用户名: 密码: 验证码:
几类反应扩散生物学模型的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究几类具有生物背景的反应扩散模型解的动力学行为.讨论的问题包括正稳态解的存在性与稳定性,系统的持续生存性质,以及解的渐近行为.首先研究一个非均匀双营养基食物链恒化器模型,证明了系统正稳态解的存在性,并得到系统持续生存的条件.其次考虑一个非均匀双营养基竞争恒化器模型,得到系统正稳态解的存在性与持续生存条件.第三,研究一个三种群捕食者一被捕食者模型,证明了系统在一定条件下具有一个全局吸引子.最后,研究一个Kelle-Segel模型,得到了解的衰减及渐近行为.
     第一章概述本文所研究问题的生物背景和国内外发展状况,并简要介绍本文的主要工作.
     第二章考虑一个非均匀双营养基食物链恒化器模型.首先利用不动点指数结合特征值理论得到了系统正稳态解存在的条件.然后运用全局分歧理论得到一定条件下系统正稳态解的全局结构,并研究了系统参数对捕食种群和被捕食种群灭绝与持续生存,以及被捕食种群对捕食种群持续生存的影响.
     第三章研究一个非均匀双营养基竞争恒化器模型.在证明系统正稳态解存在性的基础上,探究了其中一个种群正稳态解的全局吸引条件,然后得到两种群灭绝与持续生存的条件,并以两种群扩散系数作为参数,讨论种群的稳定性,持续生存及渐近行为.本文证明,在一定参数范围内,当两种群扩散速度都较快时:两者都将灭绝;而一个扩散得较快,另一个较慢时,扩散较慢种群的浓度具有全局稳定性.
     第四章考虑一个三种群捕食者一被捕食者模型解的长时间行为.利用无穷维动力系统的理论结合先验估计的方法,得到系统存在全局吸引子条件.改进了相关文献的整体解存在性结果.
     第五章研究一个具有体积填充效应的Keller-Segel模型.利用Lp-Lq估计的方法对任意扩散系数ε>0得到了解的衰减估计以及解的渐近行为,去掉了相关文献的过强限制:ε>1/4(或∫Rnρ0(x)dx≤G0(ε,n)).
This thesis deals with dynamics of solutions to some reaction-diffusion models from biology. The topics include the existence and the stability of steady states, the persistence of solutions for two un-stirred chemostat models, and the long-time behavior of solutions for a three-species predator-prey model with cross-diffusion, as well as a Keller-Segel model for chemotaxis with prevention of overcrowding. Firstly, we consider a multiple food chain model for two resources in un-stirred chemostat. We derive the existence of the positive steady solutions and the persistence of solutions.
     Secondly, we concern a competition model for two resources in un-stirred chemostat to prove the conditions for the existence of positive steady solutions and the persistence for solutions. Thirdly, we study the long-time behavior of solutions for a three-species predator-prey model with cross-diffusion. We prove the existence of a global attractor to the system. Finally, we investigate a Keller-Segel model. We obtain the decay and the long-time behavior of solutions to the system.
     Chapter 1 is to summarize the background of the related issues and to briefly intro-duce the main results of the thesis.
     Chapter 2 is concerned with a multiple food chain model for two resources in un-stirred chemostat. Firstly, Combining with the fixed point theory and the eigenvalue theory, we get conditions for the existence of positive solutions, and then find the global structure of positive steady solutions under some conditions by the global bifurcation theory. Meanwhile, we study how the parameters affect the extinction or persistence of the predator and prey, and how the prey affect the predator.
     Chapter 3 is devoted to a competition model for two resources in un-stirred chemo-stat. On the basis of the existence of positive solutions, we study the global attracting conditions for one of the populations, and derive the extinct and persistent conditions for the two (or one) populations. Furthermore, regarding the diffusion rates as parameters, we consider the stability, persistence and asymptotic behavior for the two populations. We find that the two populations will go to extinct when both possess large diffusion rate. If just one of them spreads fast with the other one diffusing slower, then the related semitrivial steady state will be global attracting.
     Chapter 4 deals with large-time behavior of solutions for a three-species predator-prey model with cross-diffusion. By using the infinite-dimensional dynamical systems theory and the a priori estimate method, we prove that the system admits a global attractor if m,l≥2. This extends the known results on the global existence of solutions.
     Chapter 5 studies a Keller-Segel model for chemotaxis with prevention of overcrowd-ing. We prove a crucial decay result for arbitrary diffusion rateε>0, and then obtain the asymptotic behavior of solutions, where the stronger assumptionε>1/4 (or∫nρ0(x)dx≤Co(ε, n)) in the related literature is unnecessary any more.
引文
[1]R. A. ADAMS. Sobolev Space [M]. New York:Academic Press,1975.
    [2]H. AMANN. Dynamic theory of quasilinear parabolic equations Ⅱ Reaction diffusion systems [J]. Differential Integral Equations.,1990,3:13-75.
    [3]H. AMANN. Dynamic theory of quasilinear parabolic systems Ⅲ. Global existence [J]. Math. Z.,1989,202:219-250.
    [4]H. AMANN. Fixed point equations and nonliear eigenvalue problems in ordered Banach space [J]. SIAM Rev.,1976,18:620-709.
    [5]A. V. BABIM, M. I. VISHIK. Attractors of partial differential evolution equations and estimates of their dimension [J]. Russian Math. Surveys.,1983,38:151-213.
    [6]J. BLAT, K.J. BROWN. Global bifurcation of positive solutions in some systems of elliptic equations [J]. SIAM J. Math. Anal.,1986,17:1339-1353.
    [7]M. M. BSLLYK, G. S. K. WOLKOWICZ. Exploitative competition in the chemostat for two perfectly substitutable resources [J]. Math. Biosci.,1993,118:127-180.
    [8]S. CHILDRESS, J. K. Percus. Nonlinear aspects of chemotaxis [J]. Math. Biosci., 1981,56:137-217.
    [9]S. CHILDRESS. Chemotactic collapse in two dimensions [J]. Lecture Notes in Biomath.,1984,55:61-66, Springer, Berlin.
    [10]T. CIESLAK, M. WINKLER. Finite time blow-up in a quasilinear system of chemo-taxis [J]. Nonlinearity,2008,21:1057-1076.
    [11]L. CORRIAS, B. PERTHAME. Critical space for the parabolic-parabolic Keller-Segel model in Rd [J]. C. R. Math. Acad. Sci. Paris, Ser. I.,2006,342:745-750.
    [12]L. CORRIAS, B. PERTHAME. Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces [J]. Math. Comput. Modelling.,2008,47:755-764.
    [13]L. CORRIAS, B. PERTHAME, H. ZAAG. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions [J]. Milan J. Math.,2004,72: 1-29.
    [14]M. CRANDALL, P. H. RABINOWITZ. Bifurcation from simple eigenvalues [J]. J. Funct. Anal.,1971,8:321-340.
    [15]E. N. DANCER, Y. DU. Positive solutions for a three-species competition system with diffusion-Ⅰ and Ⅱ. General existence results [J]. Nonlinear Anal.,1995,24: 337-373.
    [16]J. DOLBEAULT, B. PERTHAME. Optimal critical mass in two-domensional Keller-Segel model in R2 [J]. C. R. Math. Acad. Sci. Paris.,2004,339:611-616.
    [17]L. DUNG, HAL L. SMITH. A parabolic system modeling microbial competition in an unmixed bio-reactor [J]. J. Differential Equations.,1996,130:59-91.
    [18]L. DUNG. Cross diffusion systems on n spatial dimensional domains [J]. Indiana Univ. Math. J.,2002,51:625-643.
    [19]L. DUNG. Remark on Holder continuity for parabolic eqautions and the convergence to global arractors [J]. Nonlinear Anal.,2000,41:927-941.
    [20]L. DUNG. Dynamics of bio-reactor model with chemotaxis [J]. J. Math. Anal. Appl.2002,275:188-207.
    [21]L. DUNG, HAL L. SMITH, P. WALTMAN. Growth in the unstirred chemostat with different diffusion rate [J]. Fields Inst. Commun.,1999,21:131-142.
    [22]M. M. BALLYK, G. S. K. WOLKOWICZ. Exploitative competition in the chemo-stat on two perfectly substitutable resources [J]. Math. Biosci.,1993,118:127-180.
    [23]M. M. BALLYK, G. S. K. WOLKOWICZ. An examination of the thresholds of enrichment:a resource-based growth model [J]. J. Math. Biol.,1995,33:435-457.
    [24]M. M. BALLYK, L. DUNG, DON A. JONES, H. L. SMITH. Effect of random motility on microbial growth and competition in a flow reactor [J]. SIAM J. Appl. Math.,1998,59:573-596.
    [25]M. M. BALLYK, C. CONNELL MCCLUSKEY, G. S. K. WOLKOWICZ. Global analysis of competition for perfectly substitutable resouces with linear response [J]. J. Math. Biol.,2005,51:458-490.
    [26]G. J. BUTLER, G. S. K. WOLKOWICZ. Exploitative competition in the chemostat for two complementary, and possibly inhibitory, resources [J]. Math. Biosci.,1987, 83:1-48.
    [27]G. J. BUTLER, S. B. HSU, P. WALTMAN. Coexistence of competing predators in a chemostat [J]. J. Math. Biol.,1983,17:133-151.
    [28]G. J. BUTLER, S. B. HSU, P. WALTMAN. A mathematical model of the chemostat with periodic washout rate [J]. SIAM J. Math. Anal.,1985,45:435-449.
    [29]G. J. BUTLER, V. CAPASSO. D. MORALE. On an aggregation model with long and short range interactions [J]. Nonlinear Anal. Real World Appl.,2007,8:939-958.
    [30]M. BURGER, M. DI FRANCESCO, Y. DOLAK-STRUSS. The Keller-Segel model for chemotaxis with prevention of overcrowding:linear versus nonlinear diffusion [J]. SIAM J. Math. Anal.,2006,38:1288-1315.
    [31]Y. S. CHOI, R. LUI, Y. YAMADA. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion [J]. Discrete Continuous Dy-namical Systems.,2003,9:1193-1200.
    [32]Y. S. CHOI, R. LUI, Y. YAMADA. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion [J]. Discrete Con-tin. Dyn. Syst.,2004,10:719-730.
    [33]T. CIESLAK, M. WINKLER. Finite-time blow-up in a quasilinear system of chemo-taxis [J]. Nonlinearity.,2008,21:1057-1076.
    [34]E. N. DANCER. On the indices of fixed points of mappings in cones and applications [J]. J. Math. Anal. Appl.,1983,91:131-151.
    [35]D. DANERS. Robin boundary value problems on arbitrary domains [J]. Trans. Amer. Math. Soc.,2000,352:4207-4236.
    [36]D. G. DEFIGUEIRDO. Positive solutions of semilinear elliptic equations [M]. Lec-ture Notes in Math.,1982,957:34-87.
    [37]L C. EVANS. Partial Differential Equations [M]. Providence, RI:American Math-ematical Society,1998.
    [38]J. Ferrera, J. Lopez-Gomez, F.R. Ruiz del Portal. Ten Mathematics Essays on Approximation in Analysis and Topology [M]. Elsevier,2005.
    [39]M. DI FRANCESCO, J. ROSADO. Fully parabolic Keller-Segel model for chemo-taxis with prevention of overcrowding [J]. Nonlinearity.,2008,21:2715-2730.
    [40]H. I. FREEDMAN, SO JOSEPH, P. WALTMAN. Coexistence in a model of com-petition in the chemostat incorporating discrete delays [J]. SIAM J. Appl. Math., 1989,49:859-870.
    [41]A. FRIEDMAN. Partial Differential Equations [M]. Holt, Rienhart Winston, New York,1969.
    [42]D. GILBARG, N. S. TRUDINGER. Elliptic Partial Differential Equations of Second Order [M]. Springer-Verlag, Berlin/New York,1983.
    [43]D. HENRY. Geometric Theory of Semilinear Parabolic Equations [M]. Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin,1981.
    [44]J. HALE. Asymptotic Behavior of Dissipative Systems [M]. Math. Survey. Mono-graphs, Vol.25, Amer. Math. Soc., Providence, RI,1988.
    [45]S. B. HSU, S. P. HUBBELL, P. WALTMAN. A mathematical model for single nurtinet compettiinon in continuous cutlures of micr-organisms [J]. SIAM J. Appl. Math.,1977,32:36-383.
    [46]S. B. HSU. A competition model for a seasonly fluctuating nutrient [J]. J. Math. Biol.,1980,9:115-132.
    [47]S. B. HSU, P. WALTMAN. Analysis of a model of two competitors in a chemostat with an external inhabotor [J]. SIAM J. Math. Anal.,1992,52:528-540.
    [48]S. B. HSU, P. WALTMAN. On a system of reaction-diffusion equations arising from competition in an unstirred chemostat [J]. SIAM J. Math. Anal.,1993,53: 1026-1044.
    [49]S. B. HSU, P. WALTMAN. Competition between plasmid-bearing and plasmid-free organisms in selective media [J]. Chem. Eng. Sci.,1997,52:23-35.
    [50]S. B. HSU, P. WALTMAN. Competition in the chemostat when one competitor produce a toxin [J]. Japan J. Indust. Appl. Math.,1998,15:471-490.
    [51]S. B. HSU, P. WALTMAN. A model of the effect of anti-competitoe toxins on plasmid-bearing, plasmid-free competiton [J]. Taiwanese J. Math.,2002,6:135-155.
    [52]S. B. HSU, P. WALTMAN, G. S. K. WOLKOWICZ. Global analysis of a model of plasmid-bearing, plasmid-free competiton in the chemostat [J]. J. Math. Biol., 1994,32:731-742.
    [53]M. A. HERREO, J. J. L. VELAZQUEZ. Singularity patterns in a chemotaxis model [J]. Math. Ann.,1996,306:583-623.
    [54]M. A. HERREO, J. J. L. VELAZQUEZ. A blow-up mechanism for a chemotaxis model [J]. Ann. Sc. Norm. Super. Pisa Cl. Sci.,1997,24:633-683.
    [55]T. HILLEN, K. PAINTER. Global existence for a parabolic chemotaxis with pre-vention of overcrowding [J]. Adv. in Appl. Math.,2001,26:280-301.
    [56]T. HILLEN, K. PAINTER. Volume-filling and quorum sensing in models for chemosensitive movement [J]. Can. Appl. Math. Q.,2002,10:501-543.
    [57]D. HORSTMANN. From 1970 until present:The Keller-SEgel model in chemotaxis and its condequences:Part Ⅰ [J]. Jahresber. Deutsch. Math.-Verein.,2003,105:103-165.
    [58]D. HORSTMANN. From 1970 until present:The Keller-SEgel model in chemotaxis and its condequences:Part Ⅱ [J]. Jahresber. Deutsch. Math.-Verein.,2004,105:51-69.
    [59]D. HORSTMANN. Blow-up in a chemotaxis model without symmetry assumptions [J]. European J. Appl. Math.,2001,12:159-177.
    [60]D. HORSTMANN, M. WINKLER. Boundedness versus blow-up in chemotaxis system [J]. J. Differential Equations.,2005,215:52-107.
    [61]S. B. HSU, K. S. CHENG, S. P. HUBBELL. Exploitative competition of microor-ganisms for two complementary nutrients in continuous cultures [J]. SIAM J. Appl. Math.,1981,41:422-444.
    [62]M. ITO. Global aspect if steady-states for competitive-diffusive systems with ho-mogeneous dirichlet conditions [J]. Phys. D.,1984,14:1-28.
    [63]Y. KAN-ON. Instability of stationary solutions for a Lotka-Volterra competition model with diffusion [J]. J. Math. Anal. Appl.,1997,208:158-170.
    [64]Y. KAN-ON. Existence and instability of Neumann layer solutions for a 3-component Lotka-Volterra model with diffusion [J]. J. Math. Anal. Appl.,2000, 243:357-372.
    [65]Y. KAN-ON, M. MIMURA. Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics [J]. SIAM J. Math. Anal., 1998,29:1519-1536.
    [66]E. F. KELLER, L. A. SEGEL. Inition of slime mold aggregation viewed as an instability [J]. J. Theoret. Biol.,1970,26:399-415.
    [67]R. KOWALCZYK. Preventing blow-up in a chemotaxis moedel [J]. J. Math. Anal. Appl.,2005,305(2):566-588.
    [68]K. KUTO, Y. YAMADA. Multiple coexistence states for a prey-predator system with cross diffusion [J]. J. Differential Equations.,2004,197:315-348.
    [69]N. LAKOS. Existance of steady-state solutions for a one-predator-two-prey system [J]. SIAM J. Math. Anal.,1990,21:647-659.
    [70]O. A. LADYZENSKAJA, V. A. SOLONNIKOV, N. N. URAL'CEVA. Linear and Quasilinear Equations of Parabolic Type [M]. Translations of Mathematical Mono-graphs Vol.23 (Amer. Math. Soc. Providence, RI,1967).
    [71]J.A. LEON, D. B. TUMPSON. Competition between two species for two comple-mentary or substitutable resources [J]. J. Theoret. Biol.,1975,50:185-201.
    [72]Y. LOU, W. M. NI. Diffusion, self-diffusion and cross-diffusion [J]. J. Differential Equations.,1996,131:79-131.
    [73]Y. LOU, W. M. NI. Diffusion vs cross-diffusion:an elliptic approach [J]. J. Differ-ential Equations.,1999,154:157-190.
    [74]Y. LOU, W.M. NI, Y. WU. On the global existence of a cross-diffusion system [J]. Discrete Contin. Dyn. Syst.,1998,4:193-203.
    [75]Y. LOU, W. M. NI, S. YOTSUTANI. On a limiting system in the Lotka-Volterra competition with cross-diffusion [J]. Discrete Contin. Dyn. Syst.,2004,10:435-458.
    [76]B. R. LEVIN. Frequency-dependent selection in bacterial populations [J]. Philos. Trans. R. Soc. Lond.,1988,319:459-472.
    [77]B. LI, G. S. K. WOLKOWICZ, Y. KUANG. Global asymptotic behavior of a chemostat model with two perfectly complementary resources and distributed delay [J]. SIAM J. Appl. Math.,2000,60:2058-2086.
    [78]J. LIU, S. N. ZHENG. A reaction-diffusion system arising from food-chain in an unstirred chemostat [J]. J. Biomath.,2002,17:1-10.
    [79]A. J. LOTKA. Elements of Physical Biology [M]. Williams and Wilkins,1925.
    [80]S. LUCKHAUS, Y. SUGIYAMA. Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems [J]. Math. Model. Numer. Anal.,2006,40: 597-621.
    [81]V. G. MAZ'JA. Sobolev Spaces [M]. Springer, Berlin,1985. MR87g:46056.
    [82]T. NAGAI. Blow-up of symmetric solutions to a chemotaxis system [J]. Adv. Math. Sci. Appl.,1995,5:581-601.
    [83]T. NAGAI, T. SENBA, M. UMESAKO. Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in RN [J]. Funkcial. Ekvac. 2003,46:383-407.
    [84]T. NAGAI, T. SENBA, K. YOSHIDA. Applicatuin of the trudinger-Moser inequal-ity to a parabolic system of chemotaxis [J]. Funkcial. Ekvac.,1997,40:411-433.
    T. NAGAI, T. YAM ADA. Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space [J]. J. Math. Anal. Appl.,2007,336: 704-726.
    [86]P. Y. H. PANG, M. X. WANG. Qualitative analysis of a ratoi-dependent predator-prey system with diffusion [J]. Proc. Roy. Soc. Edinburgh Sect. A,2003,133(4): 919-942.
    [87]P. Y. H. PANG, M. X. WANG. Strategy aand stationary pattern in a three-species predator-prey model [J]. J. Differential Equations.,2004,200(2):245-273.
    [88]P. Y. H. PANG, M. X. WANG. Existence of global solutions for a three-species predator-prey model with cross-diffusion [J]. Math. Nachr.,2008,281:555-560.
    [89]R. REDLINGER. Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics [J]. J. Differential Equations.,1995,118: 219-252.
    [90]B. RAI, H. I. FREEDMAN, J. F. ADDICOTT. Analysis of three species models mutualism in predator-prey and competitive systems [J]. Math. Biosci.,1983,65: 13-50.
    [91]D. J. RAPPORT. An optimization model of food selection [J]. Am. Nat.,1971, 105:575-587.
    [92]J. SIMON. Compact sets in the space Lp(0,T;B) [J]. Ann. Mat. Pura Appl.,1987, 146:65-96.
    [93]H. J. SMITH. Competitive coexistence in osillating chemostat [J]. SIAM J. Appl. Math.,1981,40:498-522.
    [94]H. L. SMITH, P. WALTMAN. Perturbation of a globally stabal steady state [J]. Proc. Amer. Math. Soc.,1999,127:447-453.
    [95]J. SMOLLER. Shock Waves and Reaction-Diffusion Equations [M]. Springer, New York,1983.
    [96]N. SHIGESADA, K. KAWASAKI, E. TERAMOTO. Spatial segregation of inter-acting species [J]. J. Theoret. Biol.,1979,79:83-99.
    [97]Y. SUGIYAMA, H. KUNII. Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term [J]. J. Differential Equations., 2006,227:333-364.
    [98]Y. SUGIYAMA. Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Heller-Segel systems [J]. Differential Integral Equations.,2006,19:841-876.
    [99]Y. SUGIYAMA. Time global existence and asymptotic behavior of solutions to degenerate quasilinear parabolic systems for chemotaxis-growth models [J]. Differ-ential Integral Equations,2007,20:133-180.
    [100]R. TEMAN. Infinite-Dimensional Dynamical Systems in Mechanics and Physics [M]. Appl. Math. Science, Vol.68, Springer-Verlag, New York,1988.
    [101]H. R. THIEME. Persistence under relaxed point-dissipativity (with application to an epidemic model [J]. SIAM J. Math. Anal.,1993,24:407-435.
    [102]D. WRZOSEK. Global attractor for a chemotaxis model with prevention of over-crowding [J]. Nonlinear Anal.,2004,59:1293-1310.
    [103]R. WILLIE. Analysis of caughley model with diffusion from mathematical ecology [J]. Nonlinear Anal. Real World Appl.,2008,9:858-871.
    [104]V. VOLTERRRA. Variazioni e fluttuazioni del numero dindividui in specie animali conviventi [J]. Mem. Accad. Lince.,1926,2:31-113.
    [105]王明新.非线性抛物型方程[M].北京:科学出版社,1993.
    [106]M. X. WANG. Stationary patterns of stronly coupled prey-predator model [J]. J. Math. Anal. Appl.,2004,292(2):484-505.
    [107]M. X. WANG. Stationary patterns for a prey-predatormodel with ration-dependent functional responses and diffusion [J]. Phys. D.,2004,196:172-192.
    [108]W. JAGER, S. LUCKHAUS. On explosions of solutions to a system of partial differential equations modelling chemotaxis [J]. Trans. Amer. Math. Soc.,1992, 329:819-824.
    [109]J. H. WU. Global bifurcation of coexistence state for the competition model in the chemostat [J]. Nonlinear Anal.,2000,39:817-835.
    [110]J. WU, G. S. K. WOLKOWICZ. A system of resources-based growth models with two resources in the unstirred chemostat [J]. J. Differential Equations.,2001,172: 300-332.
    [111]J. WU, H. NIE, G. S. K. WOLKOWICZ. A mathematical model of competition for two essential resources in the unstirred chemostat [J]. SIAM J. Appl. Math.,2004, 65:209-229.
    [112]伍卓群,尹景学,王春朋.椭圆与抛物型方程引论[M].北京:科学出版社,2003.
    [113]A. YAGI. Global solution to some quasilinear parabolic system in population dy-namics [J]. Nonlinear Anal.,1993,21:603-630.
    [114]Y. YAMADA. Global solutions for quasilinear parabolic systems with cross-diffusion effects [J]. Nonlinear Anal.,1995,24:1395-1412.
    [115]Y. YAMADA. Coexistence states for Lotka-Volterra systems with cross-diffusion [J]. Fields Inst. Commun.,2000,25:551-564.
    [116]Y. YAMADA. Stability of steady states for prey-predator diffusion equations with homogeneous dirichlet conditions [J]. SIAM J. Math. Anal.,1990.21:327-345.
    [117]叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社,1990.
    [118]S. N. ZHENG. A reaction-diffusion system of a competitor-competitor-mutualist model [J]. J. Math. Anal. Appl.,1987,124:254-280.
    [119]S. N. ZHENG, H. J. GUO, J. LIU. A food chain model for two resources in un-stirred chemostat [J]. Appl. Math. Comput.,2008,206:389-402.
    [120]S. N. ZHENG, J. LIU. Coexistence solutions for a reaction-diffusion system of unstirred chemostat model [J]. Appl. Math. Comput.,2003,145:579-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700