究了采动地裂缝的发育规律,揭示了采动地裂缝的形成机理,建立了各种不同类型采动地裂缝的预测模型,提出了适合西部矿区采动地裂缝的综合治理技术措施,主要研究成果如下:
     (1)以神东矿区典型黄土沟壑区为研究基地,在现场工程钻探、土力学实验、岩石力学实验的基础上,研究了黄土沟壑区松散层及覆岩物理力学性质;在大柳塔矿12208、22201、52304三个工作面建立了地表移动与地裂缝发育综合监测网络,分别研究了1-2、2-2、5-2三个不同埋深煤层开采的地表移动规律,以及地裂缝发育规律。
     (2)在对西部黄土沟壑区采动地裂缝灾害统计分类的基础上,提出了采动地裂缝的分类方法。根据发育时段,分为采动过程中的临时性地裂缝和地表稳沉后的永久性地裂缝;根据形成机理,将采动地裂缝分为拉伸型、挤压型、塌陷型、滑动型4种类型,分析了各种裂缝的特征。
     (3)结合开采沉陷、覆岩破坏及坡体滑移理论,揭示了不同类型采动地裂缝的力学机理,建立了预测模型。拉伸型地裂缝是由于地表的水平变形超过表土的极限拉伸应变而形成,一般在工作面边界处的地表拉伸区发育;挤压型地裂缝是由于表土受到压缩变形隆起而形成的,一般随着工作面推进在地表的动态压缩区发育;塌陷型地裂缝是由于覆岩整体破断直至地表塌陷而形成的,一般在工作面正上方,随着基本顶的破断动态发育;滑动型地裂缝是由于采动影响与坡体的滑移共同叠加形成的,仅当在沟谷下开采时发育。
     (4)采用数值模拟方法,研究了沟谷地形条件下采动地裂缝的发育规律。针对沟谷地形下开采形成的滑动型地裂缝,采用UDEC数值模拟方法,研究了地表沟谷不同坡度、沟谷与工作面不同相对位置下的采动地裂缝动、静态发育规律。
     (5)研究了西部黄土沟壑区采动地裂缝影响因素。采用现场实测及实验数据,分析了地裂缝发育与开采速度、基岩采厚比、地表变形、地形地貌等因素之间的关系,建立了西部黄土沟壑矿区采动地裂缝经验预测模型。
     (6)针对采动过程中的临时性裂缝和地表稳沉后的永久性裂缝,研究了采动地裂缝差异化治理技术,提出了“深部充填-浅层覆土-植被建设”的采动地裂缝综合治理三步法,研制了超高水材料地裂缝充填系统;以晋陕蒙接壤区煤炭基地生态建设关键技术示范工程为试验基地,进行了地裂缝充填治理工程试验,为西部黄土沟壑区采动地裂缝灾害治理提供了技术支撑。
As the coal resource in eastern mining areas exhausting and coal westwardstrategy becoming reality, ground fissure disaster caused by underground miningarouses people's concern increasingly. Mining areas in western China havecharacteristic of shallow buried, simple strata, thick loose bed, landform undulatesterribly and so on. Because of the double stress effects of geological miningenvironment and topography condition, the development laws of ground fissures aremore complicated.
     Aiming at the Ground fissure disaster caused by underground mining in loesshilly areas of western China, on the basis of field measurement, supplemented by soilmechanics experiments, rock mechanics experiments and numerical simulation, basedon theories of mining subsidence, strata damage and slope sliding, the classificationmethod of ground fissures due to underground mining was put forward, thedevelopment law was revealed, the formation mechanism was researched, all types ofground fissure prediction models were set up, and the comprehensive treatmenttechnical measures were proposed. The main results are as follows:
     (1) Taking the typical loess hilly area Shendong mining area as research base, onthe basis of engineering drilling, soil mechanics experiment and rock mechanicsexperiment, the physical and mechanical properties of loose bed and overburden rockwere researched. Three comprehensive monitoring networks of surface movement andground fissure development were established above the working faces of12208,22201, and52304of Daliuta coal mine. Laws of surface movement and groundfissure development of three different depth coal seams1-2,2-2,5-2were researchedrespectively.
     (2) On the basis of field investigation and observation, the ground fissuredisasters caused by underground mining were classified. According to the developingperiods, ground fissures could be classified into the temporary fissure during theprocess of mining and the permanent fissure after surface subsidence was steady.According to the formation mechanisms, ground fissures were divided into four types,such as stretching fissure, compressing fissure, collapsing fissure and sliding fissure.
     (3) Combined with theories of mining subsidence, overlying rock destruction,and slope sliding, the formation mechanisms of all types of ground fissure due tounderground mining were researched, and the prediction models were established. Stretching fissure was formed due to the surface horizontal deformation exceeding themaximum tensile strain of topsoil, which developed in the surface tensile area of themining boundary. Compressing fissure was formed because of the topsoil’s upliftcaused by compression deformation, which developed in the dynamic compressionarea of surface with mining. Collapsing fissure was formed because of the breaking ofthe whole overburden rocks and surface, which developed just above the working facewith the dynamic breaking of the basic roof. Sliding fissure was formed because ofthe combined influence of mining and slope sliding, which developed only whenmining under valleys.
     (4) Aiming at the sliding fissure developed when mining under valleys, usingnumerical simulation method of UDEC software, dynamic and static ground fissuredevelopment laws of different valley angles and different relative positions betweenvalley and working face were researched.
     (5) The influencing factors of ground fissures due to underground mining in loesshilly areas were analyzed. The relationships among ground fissures and mining speed,the ratio of strata thickness and mining thickness, surface deformation, topographyand geomorphology were researched. After that the experience prediction modelswere established.
     (6) Aiming at the temporary fissure in the process of mining and the permanentfissure after surface subsidence steadying, different treatment technologies of groundfissures were researched, and the―three-step‖method of deep filling, shallow soiling,and vegetation construction was put forward. Ground fissure filling system of superhigh water material was developed. Taking the ecological construction demonstrationproject in the coal base of the contiguous area of Shanxi-Shaanxi-inner Mongolia asthe experiment base, ground fissure filling treatment engineering test was put forward,which provided technical support to teatment of ground fissures in loess hilly areas ofwestern China.
引文
[1]罗斐.煤炭资源的现状与结构分析[J].中国煤炭,2008,34(3):91-96.
    [2]杨逾,刘文生,冯国才.中国可持续发展观的灾害学分析[J].辽宁工程技术大学学报(社会科学版),2005,7(2):140-142.
    [3]中国国家统计局.中国统计年鉴2008[M].北京:中国统计出版社,2008:201-207.
    [4]许惠英.我国―十二五‖能源发展规划透视.中国能源产业[J].2010(12):82-83.
    [5]武强.矿山环境问题诱发的环境效应研究[J].水文地质工程地质,2008,35(5):81-85.
    [6]叶青.神东现代化矿区建设与生产技术[M].徐州:中国矿业大学出版社,2003.
    [7]李文平,叶贵钧,张莱,等.陕北榆神府矿区保水采煤工程地质条件研究[J].煤炭学报,2000,25(5):449-454.
    [8]刘辉,雷少刚,邓喀中,等.超高水材料地裂缝充填治理技术[J].煤炭学报,2014,39(1):72-77.
    [9]胡振琪,王新静,贺安民.风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J].煤炭学报,2014,39(1):11-18.
    [10]白中科,段永红,杨红云,等.采煤沉陷对土壤侵蚀与土地利用的影响预测[J].农业工程学报,2006,22(6):67-70
    [11]傅耀军,李曦滨,孙占起,等.晋陕蒙能源基地榆神府矿区水土流失综合评价[J].水土保持通报,2003,23(1):32-35.
    [12]杜涛,毕银丽,邹慧,等.地表裂缝对沙柳根际微生物和酶活性的影响[J].煤炭学报,2013,38(2):2221-2226.
    [13]张平.黄土沟壑区采动地表沉陷破坏规律研究[硕士学位论文][D].西安:西安科技大学,2010.
    [14]余学义,施文刚,张平,等.黄土沟壑区地表移动变形特征分析[J].矿山测量,2010,(2):38-40
    [15]康建荣.地表移动破坏裂缝特征及其控制方法[J].岩石力学与工程学报,2008,27(1):59-64.
    [16]中国神华能源股份有限公司神东煤炭分公司,中国矿业大学,内蒙古农业大学.神东亿吨级矿区生态环境综合治理技术[R].神木:2006.
    [17]邢大韦,张卫,王百群.神府-东胜矿区采煤对水资源影响的初步评价[J].水土保持研究,1994,1(4):92-99.
    [18]刘辉,何春桂,邓喀中,等.开采引起地表塌陷型裂缝形成机理分析[J].采矿与安全工程学报,2013,30(3):17-22.
    [19]许延春,杨峰,李旭东.西部煤矿开采地表冲沟水害的预计评价[J].华北科技学院学报,2009,6(4):34-38.
    [20]初影.采煤诱发地表裂缝数值模拟研究[硕士学位论文][D].阜新:辽宁工程技术大学,2009.
    [21] Syd S.Peng.Surface Subsidence Engineering [M].The Society for Mining,Metallurgy,and Exploration,Inc:1992.
    [22] A.Asadi,K.Shakhriar,K.Goshtasbi.Profiling Function for Surface Subsidence Predictionin Mining Inclined Coal Seams [J].Journal of Mining Science,2004,40(2):142-146.
    [23]吴立新,王金庄,赵士胜.托板控制下开采沉陷的滞缓与集中现象研究[J].中国矿业大学学报,1994,23(4):10-19.
    [24]邹友峰,马伟民.条带开采地表沉陷预计新方法——三维层状介质理论研究[J].矿业世界,1996(1):54-56.
    [25]钱鸣高,缪协兴.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230
    [26]王悦汉,邓喀中,吴侃,等.采动岩体动态力学模型[J],岩石力学与工程学报,2003,22(3):352-357.
    [27] Nova R.A model of soil behaviour in plastic and hysteretic range [J].Int.Workshop onConstitutive Relations for Soils,Grenoble,2006,(289):289-330.
    [28] Bauer E.Calibration of a comprehensive hypoplasic model for granular materids [J].Soilsand foundations,1966,36(1):13-26.
    [29] Peng S.S,Luo Y.Slope stability under the influence of ground subsidence due to longwallmining[J].Mining Science&Technology,1989,8(2):89-95.
    [30] Bahuguna P P,S rivastavsA M C,S axenaN C.A critical review of mine subsidenceprediction methods.Mining Science and technology[J],1991,13.
    [31] Watson B.P.A rock mass rating system for evaluating slope stability on the Bushveldplatinum mines[J].Journal of The South African Institute of Mining and Metallurgy,2004,104(4):229-238.
    [32] Rajendra Singh,P.K.Mandal,A.K.Singh,et.al.Upshot of strata movement duringunderground mining of a thick coal seam below hilly terrain[J].International Journal of RockMechanics and Mining Sciences,1997,45(1):29-46.
    [33] L.J.Donnelly,K.J Northmore,H.J.Siddle.Block movements in the Pennines and SouthWales and their association with landslides[J].Quarterly Journal of Engineering Geology andHydrogeology,2002(35):33-39.
    [34] Ghose A.K.Green mining-a unifying concept for mining industry [J].Journal of Mines,Metals&Fuels,2004,52(12):393-395.
    [35] Greco V.R.Efficient Monte Carlo Technique for locating critical slip surface [J].Journalof Geotechnical Engineering,1996,122(7):517-520.
    [36] Homoud A.I.Studying theory of displacement and deformation in the mountain areasunder the influence of underground exploitation [D].Krakow in Poland:AGH University ofScience and Technology,1999.
    [37] Chamine H.L.,Bravo Silva P.Geological contribution towards the study of miningsubsidence at the Germunde coal mine (NW Portugal)[J].Cudernos do Laboratorio deLaxe,2003,(18):281-287.
    [38] Luo Y.,Peng S.S.Integrated Approach for Predicting Mining Subsidence in Hilly Terrain[J].Mining Engineering,1999,51(6):100-104.
    [39]何万龙.开采影响下的山区地表移动[J].煤炭科学技术,1981,12(1):15-18.
    [40]何万龙.山区地表移动变形预计[J].矿山测量,1986(2):23-26.
    [41]何万龙,孔昭璧,康建荣.山区地表采动滑的应力-应变模型[J].矿山测量,1991(2):21-24.
    [42]余学义,黄满登.滑坡区工业广场高层建筑物下煤层控制开采技术研究[R].西安:西安科技大学出版社,2002:26-66.
    [43]余学义,赵兵朝.柏林煤矿滑坡区高层建筑物下煤层控制开采技术[J].矿山压力与顶板管理,2003(S1):65-67.
    [44] Yu Xueyi,Majcherczyk T.Prognosing displacement and deformation in the mountainiousareas under the influence of underground exploitation [J].Kwartalnik Gornictwo,2003,22(2):121-131.
    [45]汤伏全,梁明.地下采矿诱发山体滑坡的机制的研究[J].煤矿开采,1995(3):34-37
    [46] Tang Fuquan.Application of close-range photogrammetry to observe mountain landslide dueto underground mining[J].Journal of coal science&technology,2009,15(4):351-354.
    [47]胡友健,吴北平.山区地下开采影响下地表移动规律[J].焦作工学院学报,1999,13(7):14-16.
    [48]惠东旭,王春刚,袁亚希.山区特厚黄土层下采煤地表移动变形规律探讨[J].陕西煤炭,2003(2):23-25.
    [49]蓝航,张华兴,姚建国,等.山区地表采动沉陷预计的数值模[J].煤炭学报,2007,32(9):912-916.
    [50]孙洪星.风积沙和黄土覆盖下煤层开采地表移动规律对比研究[J].煤矿开采,2008,13(1):6-9.
    [51]龚云,汤伏全.西部黄土山区开采沉陷变形数值模拟研究[J].西安科技大学学报,2012,32(4):490-494.
    [52]王景明.我国地裂缝及其灾害分析[R].第四届全国工程地质大会论文选集(一),北京:海洋出版社,339-346.
    [53]何红前.渭河盆地地裂缝成因机理研究[D].西安:长安大学,2011.
    [54]郭萌,王荣,王海刚,等.北京土沟—高丽营地裂缝成因分析[J].城市地质,2013,8(2):5-8.
    [55] YuriyTyapkin,IanaMendrii.改进的地震相干体算法及其应用——以乌克兰顿涅茨盆地裂缝型储层为例[J].岩性油气藏,2013,25(5):8-12.
    [56]马露,高会军.陕西省主要煤矿区地面塌陷表现形式及其遥感响应[J].中国煤炭地质,2013,25(8):32-37.
    [57]王启耀,蒋臻蔚,彭建兵.抽水作用下先存断裂活化滑移机制研究[J].水文地质工程地质,2013,40(2):108-112.
    [58]武健强,周钢军,吴曙亮,等.无锡光明村地裂缝研究地质学刊[J].2013,37(2):203-207.
    [59]张玉宝,刘军波.河北唐山市巍山长山地裂缝及其预防[J].中国地质灾害与防治学报,2013,24(1):83-85.
    [60]张艳锋.地铁穿越黄土层地裂缝防水设计施工探讨[J].城市轨道交通研究,2013,16(7):98-101.
    [61]邓亚虹,彭建兵,李丽,等.渭河盆地基底伸展与地裂缝成因关系探讨[J].工程地质学报,2013,21(1):92-96.
    [62] Becrton.C.C,Lapointe. P. R.Fractals in Petroleum Geology and Earth Processes
    [M].New York and Lodon,Plenum Press,1985.
    [63] Bell. J. W.Land Subsidence in Las Vegas. Nevada,USA,GFH International IAEGCongress[S].1990,Amsterdam,Netherlands,IAEG Publication,1327-1332.
    [64] Brooks W. E.Distribution of Anomalously High K20Volcanic Rocks in Arizona-Metasomation at the Picacho Peak Detachment Fault[J].Geology,1986(14):339-342.
    [65] Flecher. J. E.,American Geophysical Union,Transcation[J].1954,35(2):258-262.
    [66] Keston J. R.,Shlemon R. J.Fort Hancock Earth Fissure System,Hudspth Couty
    [C].Texas,Proceedings of the4th International Symposium on Land Subsidence.Houston,281-290.
    [67] Kreitler C W. Fault Control of Subsidence[J]. Ground Water,1977,15(3):203-206.
    [68]丁军,王晓梅,苏小四,等.苏锡常地区地裂缝地质灾害形成机理分析[J].吉林大学学报(地球科学版),2004,34(2):236-241.
    [69]焦珣,苏小四,于军.苏锡常地裂缝危险性分区[J].吉林大学学报(地球科学版),2009,39(1):142-146.
    [70]安海波.华北平原地裂缝成因机理研究[D].西安:长安大学,2011.
    [71]彭建兵,范文,李喜安,等.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,2007,15(4):433-440.
    [72]钟龙辉.论西安地裂缝的地质成因和发育规律[J].勘察科学技术,1986(5):27-31.
    [73]刘国昌.西安地裂缝[J].西安地质学院学报,1986(4):9-22.
    [74]谢广林.中国东部地区断裂的节奏性活动[J].华南地震,1993,13(3):30-36.
    [75]李永善,李金正.西安地裂缝[M].北京:地震出版社,1986.
    [76]杨凯元,吴成基.西安地裂缝形变监测与研究[M].西安:陕西师范大学出版社,1986.
    [77]张家明.西安地裂缝研究[M].西安:西北大学出版社,1990
    [78]姜振泉.临汾地裂缝的成因及发育环境研究[M].徐州:中国矿业大学出版社,1999.
    [79]谢广林.地裂缝[M].北京:地震出版社,1988.
    [80]刘传正.环境工程地质学导论[M].北京:地质出版社,1995.
    [81]卢积堂.河南地裂缝发生发展及其防治初探[J].河南地质,1997,15(1):71-77.
    [82]王景明.地裂缝及其灾害的理论分析与应用[M].西安:陕西科学技术出版社,2000.
    [83] Zhao Chaoying,Zhang Qin,Ding Xiaoli,et a1.Monitoring of Land Subsidence and GroundFissures in Xian,China2005-2006:Mapped by SAR Interferometry[J].EnvironmentalGeology,2009,58(7):1533-1540.
    [84]张静,张勤,曲菲菲.运城市地面沉降SBAS-InSAR监测和敏感性GIS分析[J].上海国土资源,2012,33(1):58-61.
    [85]李亮,吴侃,陈冉丽,等.小波分析在开采沉陷区地表裂缝信息提取的应用[J].测绘科学,2010,35(1):165-171.
    [86]张远智,胡广洋,刘玉彤,等.基于工程应用的3维激光扫描系统[J].测绘通报,2002,(1)34-36.
    [87]赵超英,张勤,丁晓利,等.利用InSAR技术定位西安活动地裂缝[J].武汉大学学报2信息科学版,2009,34(7):809-813.
    [88]王娅娟,孟淑英,李军,等.地裂缝信息遥感提取方法研究[J].神华科技,2011,9(5):31-33.
    [89]赵超英,张勤,朱武,LU Zhong.采用TerraSAR-X数据监测西安地裂缝形变[J].武汉大学学报(信息科学版),2012,37(1):81-85.
    [90]王宗胜,李亮,郑辉,等.地表裂缝深度实测研究[J].煤矿现代化,2011(6):39-40.
    [91]张长敏.北京西山重点区段采空塌陷勘查报告[R].北京市地质研究所,2006.
    [92]周怀生.应用HF-FSY裂缝深度测试仪实现混凝土设备精确检测[J].太原铁道科技,2012(2):31.
    [93]曹玉立.北京戒台寺滑坡工程地质勘察报告[R].中铁西北科学研究院,2005.
    [94]王国群.不同成因地裂缝探地雷达图像特征[J].物探与化探,2009,33(3):345-349.
    [95] Rhim H C.Condition monitoring of deteriorating concrete dams using radar[J].Cement andConcrete Research,2001,31(3):363-373.
    [96]杨成林,陈宁生,施蕾蕾.探地雷达在赵子秀山滑坡裂缝探测中的应用[J].物探与化探,2008,32(2):220-224.
    [97] Bungey J H. Sub-surface radar testing of concrete:a review[J]. Construction and BuildingMaterials,2004,18(1):l-8.
    [98]李远强.探地雷达探测地裂缝的几个实例[J].物探与化探,2012,36(4):651-654.
    [99] Holzer,T.L.Implications of ground-deformation measurements across earth fissures insubsidence areas in the southwestern USA [J].IAHS-AISH Publication,2010,33(9):9-19.
    [100] Muniram Budhu.Earth Fissure Formation from the Mechanics of Groundwater Pumping[J].International Journal of Geomechanics,2011,11(1):1-11.
    [101]李自红,刘鸿福,曾金燕,等.基于分形理论的地裂缝成因机制研究[J].震灾防御技术,2012,7(1):46-53.
    [102]杨凯元,吴成基.西安地裂缝形变监测与研究[M].西安:陕西师范大学出版社,1986.
    [103]董东林,姜振泉.地层条件与地裂缝之间的关系研究——以山西临汾市区为例[J].中国地质灾害与防治学报,1998,9(3):29-35.
    [104]高金川,刘娟.西安地裂缝活动多因素影响的GM(1,N)数学模型[J].地壳形变与地震,1999,19(1):56-64.
    [105]武强.山西断陷盆地地裂缝灾害研究[M].北京:地质出版社,2003.
    [106]任伟中,白世伟,孙桂凤,葛修润.厚覆盖岩层条件下地下采矿的地表及围岩变形破坏特性模型试验研究[J].岩石力学与工程学报,2005,21(11):3935-3941.
    [107]黄森林,余学义,赵雪,等.湿陷性黄土开采损害规律及控制方法研究[J].矿业安全与环保,2006,33(5):11-15.
    [108]康建荣.地表移动破坏裂缝特征及其控制方法[J].岩石力学与工程学报,2008,27(1):59-64.
    [109]黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层―拱梁‖结构模型[J].岩石力学,2009,30(9):2722-2726.
    [110]刘智,肖民.厚松散层厚坚硬岩层下地表裂缝形成机理分析[J].煤,2011,20(8):58-60.
    [111]朱国宏,连达军.开采沉陷对矿区地表裂缝的采动累积效应分析[J].中国安全生产科学技术,2012,8(5):47-51.
    [112]王来贵,初影,赵娜.采煤引起地表裂缝数值模拟研究[J].沈阳建筑大学学报(自然科学版),2001,26(6):1138-1141.
    [113]王晋丽,康建荣.山区采煤地裂缝的成因分析及预测[J].山西煤炭,2007,27(3):7-9.
    [114]郑辉,李亮,吴侃,等.采动裂缝平面分布规律研究[J].矿山测量,2011(5):77-79.
    [115]刘栋林,许家林,朱卫兵,等.工作面推进方向对坡体采动裂缝影响的数值模拟[J].煤矿安全,2012,43(5):150-153.
    [116]余学义,施文刚,张平,等.黄土沟壑区地表移动变形特征分析[J].矿山测量,2010,(2):38-40
    [117]李永钊.论神东持续发展战略[J].煤炭工程,2005(7):5-8.
    [118]顾大钊,张建民,王振荣,等.神东矿区地下水变化观测与分析研究[J].煤田地质与勘探,2013,41(4):35-39.
    [119]马鼎,李斌兵.黄土沟壑区切沟植被的激光点云滤波及地形构建[J].农业工程学报,2013,29(15):162-171.
    [120]张志亮.综合地质勘察方法在黄土梁峁区隧道工程中的应用[J].铁道勘察,2010(2):67-69.
    [121]范钟庆.青海省黄土侵蚀与保持水土的对策研究[J].青海师范大学学报(自然科学版),2003(2):80-84.
    [122]刘辉,何春桂,关英斌,等.蔚州矿区单参考站CORS系统的建立及精度测试[J].煤炭科学技术,2013,41(6):96-103.
    [123] GB/T18314-2009,全球定位系统(GPS)测量规范[S].2009.
    [124] CH/T2009-2010,全球定位系统实时动态测量(RTK)技术规范[S].2010.
    [125]雷少刚,卞正富.探地雷达测定土壤含水率研究综述[J].土壤通报,2008,39(5):1179-1182.
    [126]王兴泰.工程与环境物探新方法新技术[M].北京:地质出版社,1996.
    [127]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [128]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [129]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003.
    [130]胡青峰,崔希民,袁德宝,等.厚煤层开采地表裂缝形成机理与危害性分析[J].采矿与安全工程学报,2012,29(6):864-869.
    [131]谭志祥,邓喀中.综放面地表变形预计参数综合分析及应用研究[J].岩石力学与工程学报,2007,26(5):10411047.
    [132]钱鸣高,朱德仁,王作棠.老顶岩层断裂型式及对工作面来压的影响[J].中国矿业学院学报,1986,15(2):74-78.
    [133]王作棠,钱鸣高.老顶初次来压步距的计算预测法[J].中国矿业大学学报,1989,18(2):9-17.
    [134]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):463-467.
    [135]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [136]康建荣.山区采动裂缝对地表移动变形的影响分析[J].岩石力学与工程学报,2008,27(1):59-64.
    [137]胡晋山,何宗宜,康建荣,等.山区地下开采坡体稳定性分析及滑坡预报系统的设计[J].中国矿业,2009,18(11):112-115.
    [138]何万龙.山区开采沉陷与采动损害[M].北京:中国科学技术出版社,2003:147-149.
    [139]蒋斌松,蔡美峰,吕爱钟.边坡稳定性的分析计算[J].岩石力学与工程学报,2004,23(16):2726-2733.
    [140] Rajesh R, Shrivastva B K. Numerical simulation of vegetated mine dump slope withreference to small plants[J]. International Journal of Mining Science and Technology,2014,24(1):111–115.
    [141]康建荣,何万龙,胡海峰.山区采动地表变形及坡体稳定性分析[M].北京:中国科学技术出版社,2002:127-129.
    [142]杨明成.一般条分法的安全系数显示解[J].岩土力学,2004,25(z2):568-573.
    [143]姜德义,朱合,杜云贵.边坡稳定性分析与滑坡防治[M].重庆:重庆大学出版社,2005:88-91.
    [144]胡晋山,何宗宜,康建荣,等.山区地下开采坡体稳定性分析及滑坡预报系统的设计[J].中国矿业,2009,18(11):112-115.
    [145]蒋斌松,蔡美峰,吕爱钟.边坡稳定性的分析计算[J].岩石力学与工程学报,2004,23(16):2726-2733.
    [146]高保彬,李回贵,王洪磊.UDEC下保护层开采裂隙演化及瓦斯渗流规律[J].河南理工大学学报(自然科学版),2013,32(5):518-522.
    [147]王文龙,李占斌,张平仓.神府东胜煤田开发中诱发的环境灾害问题研究[J].生态学杂志,2004,23(1):34-38.
    [148]杨宏科,范立民.榆神府煤矿区地质生态环境综合评价[J].煤田地质与勘探,2003,31(6):6-8.
    [149]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [150]冯光明,孙春东,王成真.超高水材料采空区充填方法研究[J].煤炭学报,2010,35(12):1963-1968.
    [151]贾凯军,冯光明,李华健,等.薄煤层超高水材料充填开采相似模拟试验研究[J].煤炭学报,2013,38(S2):267-271.
    [152]孙希奎,王苇.高水材料充填置换开采承压水上条带煤柱的理论研究[J].煤炭学报,2011,36(6):909-913.
    [153]刘辉,何春桂,董增林,等.高水材料充填技术在减小地表沉降中的应用[J].煤田地质与勘探,2010,38(6):150-153.
    [154]谢国强,杨军辉,谢生荣,等.大采高综采面超高水材料充填开采技术[J].中国矿业,2013,22(3):70-72.
    [155]冯光明,丁玉,朱红菊,等.矿用超高水充填材料及其结构的实验研究[J].中国矿业大学学报,2010,39(6):813-819.
    [156]丁玉,冯光明,王成真.超高水充填材料基本性能试验研究[J].煤炭学报,2011,36(7):1087-1092.
    [157] GB15618-2008,土壤环境质量标准[S].2008.
    [158]刘辉,邓喀中,雷少刚,等.一种高水材料地裂缝充填系统[P].中国专利:ZL201320358225.5,2014-01-08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700