用户名: 密码: 验证码:
结缕草温度胁迫的生理响应及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度作为生物机能的一种动力,影响植物的蒸腾、水势、吸收和新陈代谢,以及几乎所有的酶促反应、休眠和生长发育。草坪草的生长温度域很窄,冷季型草坪草的适宜温度为15~24℃,暖季型草坪草的适宜温度为26~32℃,超过适宜温度,草坪草的正常生长发育和健康就会受到影响。因此,草坪草抗寒耐热性研究一直是热点问题。国内对草坪草抗性的研究多局限于生理生化方面的变化机制,对其分子机理研究甚少。本试验以暖季型草坪草为材料,系统研究草坪草对温度胁迫的生理响应及其分子适应机制。
     以南方最广泛种植的两种暖季型草坪草——沟叶结缕草(Zoysiagrass matrella(L.)merr.)和日本结缕草(Zoysiagrass japonica Steud)为材料,测定其高低温胁迫下主要抗性生理指标的变化。结果表明:两种结缕草在高温和低温胁迫下,叶片可溶性糖、可溶性蛋白质和脯氨酸等渗透调节物质的含量都有不同程度增加,其中沟叶结缕草不管是高温下还是低温下其叶片可溶性糖和脯氨酸含量的增幅明显大于日本结缕草。超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)是细胞膜的保护酶系统,具有清除活性氧物质的功能。试验结果表明,低温和高温下,两种结缕草叶片SOD、POD和CAT三种酶活性都有不同程度增强,其中沟叶结缕草在逆境温度下其SOD与CAT活性增强均大于日本结缕草,日本结缕草则表现为逆境下POD活性增强大于沟叶结缕草。MDA是膜脂过氧化的主要产物之一,它的积累是活性氧毒害的表现,本试验结果表明,高温下两种结缕草MDA含量增加不显著,但在低温下,其含量都极显著增加,其中日本结缕草MDA含量的增加幅度大于沟叶结缕草。光合色素的含量不仅影响草坪草的色泽,而且影响其光合作用。在本试验中,高低温胁迫下两种结缕草叶片的叶绿素a(Chla)、叶绿素b(Chlb)、类胡萝卜素(Car)含量以及Chla/Chlb的比值均不同程度下降,尤其是日本结缕草。植物激素在植物生长过程中起重要作用。本试验结果表明,两种结缕草在高低温胁迫下叶片抑制类激素ABA含量都增加,40℃高温胁迫下两种草坪草ABA含量增幅均大于0℃或10℃低温胁迫,同样高温或低温胁迫下沟叶结缕草的ABA含量增幅又大于日本结缕草;高温胁迫下,两种结缕草叶片促进类激素都相对保持较高含量,在低温胁迫时促进类激素含量则有较大幅度降低。从各内源激素间的平衡来看,在高低温胁迫下,两种结缕草叶片内抑制类激素与促进类激素总量的比值升高。
     综合各抗性生理指标值的变化,我们认为两种结缕草抗高温性能优于抗低温;同样的温度胁迫下,沟叶结缕草的抗逆性又强于日本结缕草。
     在前期温度胁迫的抗性生理指标测定与分析的基础上,选择抗性表现更佳的沟叶结缕草为材料,利用双向电泳技术(two-dimensional electrophoresis,2-DE)、质谱技术(mass spectrometry,MS)并结合生物信息学的方法,分别对其在低温胁迫和高温胁迫条件下的差异蛋白质组学进行了研究。结果发现高低温下共有35个蛋白质点在不同处理间存在显著的差异表达模式。35个蛋白质点通过Q-TOF MS分析后有26个蛋白获得了有效的肽指纹图谱和功能预测。根据其功能,将它们归纳为五个类群,即:信号转导相关蛋白、代谢相关蛋白、防卫相关蛋白、蛋白质合成与降解相关蛋白、细胞转运能力和胚胎发育相关蛋白。其中,在低温胁迫下,质谱分析共鉴定出20个蛋白点,有4个点是同一个蛋白(Rubisco大亚基),这些差异表达的蛋白质一方面加强了胞内信号转导、活性氧的清除、蛋白质防御以提高沟叶结缕草的抗逆性,另一方面由于一些蛋白质丰度的下调表达使得低温下植物体呼吸作用表现为先增强后减弱、光合作用下降、蛋白质降解、细胞的转运能力减弱,不利植物的生长发育;在高温胁迫下,质谱分析共鉴定出19个蛋白点,3个点是同一个蛋白(Rubisco大亚基),这些蛋白质主要加强了信号识别、跨膜信号转导、光合作用、呼吸作用、次生代谢作用、活性氧的清除、蛋白质防御及蛋白质的合成等方面,极大地提高了沟叶结缕草的高温抗逆性。此外,在本试验高低温处理中,均鉴定出ZLL/PNH同源蛋白相对丰度的下调表达,且均随着时间的延长,下调幅度增大,由此说明,不管是在高温胁迫下还是在低温胁迫下均不利沟叶结缕草主茎分生组织的发育,不利于维持主茎的正常生理机能。
     进一步运用抑制消减杂交(SSH)方法构建沟叶结缕草对高温(40℃)处理响应的正向差减文库,通过reverse northern杂交方法筛选文库,挑选出高温胁迫处理下35个差异表达基因,对这些基因进行测序,将测序获得的35条原始序列去除由SSH引入的接头引物序列后与基因组数据库(NCBI)进行比对,获得26个基因功能已知的差异表达的基因。这些已知基因分别参与植物代谢、基因表达调控和信号转导、植物抗逆性反应以及蛋白质的合成等过程。试验中鉴定出与代谢有关的NADP-苹果酸酶、与蛋白质合成有关的核糖体蛋白以及具有清除活性氧功能的过氧化氢酶等基因的加强表达,这一结果与高温胁迫下沟叶结缕草的差异蛋白质组学研究的结果相一致,进一步证明了高温胁迫下沟叶结缕草通过加强代谢作用,增强蛋白质的合成作用以及提高活性氧的清除能力来提高其高温抗逆性。文中还讨论了SSH分析结果与蛋白质组学分析结果不一致的可能原因。
Temperature as a drive force of biological functions affects plant's transpiration,absorption,water potential,nearly all enzymatic reations,dormancy and growth.Thetemperature range of growth in turfgrass is narrow.The suitable temperature range of growthfor cold-season turfgrass is 15~24℃,while it is 26~32℃for warm-season turfgrass.Whenit exceeds the suitable temperature range,the natual growth and health of turfgrass will beinfluenced.Studying on the cold resistance and heat tolerance of turfgrass is a hot issue.Somestudies on the physiobiochemical mechanism of the resistance in turfgrass have been carriedout,however few information is available in the molecular mechanism of its resistance inChina.The study is to detect the physiological responses and molecular adaptationmechanism of warm-season turfgrass to temperature stress.
     Two warm-type turfgrass species,the most widely planted,such as Zoysia matrella (L.)merr.and Zoysia japonica steud.,were used for the experiment to detect the physiologicalresponses to low and high temperature stress.The results showed that the contents of solublesugar,soluble protein,proline,were all increased,but the increasing changes in the contentsof soluble sugar and proline were higher in Z.matrella than in Z.japonica under the sametemperature stress.Superoxide dismutase (SOD),peroxidase (POD)and catalase (CAT),which function is clearing active oxygen,are the system of protective enzymes in cellmembrane.The study showed that the activities of SOD,POD and CAT were all builded up inthe two turfgrass species under the low and high temperature stresses.But the increased extent ofSOD and CAT in Z.matrella was much higher than that in Z.japonica,however Z.japonica showedhigher activity of POD than Z.matrella under the temperature stress.Malondialdehyde (MDA)isone major production of membrane lipid peroxidation.Its accumulation is physiologicalindicator of active oxygen toxicity.It was found that the content of MDA was insignificantlyincreased under the high temperature stress,but it was significantly enhanced under the lowtemperature stress in the two turfgrass species.The increasing extent of MDA content wasmuch higher in Z.matrella than that in Z.japonica under the low temperature stress.Photosynthetic pigments not only affect the colour and luster of turfgrass but also affect itsphotosynthesis.It was also found that low and high temperature treatment caused decreases in carotenoid (Car)、chlorophyll a (Chla)and chlorophyll b (Chlb)contents and changes inChla/Chlb.However,the two turfgrass species responded to the temperature stressdifferently.The decreasing extent of the pigments was higher in Z.japonica under thetemperature treatment.Endogenous hormones play an important role on the plant growth.Thestudy showed that the content of ABA was increased when exposed to temperature treatment,and the increased extent was much higher under 40℃treatment than under 0℃or10℃treatment in the two turfgrass species.The increased degree of ABA in Z.matrella wasmuch higher than that in Z.japonica under the same temperature treatment.It maitainedrelatively high contents of promoting hormones in the two turf grass species under the hightemperature treatment,but reverse was true in the low temperature treatment.As far as thebalance of endogenous hormones was concerned,the ratio of inhibiting hormones topromoting hormones was increased in the two turfgrass species under the temperaturetreatment.
     According to the results obtained from analyzing the resistance physiological indexes,itindicated that the two turfgrass species performed stronger resistibility under the hightemperature stress than under the low temperatue stress and Z.matrella showed the strongerresistance than Z.japonica under the same temperature stress.
     In this article,the warm season turfgrass,Z.matrella,which showed stronger resistancein the experiment of resistance physiology,was studied using two-dimensional gelelectrophoresis(2-DE),mass spectrometry(MS),and bioinformatics analyses to explore thedifferentially expressed proteins of the turfgrass under low temperature and high temperaturetreatments.The result indicated that there were 35 potein spots which showed differentexpression partterns after the the different treatments.Of these,26 proteins were successfullyidentified with the aid of Q-TOF MS and bioinformatics.These proteins were involved insignal transduction,metabolism,stress resistance,protein synthesis and degradation,celltransportation capacity and embryo development.There were 20 proteins identified by Q-TOFMS,of which 4 proteins were ribulose bisphosphate carboxylase large subunit,under the lowtemperature treatment.On the one hand,some of these proteins strengthened signaltransduction,active oxygen scavenging and protein defencing,which were attributed to havethe strong resistant ability in Z.matrella,on the other hand,some other proteins,which was down-regulated,the respiration was strengthen firstly and then weaken,photosythesis wasdecreased,protein degraded,and transportatio ability of cell organ reduced in Z.matrella,inturn caused the plant growth trouble.There were 19 proteins successfully identified byQ-TOF MS,of which 3 proteins were ribulose bisphosphate carboxylase large subunit,underthe high temperature treatment.These proteins strengthened signal identification,transmembrane signal transduction,photosythesis,respiration,secondary metabolism,activeoxygen scavenging,protein defencing and protein synthesis,and led to the strong resistibilityof Z.matrella under the high temperature treatment.Besides that,the relative abundance ofZLL/PNH homologous protein decreased and the decreasing extent was increased with thetime prolonged under the low temperature treatment.The similar tendency was also foundunder the high temperature stress.These suggested that it was unfavorable for the main stemmeristematic tissue development and growth either under the high temperatue stress or underthe low temperatue stress.
     Further,an investigation was conducted to detect the related gene expression profiles in Z.matrella exposed to high temperature stress using suppression subtractive hybridization(SSH)method.A total of 35 ESTs from SSH-cDNA library were sequenced,and all of thesequences of inserted fragments were analyzed with the aid of bioinformatics.It obtained 26different functionally known genes.These genes were sorted into four groups such asmetabolism,gene expression regulation and signal transduction,stress resistance and proteinsynthesis.The expressions in genes of NADP-dependent malic protein,ribosomal protein S 1and catalase,which respectively involved in metabolism,protein synthesis and active oxygenscavenging,were enhanced under the high temperature stress.This result is consistent to thoseof differential proteomics research,and in turn further proved that the resistance wasstrengthened by improving metabolism,protein synthesis and the ability to scavenge activeoxygen in Z.matrella under high temperature stress.Finally,the author also discussed why alot of strengthen expression genes,which were identified in the experiment,were differentfrom outcomes of differential proteomics research in this paper.
引文
[1]胡林,边秀举,阳新玲.草坪科学与管理[M].北京:中国农业大学出版社,2001.7
    [2]Baid V W.Low temperature and drought regulated gene expression in Bermudagrass[J].Turfgrass and environmental research summary,1994,32-33
    [3]魏臻武,王槐三.两种草坪草抗寒特性及其超氧化物歧化酶的作用[J].草业科学,1997,15(2):62-66
    [4]王欣.高温对草坪草细胞的伤害[J].草业科学,1993,10(4):66-68
    [5]Dat J F,Lopez-Delgado H,Foryer C H,et al.Parallel changes in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J].Plant Physio 1,1998,116:1351-1357
    [6]杜永吉,于磊,鲁为华,等.低温胁迫下结缕草品种的抗寒性差异[J].中国草地学报,2008,30(5):116-120
    [7]王世珍,蔡庆生,冯雪荣,等.高羊茅根系、叶片和根颈对冷锻炼的响应差异[J].南京农业大学学报,2002,25(2):11-15
    [8]Davis DL,Gilbert WB.Winter hardiness and change in soluble protein fractions of Bermudagrass[J].Crop Science,1970,(10):7-9
    [9]王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草业学报,1998,7(1):76-78,80-81
    [10]伍世平,王君健,于志熙.8种草坪禾草的抗逆性研究[J].武汉植物研究,1995,13(1):75-80
    [11]陈可夫,梁祖锋,王槐三.多年生黑麦草对高温、干旱的生理反应[J].南京农业大学学报,1988,11(2):87-92
    [12]魏臻武,范占炼,王槐三.不同类型草坪草的抗寒锻炼[J].草业科学。1997,14(3):60-65
    [13]孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999.48-59
    [14]孙宗玖,阿不来提,齐曼,等.冷害胁迫下3个狗牙根品种抗寒性比较研究[J].草业科学,2004,21(1):42
    [15]王榕楷,丁小球,胡玉佳.三种草坪草的耐寒性及其与超氧化物歧化酶作用关系初步研究[J].中国草地,2001,(1):46-50
    [16]Xiaozhong Liu,Bingru Huang.Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass[J].Crop Science,2000,40:503-510
    [17]Huang B,X Lau,J D Fry.Shoot physiological responses of two bentgrass cultivars to high tempe-rature and poor soil aeration[J].Crop Sci,1998,38:1219-1224
    [18]杜峰.低温胁迫下草坪草和抗性生理指标的变化[J].四川草原,1998,3:41-48
    [19]梁慧敏,夏阳,杜峰,等.低温胁迫对草地早熟禾抗性生理生化指标的影响[J].草地学报,2001,9(4):283-286
    [20]王毅,杨宏福,李树德.园艺植物冷害与抗冷性的研究-文献综述[J].园艺学报,1994,21(30):239-244
    [21]何亚丽,沈剑,王惠林.冷季型草坪草耐热机理研究Ⅰ:草地早熟禾(Poapratens/s L.)在热境胁迫下叶片叶绿素含量和POD酶活性的变化[J].上海农学院学报,1997,15(2):128-132
    [22]Tracewell C A,Vrettos J S,Batista J A,et al.Carotenoid photooxidatin in photosystem II.Arch [J].Biochem Biophys,2001,385(1):61-69
    [23]Okawara R,Kaneko S.Reduction of chlorophyΠ fluorescence inzoysia grasses at chilling at chilling and high temperatures with moderate light[J].Grassland Science,1995,41(1):31-36
    [24]Okawara R,Kaneko S.Changes in Photo synthetic oxygen and chlorophyΠ fluorescence in some coool season grasses and zoysia grass (Zoysiaspp.)from autumn to winte[J].Soil Science and Plant Nutrion,1995,41 (4):801-806
    [25]林定波,刘祖祺.冷驯化与ABA对柑橘膜稳定性的影响及膜特异性蛋白的诱导[J].南京农业大学学报,1993,16(1):1-5
    [26]罗正荣.植物激素与抗寒力的关系[J].植物生理学通讯,1989(3):1-5
    [27]Hoffmann A A,Parsons P A.Evolutionary genetics and environmental stress[M].Oxford:Oxford University Press,1991.
    [28]Eze J M O,Dumbroff E B,Thomp son J E.Effects of temperature and moisture stress on the accumulation ofabscisic acid in bean [J].Physiol Plant,1983,58:179 - 183
    [29]Talanova V V,Titov A F.Endogenous abscisic acid content in cucumber leaves under the influence of unfavorable temperatures and salinity[J].J Exp Bot,1994,45:103 1- 1033
    [30]Liu X,Huang B.Root physiological factors involved in cool-season grass response to high soil temperature[J].Environmental and Experimental Botany,2004.
    [31]Talanova V V,Akimova T V,Titov A F.Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance[J].Russian Journal of Plant Physiology,2002,50(1):90-94
    [32]Diae J,CambellW F,Seeley S D.Temperature - stress - induced production of abscisic acid and dihydrophasic acid in warm and cold season crops[ J ].J Amer Soc Hort Sci,1981,106:111-113
    [33]沈火林,刘燕燕,余进安.不结球白菜耐高温胁迫与内源激素含量的关系[J].江苏农业科学,2006,(6):207-210
    [34]路子显.大豆热激蛋白与内源激素变化的研究[J].大豆科学,1998,17(4):318-325
    [35]Gan S,Amasino RM.Inhibition of leaf senescense by autoregulated production of cytokinin[J].Science,1995,270:1986- 1988
    [36]Mitrichenko A N.The effect of temperature on hormone content in wheat seedlings[M ].Cand Sci (Biol.) Dissertation,Ufa:Bashkir.State Univ,1999.
    [37]Johnson W J ,Dickens R.Centipedegrass cold tolerance as affected by environmental factors [J].Agronomy Journal,1976,68 (1):83-85
    [38]简令成.40年“植物抗寒机理的细胞生物学研究”的一个简单总结[J].植物学通报,1999,(专辑):15-29
    [39]邹少丰.栽培措施对马尼拉草坪草越冬的影响[D].硕士学位论文.2006.
    [40]孙洪仁.乙烯利、多效挫及修剪处理对盆栽早熟禾的影响[J].草业科学,1993,(4):18-21
    [41]刘文大,王槐三.植物生长调节剂对天堂草、马尼拉草生长速度、品质及绿色期的影响[A].中国草地科学进展[M].中国农业大学出版社,1998.269-273
    [42]周红艳.磷、钾与多效唑对越冬期沟叶结缕草生理特性的影响[D].硕士学位论文.2005.
    [43]何亚丽,胡雪华,金浩.植物激素对耐热性的调控机制及其在冷地型草坪草研究中的应用前景[J].上海农学院学报,2000,3:67-73
    [44]Shashikumar K,Nus J L.Cultivar and winter cover effects on bermudagrass cold acclimtions and crown moisture content [J].Crop Sci,1993,33(4):813-817
    [45]Sowers R S,Welterlen M S.Seasonal establishment ofhermudagrass using plastic and straw mulches [J].Agronomy journal,1988,80 (1):144-148
    [46]郭振飞,卢少云.细胞工程技术在草坪草育种上的应用[J].草原与草坪,2002,(3):6-9
    [47]郭爱桂,刘建秀.辐射技术在国产狗牙根育种中的初步应用[J]:草业科学,2000,17(1):45-47
    [48]Chai M L,Kim D H.Agrobacterium mediated transformation of Korean Lawngras ( Zoysia japonica)[J].Journal of the Korean Society for Horticultural Science,2000,(5):455-458
    [49]刘良式.植物分子遗传学,北京:科学出版社,2003,464
    [50]Nomura M,Higuchi T,Ishida Y,et al.Differential expression pattern of C4 bundle sheath exp ression genes in rice,a C_3 plant [J].Plant Cell Physiol,2005,46:754 - 761
    [51]Taliaferro C.Breeding and evaluation of cold-tolerant Bernmudagrass varieties golf courses [J].Turfgrass and enivironmental research summary.1997,21-25
    [52]Zhang Y,Mian MA,Chekhovskiy K,et al.Differential gene expression in Festuca under heat stress conditions[J].Journal of Experimental Botany.2005,56 (413):897-907
    [53]Wong Dong Fang ,Bhowmik Arun,Luthe Dawn S.Immunological detection of HSP25 family members in heat tolerant and non-tolerant variants of creeping bentgrass[J].Plant Biology (Rockville) 1998:112
    [54]Wang Dongfang ,Luthe Dawn S.Heat sensitivity in a bentgrass variant.Failure to accumulate achloroplast heat shock protein isoform implicated in heat tolerance[J].Plant Physiology (Rockville) 2003,133(1):319 -327
    [55]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社,2003:233-234
    [56]Wasinger V C,Cordewell S J,Cerpa P A,et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitaliurn[J].Electrophoresis,1995,16 (7):1090-1094
    [57]郭周良,沙伟.蛋白质组学研究进展及其在植物学研究中的应用[J].齐齐哈尔大学学报,2008,24(2):5-9
    [58]袁泉,赵辅昆.蛋白质组研究新前沿:定量蛋白质组学[J].生物化学与生物物理学报:英文版.2001,33(5):477-482
    [59]李义良,朱华清,张红锋.双向电泳技术[J].生物学教学,2004,29(4):64
    [60]黄丽俊,王建华.蛋白质组研究技术及其进展[J].生物学通报,2005,40(8):4
    [61]LoPachin R.M.,Jones R.C.,Patterson T.A.et al.Application of proteomics to the study of molecular mechanisms in neurotoxicology[J].R.M.Neuro Toxicology,2003,24:761-775
    [62]Wang Hong,Hanash S..Multi-dimensional liquid phase based separations in proteomics[J].Journal of Chromatography B,2003,787:11-18
    [63]李巍.生物信息学导论[M].郑州大学出版社,2004.
    [64]EmiliAQ,CagneyG.Large-scale functional analysis using peptide or protein arrays[J].Nat Biotechnol,2000,18:393-397
    [65]Han F,Yang PF,Chen H,et al.The report of 2~(nd) national workshop on plant proteomic of China[J],2007,10:426-431
    [66]Majoul T.,Bancel E.,Tribo E.,et al.Proteomic analysis of the effect of heat stress on hexaploid wheat grain:characterization of heat-responsic proteinsfrom non-prolamins fraction [J].Proteomics,2004 (4):505- 513
    [67]Nover L,Scharf K D.Synthesis,modification and structural binding of heat-shock proteins in tomato cell cultures[J].EurJ Biochem,1984,139(2):303-313
    [68]Zivy M.Genetic variability of heat shock proteins in common wheat[J].Theoret Appl Genet,1987,74(2):209-213
    [69]CuiS.Proteomics,2005,5(12):3162-3172
    [70]Danyluk J,Rassart E,Sarhan F.Gene expression during cold and heat shock in wheat[J].Biochem Cell Biol,1991,69(2):383-391
    [71]Bae M S,Cho E J,Choi E Y,et al.Analysis of the Arabidopsis nuclear proteome and its response to cold stress.Plant J,2003,36(5):652-663
    [72]Cabane M,Calvet P,Vincens P,et al.Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of tile heat shock prorein(HSP70)family[J].Planta,1993,190(3):346-353
    [73]Komatsu S,Tanaka N.Rice proteome analysis:A step toward functional analysis of the rice genome[J]Proteomics,2005,5(4):938-949
    [74]Salekdeh G.Proteomic analysis of rice leaves during drought stress and recovery[J].Proteomics,2002(2):1131-1145
    [75]Hajheidari M,Abdollahian-Noghabi M,Askari H,et al.Proteome analysis of sugar beet leaves under drought stress[J].Proteomics,2005,5(4):950-960
    [76]Rey P,Pruvot G,Becuwe N,et al.A novel thioredoxin-like protein located in the chloroplast in induced by water deficit in Solarium tuberosum L.plants[J].Plant J,1998,13(1):97-101
    [77]Costa P,Bahrman N,Frigerio J M,et al.Water-deficit-responsive proteins in maritime pine.Plant Mol Biol,1998,38(4):587-596
    [78]Riccardi F,Gazeau P,Vienne D,et al.Protein changes in response to progressive water deficit in maize.Quantitative variation and polypeptide identification[J].Plant Physiol,1998,117(4):1253-1263
    [79]Yan S,TangZ,Su W.Proteomic analysis of salt stress-responsive proteins in rice root[J].Proteomics,2005,5(1):235-244
    [80]Ramani S,Apte S K.Transient expression of multiple gene in salinity-stressed young seedling of rice (Oryza sativa L.) cv.Buraq Rata.Biochem Biophys Res Commun,1997,223(3):663-667
    [81]Salekdeh G H,Siopongco J,Wade L J,et al.A proteomic approach to analyzing drought- and salt-respon- siveness in rice[J].Field Crop Res,2002,76(2-3):199-219
    [82]Lee S,Lee E J,Yang E J,et al.Proteomic identification of annexins,calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis [J].Plant Cell,2004,16(5):1378-1391
    [83]Ramagopal S.Salinity stress induces tissue-specific proteins in barley seedlings[J].Plant Physiol,1987,84(2):324-331
    [84]Majoul T,Chahed K,Zamiti E,et al.Analysis by two-dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and a salt-sensitive cultivar of wheat[J].Electrophoresis,2000,21 (12):2562-2565
    [85]Agrawal GK,Rakwal R,Yonekura M,et al.Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativaL.) seedlings[J].Proteomics,2002,2(8):947-959
    [86]Shen S.,Jing Y.,Kuang I.,Proteomics approach to identify wound-response related proteins from rice leaf sheath[J].Proteomics,2003(3):527-535
    [87]Kang J G,Pyo Y J,Cho J W,et al.Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana[J].Proteomics,2004,4(11):3549-3559
    [88]朱友林,吴健胜,王金生.水稻对白叶枯病菌抗性相关蛋白的双向电泳分析[J].2000,33(4):91-93
    [89]陈芳育,黄青云,张红心,等.水稻品种“佳辐占”应答细菌性条斑病病原菌侵染的蛋白质组学分析[J].作物学报,2007,33(7):105l-1058
    [90]Mehta A,Rosato Y B.Differentially expressed proteins in the interaction ofXanthomonas axonopodis pv.citri with leaf extract of the host plant[J].Proteomics,2001,1 (9):1111-1118
    [91]Rep M,Dekker H L,Vossen J H,et al.Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato[J].Plant Physiol,2002,130(10):904-917
    [92]陈荣智,翁清妹,黄臻,等.水稻对褐飞虱抗性相关蛋白的双向电泳分析[J].植物学报.2002,44(4):427-432
    [93]Campo S.,Carrascal M.,Coca M.,Abian J.,San Segundo B.,The defense response of germinating maize embryos against fungal infection:a proteomics approach[J].Proteomics,2004(4):383-396
    [94]李玉京,李子银,李振声.真核生物mRNA差显技术(Differential Display)的研究进展[J].生物技术 通报,1998,(5):23-30
    [95]Liang,P,W Zhu,X Zhong,et al.Differential display using one-base anchored oligo-dT primers[J].Nucleic Acids Res,1994(22):5763-5764
    [96]安健,汪明,王黎霞,等.mRNA差异显示PCR的研究进展[J].北京农学院学报,2005,20(2):64-68
    [97]齐小辉,马玺,李姗姗,周东坡.基于PCR的基因差异表达分析技术[J].生物技术通讯,2004,15(4):389-391
    [98]Bachem C W,Vander Hoeven R S,Debruijn S M,et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP,analysis of gene expression during potato tuber development [J].Plant Journal,1996,9:745-753
    [99]Siebert P D,Chenchik A,Kellogg D E.An improved PCR method for walking in uncloned genomic DNA [J].Nucleic Acids Res,1995,23:1087-1088
    [100]Von Stein O D,Thies W G,Hofmann M.A high through put screening for rarely transcribed different- ially expressed genes[J].Nucleic Acids Res,1997,25:2598-2602
    [101]Diatchenko L,Lukyanovs,Lau Y F,et al.Suppression subtractive hybridization:a versatile method for identifying differentially expressed genes [J].Methods Enzymol,1999,303:349-380
    [102]王艳.结缕草研究进展[J],中国草地,2003,25(2):45-53
    [103]张志良.植物生理学实验指导.北京:高等教育出版社,2003.
    [104]上海植物生理学会.《现代植物生理学实验指南》,北京:科学出版社,1999.
    [105]张宪政.作物生理研究法,北京:农业出版社,1992.
    [106]李合生.植物生理生化实验原理与技术[M],北京:高等教育出版社,2000
    [107]朱广兼,钟诲文,张爱琴.植物生理学实验.北京:北京大学出版社,1990.30-33
    [108]西北农业大学植物生理生化教研组.植物生理学实验指导.陕西科技出版社,1986.92-93
    [109]华东师范大学生物系植物生理教研组.植物生理学实验指导.人民教育出版社,1980:143-144
    [110]Jin D-M(勒德明),Wang w-J(王维金),Lan Z-X(徐珍秀),等.Dynamic status of endogerous IAA.ABA and GA levelS in superior and inferior spikelets of heavy panicle hybrid rice during grain filling.J Plant Physid Mol Biol(植物生理与分子生物学报),2002,28(3):215-220(in English with Chinese abstract)
    [111]王新海,毕玉芬.沟叶结缕草草坪的建植和养护[J].四川草原,2004,(1)58-59
    [112]苟文龙,张新全,白史且,石振田.沟叶结缕草研究进展[J].草业科学[J].2002,19(3):62-65
    [113]梁雪连,陈平.草坪草耐热性研究进展[J].农业与技术,2006,26(2):68-73
    [114]王昕,种康.植物小G蛋白功能的研究进展[J].植物学通报,2005(1):3-12
    [115]Michelet B,Boutry M.The plasma membrane H~+—ATPase a highly regulated enzyme with multiple physiological functions[J].Plant Physiol.1995,108(1):1-6
    [116]韦存虚,兰盛银,徐珍秀.水稻胚乳发育中ATP酶的超微细胞化学定位和功能分析[J],中国农业科学2003,36(3):259-262
    [117]Tausta S L,et al.Maize C4 and non—C4 NADP — dependent malic enzymes are encoded by distinct genes derived from a plastid localized ancestor[J].Plant Mol Biol,2002,50:635
    [118]Martinoia E,et al.Malate compartmentation:Responses to a complex metabolism[J].Ann Rev Plant Physiol Plant Mol Biol,1994,45:447
    [ll9]Drincovich M F,et al.NADP—malic enzyme from plants:A ubiquitous enzyme involved in differential metabolic pathways[J].FEBS Lett,2001,490:1
    [120]Maurio V G,et al.Non—photosynthetic malic enzymefrom maize:A constituvely expressed enzyme that responds to plant defense inducers[J].Plant Mol Biol,2001,45:409
    [121]迟伟,阳江华,张青婵,等.水稻的4个NADP-ME基因具有不同的表达模式[J].自然科学进展, 2004(12):3 7-45
    [122]苏琦,尚宇航,杜密英,等.植物WRKY转录因子研究进展[J].中国农学通报.2007,23(5):104-108
    [123]廖鸣娟,董爱华,王正栋,等.植物转座子及其在功能基因组学中的应用[J].遗传,2000,22(2):342-346
    [124]曾本庆.转座因子[J],重庆师范学院学报(自然科学版).1985,(1):158-168
    [125]王善治,袁榴娣.SR蛋白研究进展[J].东南大学学报(医学版),2003(4):71-73,78
    [126]陈献华,林万敏,徐平.前体mRNA剪接及剪接调节因子SR蛋白和Tra2蛋白[J],细胞生物学杂志,2002,(2):8-13
    [127]Maniatis T.Tasic B.Alternative pre-mRNA splicing and proteome expansion in metazoans [J].Nature,2002 (418):236,C243
    [128]章国卫,宋怀东,陈竺.mRNA选择性剪接的分子机制[J].遗传学报,2004,3l(1):102-107
    [129]陈献华,林万敏,徐平.前体mRNA剪接及剪接调节因子SR蛋白和Tra2蛋白[J],细胞生物学杂志,2002,(2):8-13
    [130]Maniatis T.Alternative pre-mRNA splicing and proteome expansion in metazoans[J].Nature,2002(418):236-243
    [131]胡荣贵译.核糖体蛋白的核糖体外功能[J].生命的化学,1997,17(1):23-26
    [132]Singh N K,Handa AK,Hascgawa P M,et al.Proteins associated with adaptation of cultured tobacco cell to NaCI [J].Plant physiol,1985,79:126-137
    [133]Singh N K,Bracket C A,Hascgawa P M,et al.Characterization of osmotin:a thaumatin-like protein associated vitll osmotic adaptation in plant cell[J].Plant Physiol,1987,85:529-536
    [134]邱栋梁,林鹏.植物耐盐的分子机理研究进展[J].热带亚热带植物学报,2002,10(3):281-292
    [135]王华丙,张振义,包锐,等.ABC转运蛋白的结构与转运机制[J],生命的化学,2007,27(3):208—210
    [136]Yoshihiro Kobae,Tetsuro Sekino,Hirofumi Yoshioka,et al.Loss of AtPDR8,a Plasma Membrane ABC Transporter of Arabidopsis thaliana,Causes Hypersensitive Cell Death Upon Pathogen Infection[J].Plant and Cell Physiology 2006,47(3):309-318
    [137]Sasabe M,Toyoda K,Shiraishi T,Inagaki Yet al.cDNA cloning and characterization of tobacco ABC transporter:NtPDR1 is a novel elicitor-responsive gene.FEB S Lett,2002(518):164-168
    [138]彭建宗,赖柳静,王小菁.PRGL:非洲菊细胞壁中一种含GASA结构域的富脯氨酸蛋白[J].中国科学C辑:生命科学.2008,38(5):458-463
    [139]柴团耀,张秀.菜豆富含脯氨酸蛋白质基因在生物和非生物胁迫下的表达.植物学报,1999,41(1):111—113
    [140]Holmgren A.Thioredoxin and glutaredoxin systems [J ].Journal of Biological Chemistry,1989(264):13963—13966
    [141]Arn(?)r ES,Holmgren A.Physiological functions of thioredoxin and thioredoxin reductase [J].Eur J Biochem,2000(267):6102—6109
    [142]Schenk H.,Klein M.,Erdbrugger W.,et al.Distinct effects of thioredoxin and an tioxidants on the activation of transcription factors NF-kap-pa-Band AP- 1 [J].Proc.Natl.Acad.Sci.USA,1994,91 (5):1672— 1676
    [143]Hirota K.,Murata M.,Sachi Y.et al.Distinct roles of thioredoxin in the cytoplasm and in the nucleus.A two step mechanism of redox regulation of transcription factor NF-kB[J].Biol.Chem,1999(274):27891—27897
    [144]Broin M,Rey R Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BASI 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress[J].Plant Physiol.,2003,132 (3):1335-1343
    [145]卫丽,黄晓书,李鹏坤,等.植物硫氧还蛋白研究进展[J].贵州农业科学.2006,34(6):129-131
    [146]Abebet,Guenziac,Martinb,et al.Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity [J].Plant Physiol,2003,131:1748-1755
    [147]Norikazuo,Noriom.Glycine betainecounter acts the inhibitory effects of salt stress on the degradation and synthesis of D lproteinduringphotoinhibition in Synechococcussp.PCC7942 [J].Plant Physiol.,2006,141:758-765
    [148]Flowers T J,Troke P F,Yeo A R.The mechanism of salt tolerance in halophytes [J].Ann Rev.Plant Physiol,1997 (28):89- 121
    [149]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes [J].Ann Rev,Plant Physiol,1980 (31):149 - 190
    [150]Handa S,Bressan R A,Handa A K,et al.Solutes contributing to osmotic adjustment in cultured plant cell adapted to water stress [J].Plant Physiol ,1983 (73):834 - 843
    [151]Forerch,Lopez-Delgardoh,Datjf,et al.Hydrogenperoxide and glutathionme associated mechanisms of acclimatary stress tolerance and signaling [J].Physiol Plant,1997,100:241-254
    [152]Bowlerc,Vanmontagum,Inda.Superoxide dismutase and stress tolerance [J].Annul Rve Plant Physiol Mol Biol,1992,43:83-1 16
    [153]Balll,Accottogp,Bechtoldu,et al.Evidence for adirect link between glutathione biosynthesis and stress defense gene expression in Arabidopsis [J].ThePlantCell,2004,16:2448-2462
    [154]Holmbergn,Biilowl.Improving stress tolerance in plants by gene transfer[J].JTrendson Plant Sci,1998,3:1361-1366
    [155]刘鸿先,王以柔,曾韶西,等.低温对不同耐冷力的黄瓜幼苗呼吸代谢的影响[J].植物生理与分子生物学学报,1984,(3):3-11
    [156]Satisbury F B,Ross C W.Plant physiology[M ].4th ed.Belmont,California:Wadsworth Publishing Compan,1992.
    [157]Hoffmarn A A,Parsons P A.Evolutionary genetics and environmental stress[M ].Oxford:Oxford University Press,1991.
    [158]王丰,程方民,刘奕,等.不同温度下灌浆期水稻籽粒内源激素含量的动态变化[J].作物学报,2006(1):29-33
    [159]刘素纯,萧浪涛,廖柏寒,等.铅胁迫对黄瓜幼苗内源激素积累动态的影响[J].湖南农业大学学报(自然科学版),2005,31(5):510-513
    [160]韩建会,张福墁,徐淑贞.目光温室低温寡照逆境对黄瓜内源激素水平的影响[J].华北农学报,1999,14(Z1):78-80
    [161]Zhang Z G.Evidence for serine/threonine and kinase activity in the tobacco ethylene receptor protein NTHK2 [J].Plant Physiology,2004,136:2971-2981
    [162]韩继成,植物乙烯受体及转基因育种研究进展[J].分子植物育种,2004,2(2):157-163
    [163]Zhang Z G.Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2[J].Plant Physiology,2004,136:2971-2981
    [164]Zhang Z G.Cloning of the full-length gene for tobacco ethylene receptor NTHK2 and characterization of its kinase domain[J].Acta Botanica Sinica,2003,45(1):68-72
    [165]Chen Y F.Ethylene signaltransduction[J].Ann Bot.,2005,95(6):901-915
    [166]Foster R,Izawa T,Chua N H.Plant bZIP proteins gather at ACGT elements[J].FASEBJ,1994,8:192-200
    [167]Schmidt R J,Burr B.Transposon tagging and molecular analysis of the maize regulatory locus opaque[J].Science,1987,238:960-963
    [168]Shen Huai-shun,Cao Kai-ming,Wang Xi-ping.A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer[J].Biochem Biophys Res Commun,2007,362(2):425-430
    [169]蔡冲,吕均良,陈昆松.蛋白激酶的研究(综述)[J].亚热带植物科学,2002,31(1):63-67
    [170]Estelle G,Maria S,Thomas K,et al.The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short-and long-term exposure to low temperature[J].Plant J.,2006,47,720-734
    [171]Yan SP,Zhang QY,Tang ZC,et al.Comparative proteomic analysis provides new insights into chilling stress responses in rice[J].Mol Cell Proteomics,2006,5(3):484-96
    [172]韩鹰,陈刚,王忠.Rubisco活化酶的研究进展[J].植物学通报,2000,(4):19-24
    [173]张红卫.驱动蛋白研究进展[J].河南教育学院学报(自然科学版),2003,12(4):23-24
    [174]罗建平,王军辉,范远景.植物异黄酮合酶研究进展[J].中国生物工程杂志,2005,(07):22-25
    [175]Van der Biezen E,Jones J.The NB-ARC domain:A novel signaling motif shared by plant resistance gene products and regulators of cell death in animals[J].Current Biology,1998,8:226-227
    [176]李合生.现代植物生理学[M].北京:高等教育出版社,2002:420
    [177]杨海灵,聂力嘉,朱圣庚,等.谷胱甘肽转硫酶结构与功能研究进展[J].成都大学学报(自然科学版),2006,25(1):19-24
    [178]Wimmer B,Lottspeich F,Van der Kle Iet al.The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon on cotyledons are encoded by a single gene[J].Proc Natl Acad Sci USA,1997,94:13624-13629
    [179]Miernyk JA,Duck NB,Shatters Jr RG et al.The 70-kilodation heat shock cognate can act as a molecular chaperone during the membrane translocation of a plant secretory protein precusor[J].Plant Cell,1992,4:821-829
    [180]Galili G,Shimoni Y,Giorini-Silfen S.Wheat storage proteins:Assembly,transport and deposition in protein bodies[J].Plant Physiol Biochem,1996,34:245-252
    [181]Li X,Wu Y,Zhang DZ et al.Rice prolamine protein body biogenesis:a BiP-mediated process[J].Science,1993,262:1054-1056
    [182]Kourtz L,Ko K.The early stage of chloroplast protein import involves Com70[J].J Biol Chem,1997,272:2808-2813
    [183]Nuc K,Nuc P,Stomsk i R.Yellow lupine cyclophilin transcripts are highly accumulated in the nodule meristem zone[J].M PM I,2001,14 (12):1384-1394
    [184]Moussian B.Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryo genesis [J].EMBO J,1998,17(6):1799-1809
    [185]Pillai RS.MicroRNA function:multiple mechanisms for a tiny RNA?[J].RNA.2005,11 (12):1753-1761
    [186]孙长明.植物胚胎发育过程中基因表达调控的研究进展[J].山东电大学报,2002,2,54-56.
    [187]沈国顺,刘丽霞.抑制性差减杂交技术(SSH)及其研究应用进展[J].中国兽医学报,2004,24(5):511—514
    [188]Unwin R D,Gaskell S J,Evans C A,et al.The potential for proteomic definition of stem cell po pulations[J].Exp Hematol.2003,31(12):1147-1159
    [189]Steen H,Mann M.The ABC's(and XYZ's)of peptide sequencing[J].Nat Rev Mol Cell,Bio 1.2004,5 (9):699-711
    [190]Wikins M R.Proteome research:new frontiers in functional genomics[M].New York:Heeidelburg,1997.
    [191]Gygi S P,Rochon Y,Franza B,et al.Correlation between protein and mRNA abundance in yeast[J].MolCell Biol.1999,19(3):1720
    [192]Jensen P K,Pasa-Tolic L,Peden K K,et al.Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures[J].Electrophorcsis,2000,21:1372
    [193]翁锦周,洪月云.植物热激转录因子在非生物逆境中的作用[J].分子植物育种,2006,(1):96-102
    [194]万里红,周奕华,陈正华.植物防御系统中抗病相关基因的研究进展[J].遗传,2002,24(4):486-492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700