用户名: 密码: 验证码:
变形Zr-Nb合金组织与性能调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Zr及Zr合金由于其具有低的中子吸收截面积、高的耐腐蚀和抗氧化性能,被广泛的应用于核工业和化工业中制备结构构件。而Zr-Nb合金作为一种典型的双相锆合金由于其具有更优异的抗腐蚀性能和力学性能而受到广泛的关注。本文以(α+β)双相Zr-2.3Nb合金为主要研究对象重点研究了该合金在变形过程中组织和性能的变化行为;热处理过程中组织及性能演变规律,以及新型双态组织的变形行为等。同时对比研究了纯Zr的变形及热处理过程中的组织演变规律及力学性能的变化行为。
     在轧制变形过程中随着变形量的增加,Zr-2.3Nb合金网篮状组织中的α相与β相逐渐旋转至平行于轧制方向,同时各相的塑性变形量和对整体的贡献量均逐渐增加,且两相各自的贡献量逐渐接近于各相的体积分数,说明在轧制变形过程两相具有良好的协调性;而单α相纯Zr组织中的位错不断积累重排最后形成少量平均尺寸~72nm的纳米晶。对两种材料室温下应变软化行为的研究揭示出动态回复为应变软化的根本原因,且发现该行为在外加拉应力或应变速率高于1×10-2s-1时更加容易发生,材料初始位错密度越高应变软化也越容易发生,提出材料的加工硬化速率Θ与位错密度ρ之间的关系为
     变形后两种材料在300-500oC退火过程中表现出截然不同的行为,双相Zr-2.3Nb合金中发生时效硬化与软化竞争现象,而纯Zr只有回复/再结晶导致的软化行为。对比相同变形量60%的冷轧和热轧Zr-2.3Nb合金退火后组织及性能发现,热轧后合金由于变形过程中发生动态回复,降低了退火过程中的相变驱动力,从而表现出较低的→转变速率,而热变形过程中形成的位错胞降低了再结晶起始温度。研究发现对冷轧后Zr-2.3Nb合金采取到温入炉,850-925oC保温30-120min后空冷至室温的热处理工艺处理后可制备出双态组织,由等轴初生α相与转变β相(由针状二次α相与剩余β相组成)组成。研究发现随温度的提高或保温时间的延长,初生α相的体积分数逐渐降低但其晶粒尺寸几乎不变,而转变β相的体积分数与晶粒尺寸均逐渐增大。研究表明850oC保温30min后空冷为最佳热处理工艺,获得的双态组织不仅具有优异的塑性与更高的强度,其冲击韧性为近乎为同成分合金网篮组织的3倍。
     随着拉伸应变速率的提高,双态组织Zr-2.3Nb合金表现出逐步增加的强度与断面收缩率RA,及缓慢降低的延伸率EL。RA的增加提高了材料的集中变形量,因此降低了EL的减小幅度。断口中韧窝的平均直径与深度均随着应变速率的提高而增加,表现出高应变速率下高塑性的行为。由于初生α相与转变β相的相界面的结合强度低,变形协调程度差,同时α相与β相晶体结构的差异,使得韧窝的最初阶段-微孔主要形成于等轴初生α相与转变β相的相界面。对该合金双态组织拉伸变形过程的研究发现各相发生塑性变形的顺序依次为:β相,二次α相,初生α相。最后根据上述分析提出了双态组织在拉伸变形过程中的变形行为模型。
Zirconium and its alloys have been widely introduced into the nuclear industry andchemical industry to fabricate the structural parts for their combination properties of lowneutron absorption area, high corrosion resistance and excellent oxidation resistance. Andthe (α+β) dual phase Zr-Nb alloys have gained extensive attentions for their outstandingcorrosion resistance and better mechanical properties. In this dissertation, the objects ofresearch were Zr-2.3Nb alloy and pure Zr, with an aim of investigating the microstructureevolution and mechanical properties of them during deformation process and thefollowing heat treatment process. Simultaneously, the deformation behaviour of the newlyduplex microstructure in Zr-2.3Nb alloy was studied.
     With increasing rolling reduction, the α and β phase within the basket weave structureof Zr-2.3Nb alloys gradually rotated to the direction paralleling the rolling direction, theplastic deformation and the contribution of each phase to the whole deformation increasedsimultaneously, and the contribution of each phase gradually get close to the value of theirvolume fraction, indicating a better co-deforming behaviour; while for the single α phasepure Zr, the dislocations accumulated and re-arranged continuously, and finally somenanograin with a average of~72nm were formed. Research on the strain softeningbehaviour (SSB) revealed the dynamic recovery was the origin of SSB, and it is alsofound that the SSB occurred more easily on the condition of external tensile stress and/orthe strain rate over1×10-2s-1, and the higher initial dislocation density within the materials,the easier SSB occurred. Finally, a relationship between the work hardening rate Θ anddislocation density ρ was proposed,
     During the following annealing treatment at300-500oC, the two deformed materialsperformed a different behaviour. A competitive mechanism between aging hardening andmicrostructure softening occurred on dual phase Zr-2.3Nb alloy, while only the lattermechanism occurred on pure Zr. Comparing the results of cold rolled alloy and hot rolledalloys, it is found that the drive force of phase transformation from β to ω is reduced in hotrolled specimen for the dynamic recovery occurred during the rolling process, also the dislocation cells facilitated the recrystalization process and then reduced the initialrecrystallization temperature of the hot rolled alloy. For the high temperature treatment,results showed the when the cold rolled Zr-2.3Nb alloy was putted into the furnace with atemperature of850-925oC, held for30-120min and finally air cooled to room temperature,a kind of duplex microstructure composed of primary α (αp) and transformed β phases[comprised of secondary α (αs) lamellae/acicular crystals in the continuous β matrix], wasformed. Results found that with the increasing annealing temperature and/or extendingholing time, the volume fraction of αpdecreased gradually without change on grain size,while both the volume fraction and the grain size of β phase increased together. Theduplex microstructure with the optimum mechanical properties can be obtained when thealloy was held at850oC for30min, and the obtained microstructure exhibited excellentplasticity, a high strength and high dynamic impact toughness which is nearly three timesthan that of the initial basket weave microstructure.
     With the increasing strain rates, both the strength and the area reduction (RA) ofduplex microstructure increased, while the elongation (EL) decreased slightly. Theincreased RA improved the converge deformation and then decreased the reduction of EL.With increasing strain rates, the dimple size and depth increased simultaneously, revealinga higher plasticity at the high strain rate deformation. The microvoids were prone to beformed along the interface of primary α and transformed β phase for the low bondingstrength of the interfaces, the poor co-deforming ability and the difference on the crystalstructure of two phases. Observations on the microstructure evolution during tensileprocess revealed the deformation sequence of each phase was the following: β, αsand αp.Finally, a deformation model illustrating the deformation behaviour of duplexmicrostructure was proposed.
引文
[1] Rickover HG1975, History of development of zirconium alloys for use in nuclear powerreactors[R]. United States Energy Research and Development Administration NR:D.
    [2] Linga-Murty K, Charit Indrajit. Texture development and anisotropic deformation of zircaloys[J].Progress in Nuclear Energy.2006,48:325-359.
    [3] Balaramamoorthy K. Current trends in the use of zirconium alloys[C]. Symposium on Non-ferrousMetals Technology: Papers for presentation,4th-7thDec.1968, National Metallurgical Laboratory(CSIR), Jamshedpur.
    [4]扎依莫夫斯基A.C.著,姚敏智译.核动力用锆合金[M].北京:原子能出版社,1988: p20-30.
    [5] Douglass D L. The physical metallurgy of zirconium[J]. Atuomic Energy Review.1963,1:71-237.
    [6] Cupp C R. The effect of neutron irradiation on the mechanical properties of zirconium-2.5%niobium alloy[J]. Journal of Nuclear Materials.1962,6(3):241-255.
    [7] Griffiths M. A review of microstructure evolution in zirconium alloys during irradiation[J]. Journalof Nuclear Materials.1988,159:190-218.
    [8] Kim H G, Park SY, Lee M H, et al.. Corrosion and microstructural characteristics of Zr-Nb alloyswith different Nb contents[J]. Journal of Nuclear Materials.2008,373(1-3):429-432.
    [9] Klepfer H H. Zirconium-niobium binary alloys for boiling water reactor service part II-corrosionhydrogen embrittlement[J]. Journal of Nuclear Materials.1963,9(1):77-84.
    [10] Kim J M, Jeong Y H., Jung Y H. Correlation of heat treatment and corrosion behavior ofZr-Nb-Sn-Fe-Cu alloys[J]. Journal of Materials Processing Technology.2000,104(1-2):145-149.
    [11] Kondo R, Nomura N, Suyalatu, et al. Microstructure and mechanical properties of as-cast Zr-Nballoys[J]. Acta Biomaterialia.2011,7:4278-4284.
    [12] Roy A K, Kaiparambil A V. Tensile and corrosion behavior of Zr705for nuclear hydrogengeneration[J]. Material Science and Engineering A.2006,427:320-326.
    [13] Bird K W, Breig P G, Spence T C. Advantages of Zr705in the acetic acid industry[C]. Proceedingsof2nd NACE Asian conference, Singapore,1994.
    [14] Puls M P. Assessment of aging of Zr---2.5Nb pressure tubes in CANDU reactors[J]. NuclearEngineering and Design.1997,171:137-148.
    [15] Tewari R, Srivastava D, Dey G K, et al. Microsturcture evolution in zirconium based alloys[J].Journal of Nuclear Materials.2008,383:153-171.
    [16] Daymond M R, Holt R A, Cai S, et al. Texture inheritance and variant selection through anhcp-bcc-hcp phase transformation[J]. Acta Materialia.2010,58(11):4053-4066.
    [17] Christodoulou N, Turner P A, Tome C N, et al. Analysis of steady-state thermal creep of Zr-2.5Nbpressure tube material[J]. Metallurgical and Materials Transactions A.2002,33A:1103-1115.
    [18] Singh R N, Roychowdhury S, Sinha V P, et al. Delayed hydride cracking in Zr-2.5Nb pressuretube material: influence of fabricaton routes[J]. Materials Science and Engineering A.2004,374:342-250.
    [19] Singh R N, Kishore R, Sinha T K, et al. Superplastic behaviour of a Zr-2.5wt%Nb pressure tubealloy[J]. Scripta Metallurgica et Materialia.1993,28:937-942.
    [20] Oh S, Jang C-H, Kim J-H, et al. Effect of Nb on hydride embrittlement of Zr-xNb alloyos[J].Materials Science and Engineering A.2010,527:1306-1313.
    [21] Cai S, Daymond M R, Holt R A. Deformaiton of high β-phase fraction Zr-Nb alloys at roomtemperature[J]. Acta Materialia.2012,60:3355-3369.
    [22] Park J-Y, Choi B-K, Jeong Y-H, et al. Corrosion behavior of Zr alloys with a high Nb content[J].Journal of Nuclear Materials.2005,340:237-246.
    [23] Kim H-G, Choi B-K, Park J-Y, et al. Analysis of oxidation behavior of theβ-Nb phase formed inZr-1.5Nb alloy by using the HVEM[J]. Journal of Alloys and Compounds.2009,481:867-871.
    [24] Bose B, Klassen R J. Effec of ion irradiation and indentation depth on the kinetics of deformationduring micro-indentation of Zr-2.5%Nb pressure tube material at25oC[J]. Journal of Nuclear Materials.2010,399:32-37.
    [25] Kiran Kumar M, Samajdar I, Venkatramani N, et al. Explaining absence of texture development incold rolled two-phase Zr-2.5wt%Nb alloy[J]. Acta Materialia.2003,51:625-640.
    [26] Kiran Kumar M, Vanitha C, Samajdar I, et al. Texture and microstructure developments duringfabrication of Zr-2.5Nb pressure tubes[J]. Journal of Nuclear Materials.2004,335:48-58.
    [27] Sarkar A, Mukherjee P, Barat P. X-ray diffraction studies on asymmetrically broadened peaks ofheavily deformed zirconium-based alloys[J].Materials Science and Engineering A.2008,485:176-181.
    [28] Cai S, Daymond M R, Holt RA, et al. Evolution of interphase stress in Zr-2.5%Nb duringdeformation[J]. Advanced Materials Research.2007,15-17:615-620.
    [29] Cai S, Daymond M R, Holt RA, et al. Evolution of interphase and intergranular stresses inZr-2.5Nb during room temperature deformation[J].Materials Science and Engineering A.2009,501:166-181.
    [30] Cai S, Daymond M R, Holt RA. Modeling the room temperature deformation of a two-phasezirconium alloy[J]. Acta Materialia.2009,57:407-419.
    [31]刘建章.核结构材料[M].北京:化学工业出版社,2007: p3.
    [32] Rickover H G. History of development of zirconium alloys for use in nuclear reactors[R]. UnitedStates Energy Research and Development Administratin NR:D.
    [33] Olander D, Motta A. Light Water Reactor Materials, Chapter17-Zriconium alloys[M].2009: p4.
    [34]肖林.密排六方金属的塑性变形[J].稀有金属材料与工程.1995,24(6):21-28.
    [35] Kelly A, Groves G W. Crystallography and Crystal Defects[M]. MA: Addison-Wesley Pub. Co..1970.
    [36]刘建章.核结构材料[M].北京:化学工业出版社,2007: p17.
    [37]刘建章.核结构材料[M].北京:化学工业出版社,2007: p5-9.
    [38] Schemel J H. ASTM Manual on Zirconium and Hafnium[M]. American Society for Testing andMaterials,1977: p8.
    [39]刘建章.核结构材料[M].北京:化学工业出版社,2007: p44.
    [40] Slater J C. Atomic radii in crystals[J]. Journal of Chemical Physics.1964.41(10):3199-3204.
    [41]刘建章.核结构材料[M].北京:化学工业出版社,2007: p34.
    [42] Hehemann R F. Transformations in zirconium-niobium alloys[J]. Canadian MetallurgicalQuarterly.1972,11(1):201-211.
    [43] Hunt C E L, Niessent P. The continuous cooling transformation behaviour ofzirconium-niobium-oxygen alloys[J]. Journal of Nuclear Materials.1971,38:17-25.
    [44] Dutta J, Ananthakrishna G, Banerjee S. On the athermal nature of the β to ωtransformation[J]. Acta Materialia.2012,60:556-564.
    [45] Banerjee S, Krishnan R. Martensitic transformation in zirconium-niobium alloys[J]. ActaMetallurgica.1971,19:1317-1326.
    [46] Texier C, Effenterre P Van, Cizeron G. Etude des divers types de transformationsstructureales caracterisant l’alliage Zr-Nb a17%poids de niobium[J]. Journal of NuclearMaterials.1971,40:271-283.
    [47] Rabinkin A, Talianker M, Botstein O. Crystallography and a model of the α→ω phasetransformation in zirconium[J]. Acta Metallurgica.1981,29:691-698.
    [48] Massih A R, Jernkvist L O. Phase ordering under quenching: a case of Zr-alloy[J]. Journalof Physics and Chemistry of Solids.2004,65:1193-1198.
    [49] Perkins A J, Yaffe P E, Hehemann R F. The athermal omega transformation in Zr-Nballoys[J]. Metallurgical Transactions.1970,1:2785-2790.
    [50] Hickman B S. The formation of omega phase in titanium and zirconium alloys: A Review[J].Journal of Materials Science.1969,4:554-563.
    [51] Banerjee S., Mukhopadhyay P. Phase Transformations Examples from Titanium and ZirconiumAlloys [M]. Amsterdam: Elsevier,2007: p282.
    [52] Cai S, Daymond M R, Khan A K, et al. Elastic and plastic properties of βZr at roomtemperature[J]. Journal of Nuclear Materials.2009,393:67-76.
    [53] Bagariaskii I A, Nosova G I, Tagunova TV. Factors in the formation of metastable phase intitanium-based alloys[J]. Soviet Physics Doklady.1959,3:1014-1018.
    [54] Williams J C, Fontaine D De, Paton N E. The ω-phase as an example of an unusual sheartransformation[J]. Metallurgical Transactions.1973,4(12):2701-2708.
    [55] Luo C P, Weatherly G C. The precipitation behavior of a Zr-2.5wt pct Nb alloy[J]. MetallurgicalTransactions A.1988,19A:1153-1162.
    [56] Menon E S K, Banerjee S, Krishnan R. Application of free energy-composition diagrams inpredicting the sequences of phase transformation in Zr-Nb alloy[J]. Metallurgical Transactions A.1978,9A:1213-1220.
    [57] Banerjee S, Vijaykar S J, Krishnan R. Precipitation in zirconium-niobium martensites[J]. Journalof Nuclear Materials.1976,62(2-3):229-239.
    [58] Kuraleedharan K, Banerjee D, Banerjee S, et al. The α2-to-O transformation in Ti-Al-Nb alloys[J].Philosophical Magazine A.1995,71(5):1011-1036.
    [59] Perkins A J, Yaffe P E, Hehemann R F. The isothermal omega transformation inzirconium-niobium alloys[J]. Metallography.1971,4:303-323.
    [60] Hatt B A, Roberts J A. The ω-phase in zirconium base alloys[J]. Acta Metallugrica.1960,8:575-584.
    [61] Griffths M, Winegar J E, Buyers A. The transformation behaviour of the β-phase in Zr-2.5Nbpressure tubes[J]. Journal of Nuclear Materials.2008,383:28-33.
    [62] Cuello G J, Guillermet A F, Grad G B. Structural properties and stability of the bcc and omegaphases in the Zr-Nb system. I. Neutron diffraction study of a quenched and aged Zr-10wt%Nb alloy[J].Journal of Nuclear Materials.1995,218:236-246.
    [63] Hatt B A, Roberts J A, Williams G I. Occurrence of the meta-stable omega phase in zirconiumalloys[J]. Nature.1957,180:1406-1406.
    [64] Cheadle B A, Aldrige S A. The transformation and age hardening behaviour of Zr-19wt%Nb[J].Journal of Nuclear Materials.1973,47:255-258.
    [65] Kishore R, Singh R N, Day G K, et al. Age hardening of cold-worked Zr-2.5wt%Nb pressure tubealloy[J]. Journal of Nuclear Materials.1992,187:70-73.
    [66] Yang Z N, Zhang F C, Liu F C, et al. Achieving high strength and toughness in a Zr-2.3Nb alloyby the formation of duplex microstructure[J]. Materials and Design.2012,40:400-406.
    [67] Srivastava D. Beta phase transformation in Zirconium based alloys[D]. PhD thesis, Indian Instituteof Science,1996.
    [68] Akhtar A, Teghtsoonian A. Plastic deformation of zirconium single crystals[J]. Acta Metallurgica.1971,19:655-663.
    [69] Akhtar A. Basal slip in zirconium[J]. Acta Metallurgica.1973,21:1-11.
    [70] Akhtar A. Compression of zirconium single crystals parallel to the c-axis[J]. Journal of NuclearMaterials.1973,47:79-86.
    [71] Groves G W, Kelly A. Independent slip systems in crystals[J]. Philosophical Magazine A.1963,8:877-887.
    [72] Jung Y-Il, Lee M-H, Park J-Y, et al. Simple approach to the mechanical anisotropy of cold-rolledzirconium alloys[J]. Metals and Materials International.2009,15(5):803-807.
    [73] McCabe R J, Proust G, Cerreta E K, et al. Quantitative analysis of deformation twinning inzirconium[J]. International Journal of Plasticity.2009,25:454-472.
    [74] Yoo M H. Slip, twinning, and fracture in hexagonal closed-packed metals[J]. MetallurgicalTransactions A.1981,12:409-418.
    [75] Numakura H, Minonishi Y, Koiwa M.<-1-123>{10-11}Slip in zirconium[J]. PhilosophicalMagazine A.1991,63:1077-1084.
    [76] Yoo M H, Agnew S R, Morris J R, et al. Non-basal slip systems in HCP metals and alloys: sourcemechanisms[J]. Material Science and Engineering A.2001,319-321:87-92.
    [77] Yoo M H, Morris J R, Ho K, et al. Nonbasal deformation codes of HCP metals and alloys: Role ofdislocation source and mobility[J]. Metallurgical Transactions A.2001,33:813-822.
    [78] Holt R A, Griffiths M, Gilbert R W. c-Component dislocations in Zr-2.5wt%Nb alloys[J]. Journalof Nuclear Materials.1987,149:51-56.
    [79] Mukherjee P, Sarkar A, Barat P, et al. Deformation characteristics of rolled zirconium alloys:a study by X-ray diffraction line profile analysis[J]. Acta Materialia.52(2004)5687-5696.
    [80] Holt R A, Christodoulou N, Causey A R. Anisotropy of in-reactor deformation of Zr–2.5Nbpressure tubes[J]. Journal of Nuclear Materials.2003,317:256-260.
    [81] Christodoulou N, Turner P A, Ho E T C, et al. Anisotropy of Yielding in a Zr-2.5Nb PressureTube Material[J]. Metallurgical and Materials Transactions A.2000,31:409-420.
    [82] Evstyukhin A I, Koshelev W E, Mazegorin I W, et al. Metals and Alloys in AtomicEngineering[M], A Collection of Scientific Works, Ed. V.S. Yemelyanov(Atomic Power, Moscow,1985) p.3(in Russian).
    [83] Chrikin A V, El-Yazgi A. On the critical deformation of Zr-Nb alloys with Nb contents up to2.5%[J]. Journal of Nuclear Materials.1990,172:297-303.
    [84] Gorelik S S. Recrystallization in metals and alloys[M]. Moscow: MIR,1981: p.221.
    [85] Nishimura K, Hanada S, Izumi O. Tensile properties and plastic deformation modes of βZr-Nb alloys[J]. Journal of Materials Science.1990,25:384-390.
    [86] Singh R N, Mukherjee S, Kishore R, et al. Flow behaviour of a modified Zr-2.5wt%Nbpressure tube alloy[J]. Journal of Nuclear Materials.2005,345:146-161.
    [87] Shukla S V, Chandrashekharayya C, Singh R N, et al. Effect of strain rate and testtemperature on superplasticity of a Zr-2.5wt%Nb alloy[J]. Journal of Nuclear Materials.1999,273:130-138.
    [88] Ray A, Barat P, Mukherjee P, et al. Effect of transient change in strain rate on plastic flowbehaviour of low carbon steel[J]. Bulletin of Material Science.2007,30(1):69-71.
    [89] Kappor R, Chakravartty J K, Gupta C C, et al. Characterization of superplastic behaviour inthe (α+β) phase field of Zr-2.5wt.%Nb alloy[J]. Materials Science and Engineering A.2005,392:191-202.
    [90]Singh R N, Kishore R, Sinha T K, et al. Superplasticity behaviour of a Zr-2.5Nb pressuretube alloy[J]. Scripta Metallurgica et Materialia.1993,28:937-942.
    [91] Nuttal K. Superplasticity in the Zr-2.5%Nb alloy[J]. Scritpa Metallurgica.1976,10(9):835-840.
    [92] Li Y, Rogge R, Holt R A. Development of local microstructure and crystallographic texturein extruded Zr-2.5Nb tubes[J]. Materials Science and Engineering A.2006,437:10-20.
    [93] Srivastava D, Dey G K, Banerjee S. Evolution of microstructure during fabrication of Zr-2.5wt pct Nb alloy pressure tubes. Metallurgical and Materials Transactions A.1995,26a:2707-2718.
    [94] Kaddour D, Frechinet S, Gourgues A F, et al. Experimental determination of creepproperties of Zriconium alloys together with phase transformation[J]. Scripta Materialia.2004,51:515-519.
    [95] Charit I, Murty K L. Creep behavior of niobium-modified zirconium alloys[J]. Journal of NuclearMaterials.2008,374:354-363.
    [96] Kishore R. Effect of hydrogen on the creep behavior of Zr-2.5%Nb alloy at723K[J]. Journal ofNuclear Materials.2009,385:591-594.
    [97] Champion Y, Langlois C, Guerin-Mailly S, et al. Near-perfect elastoplasticity in purenanocrystalline copper[J]. Science.2003,300:310-311.
    [98]马筱聪,陈雷,黄华贵.含稀土的23Cr型双相不锈钢的高温变形行为[J].燕山大学学报.2012,36(4):328-333.
    [99]姜萍,孙淑华,王振华,等.一种含氮高铬冷轧辊用钢的热变形行为研究[J].燕山大学学报.2011,35(4):323-327.
    [100] Dalla Torre F, Lapovok R, Sandlin J, et al. Microstructures and properties of copper processed byequal channel angular extrusion for1-16passes[J]. Acta Materialia.2004,52:4819-1832.
    [101] Shih M H, Yu C Y, Kao P W, et al. Microstructure and flow stress of copperdeformed to largeplastic strains[J]. Scripta Materialia.2001,45:793-799.
    [102] Mazilkin A A, Straumal B B, Rabkin E, et al. Softening of nanostructured Al–Zn and Al–Mgalloys after severe plastic deformation[J]. Acta Materialia.2006,54:3933-3939.
    [103] Guo M X, Shen K, Wang M P. Strain softening behavior in a particle-containing coper alloy[J].Materials Science and Engineering A.2010,527:2478-2485.
    [104] Haouaoui M, Karaman I, Maier H J, et al. Microstructure evolution and mechanical behavior ofbulk copper obtained by consolidation of Micro and Nanopowders using equal-channel angularextrusion[J]. Metallurgical and Materials Transactions A.2004,35A:2935-2949.
    [105] Zhou Y X, Wang Y, Mallick P K, et al. Strain softening constitutive equation for tungsten heavyalloy[J]. Materals Letters.2004,58:2725-2729.
    [106] Yu C Y, Sun P L, Kao P W, et al. Mechanical properties of submicron-grained aluminum[J].Scripta Materialia.2005,52:359-363.
    [107] Cheng S, Ma E, Wang Y M, et al. Tensile properties of in situ consolidated nanocrystalline Cu[J].Acta Materialia.2005,53:1521-1533.
    [108] Tang F, Schoenung J M. Strain softening in nanocrystalline or ultrafine-grained metals: Amechanistic explanation[J]. Materials Science and Engineering A.2008,493:101-103.
    [109] Yang Z N, Liu F C, Zhang FC, et al. Microstructure evolution and mechanical properties in Zr705during the rolling process[J]. Materials Science and Engineering A.2012,544:54-58.
    [110]王华明,方艳丽,汤海波,等.获得具有筏状初生α相的双态组织的双相钛合金热处理方法
    [P].2008.12.2.中国:200810227882. X.
    [111]张翥,王群骄,莫畏.钛的金属学和热处理[M].北京:冶金工业出版社.2009: p223.
    [112] Lutjering G. Influence of processing on microstructure and mechanical properties of (+)titanium alloys[J]. Materials Science and Engineering A.1998;243:32-45.
    [113] Gnanamoorthy R, Mutoh Y, Mizuhara Y. Fatigue crack growth behavior of equiaxed, duplex andlamellar microstructure-base titanium aluminides[J]. Intermetallics.1996;4:525-535.
    [114] Peng P-W, Ou K-L, Chao C-Y, et al. Research of microstructure and mechanical behavior onduplex (+) Ti-4.8Al-2.5Mo-1.4V alloy[J]. Journal of Alloys and Compounds.2010,490:661-666.
    [115]赵文金,周邦新,苗志,等.我国高性能锆合金的发展[J].原子能科学技术.2005,7(39):2-9.
    [116] Ibrahim E F, Cheadle B A. Development of zirconium alloys for pressure tubes in CANDUreactors[J]. Canadian Metallurgical Quarterly.1985,24(3):273-281.
    [117] Dinda G P, Ronsner H, Wilde G. Synthesis of bulk nanostructured Ni, Ti and Zr by repeatedcold-rolling[J]. Scripta Materialia.2005,52:577-582.
    [118] Jovanovic M T, Eadie R L, Ma Y, et al. The effect of annealing on hardness, microstructureand delayed hydride cracking in Zr-2.5Nb pressure tube material [J]. Materials Characterization.2001,47:259-268.
    [119] Zhu S Q, Yan H G, Chen J H, et al. Effect of twinning and dynamic recrystallization on thehigh strain rate rolling process[J]. Scripta Materials.2010,63:985-988.
    [120] De A K, Murdock D C, Mataya M C, et al. Quantitative measurement of deformation-inducedmartensite in304stainless steel by X-ray diffraction[J]. Scripta Materials.2004,50:14451449.
    [121] Lloyd D J, Deformation of fine-grained aluminium alloys[J]. Metal Science.1980,14:193-198.
    [122] Aldridge S A, Cheadle B A. Age hardening of Zr–2.5Nb slowly cooled from the (+β) phasefield[J]. Journal of Nuclear Materials.1972,42:32-42.
    [123] Blum W, Eisenlohr P, Breutinger F. Understanding creep-a revies[J]. Metallurgical and MaterialsTransactions A.2002,33:291-303.
    [124] Edalati K, Horita Z. High-pressure torsion of pure metals: Influence of atomic bond parametersand stacking fault energy on grain size and correlation with hardness[J]. Acta Materialia.2011,59:6831-6836.
    [125] Taylor G I. The mechanism of plastic deformation f crystals. Part I. Theoretical[J]. Proceedingsof the royal society.1934,145(855):362-387.
    [126] Mecking H, Kocks U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica.1981,29(11):1865-1875.
    [127] Li D Y, Wang L, Li W. Effects of grain size from micro scale to nanoscales on the yield strain ofbrass under compressive and tensile stresses using a Kelvin probing technique[J]. Materials Scienceand Engineering A.384(2004)355-360.
    [128] Zhao Y H, Lu K, Zhang K. Microstructure evolution and thermal properties in nanocrystalline Cuduring mechanical attrition[J]. Physical Review B.2002,66,404-411.
    [129]徐国平,尹志民,黄继武,等. X射线衍射测试PDC表明残余应力的实验研究[J].金刚石与磨料磨具工程.2007,161(5):40-43.
    [130] Park J Y, Kim H G, Jeong Y H. Corrosion behavior of Zr-Nb alloys in360oC water and500oCsupercritical water[J]. Metals and Materials International.2006,12:497-503.
    [131] Lentz G J, Sanders B J. Mananaging a zirconium project.http://www.wahchanglabs.com/pdf/1999/1999003.pdf.(2011)
    [132] Duke L, Ellis T. Design and fabrication details for zirconium pressure vessel equipment.http://www.wahchanglabs.com/pdf/1997/1997012.pdf.(2011)
    [133] Choudhuri G, Srivastava D, Gurumurthy K R et al. Optimization of stress relief heat treatment ofPHWR pressure tubes (Zr–2.5Nb alloy)[J]. Journal of Nuclear Materials.2008(1-2),383:178-182.
    [134] Kashyap B P, Pathak R, Narasimhan K et al. Effect of prior cold rolling and test temperature onstress-strain rate behaviour of a Zr-2.5Nb alloy[J]. Journal of Materials Science.1999,34:645-651.
    [135] Hiwarkar V D, Sahoo S K, Samajdar I et al. Annealing of cold worked two-phaseZr-2.5Nb-Associated microstructure developments[J]. Journal of Nuclear Materials.2009,384(1):30-37.
    [136]张福成.高锰钢辙叉材料研究进展[J].燕山大学学报.2010,34(3):189-193.
    [137]钱立和,刘帅,孟江英,等.辙叉用高锰钢的循环变形与硬化[J].燕山大学学报.2012,36(6):507-510.
    [138] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M].2nd ed.UK/Australia,2004
    [139] Jung Y I, Lee M H, Kim H G et al. Behavior of a recrystallization in HANA-4and HANA-6zirconium-based alloys[J]. Journal of Alloys and Compounds.2009,479(1-2):423-426.
    [140] Guo Y, Li Y R, Liu Y Z, et al. Evaluation of a delayed hydride cracking in Zr–2.5Nb CANDUand RBMK pressure tubes[J]. Materials Design.2009,30:1231-1235.
    [141] Somekawa H, Osawa Y, Mukai T. Effect of solid-solution strengthening of fracture toughenss inextruded Mg-Zn alloys[J]. Scripta Materials2006,55:593-596.
    [142] Douglass D L. The relative contributions of dispersion and solution strengthening in Zr-Sb-Nballoys[J]. Journal of Nuclear Materials.1963,9:252-260.
    [143] Antony K C, Klepfer H H. Dispersion-strengthened zirconium alloys[J]. Journal of the LessCommon Metals.1965,8:36-46.
    [144] Jiang L, Perez-Prado MT, Gruber PA, et al. Texture, microstructure and mechanical properties ofequiaxed ultrafine-grained Zr fabricated by accumulative roll bonding[J]. Acta Materialia.2008,56:1228-1242.
    [145] Bantounas I, Dye D. Trevor C Lindley, The role of microtexture on the faceted fracturemorphology in Ti–6Al–4V subjected to high-cycle fatigue[J]. Acta Materialia.2010,58:3908-3918.
    [146] Ma T J, Li W-Y, Yang S Y. Impact toughness and fractue analysis of linear friction weldedTi–6Al–4V alloy joints[J]. Materials&Design.2009.30:2128-2132.
    [147] Lindemann J, Wagner L. Microtextural effects on mechanical properties of duplexmicrostructures in (+) titanium alloys[J]. Materials Science and Engineering A.1999,263:137-141.
    [148] Zhang W-Z, Purdy GR. A TEM study of the crystallography and interphase boundary structure ofa precipitates in a Zr-2.5wt%Nb alloy[J]. Acta Metallurgica et Materialia.1993,41(2):543-551.
    [149] Perovic V, Weatherly G C. The to transformation in a Zr-2.5wt%Nb alloy[J]. ActaMetallurgica.1989,37(3):813-821.
    [150] Banerjee S, Dey G K, Srivastava D, et al. Plate-Shaped transformation products inZirconium-Based alloys[J]. Metallurgical and Materials Transactions A.1997,28A:2201-2216.
    [151] Holm K, Embury J D, Purdy G R. The structure and properties of microduplex Zr-Nb alloys[J].Acta Metallurgica1977,25(10):1191-1200.
    [152] Yoo J S, Kim I S. Effect of (+) heat treatment on the mechanical properties of Zricaloy-4[J].Journal of Nuclear Materials.1991,185:87-95.
    [153] Kaddour D, Gourgues-Lorenzon A-F, Brachet J-C, et al. Microstructural influence on hightemperature creep flow of Zr-1%NbO alloy in near-,(+), and temperature ranges in a highvacuum environment[J]. Journal of Nuclear Materials.2011,408:116-124.
    [154] ASTM E23-02a, Standard test methods for notched bar impact testing of metallic materials.2002.
    [155] Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructurein Ti-6Al-4V alloy during warm deformation and annealing[J]. Acta Materials.2011,59:4138-4150.
    [156] Banerjee S, Bijayakar S J, Krishnan R. Strength of zirconium-titanium martensites anddeformation behaviour[J]. Acta Metallurgica1978,26(12):1815-1831.
    [157] Zheng R T, Zhang Y G, Chen C Q, et al. The ambient temperature tensile behavior of duplexγ-TiAl-based alloys[J]. Materials Science and EngineeringA.2003,362:192-199.
    [158] Dieter G E. Mechanical Metallurgy[M].3rd ed. McGraw-Hill companies, Inc;1988.
    [159] Ramani S V, Rodriguez P. Grain size dependence of the deformation behaviour of α zirconium[J].Canadian Metallurgical Quarterly.1972,11:61-67.
    [160] Evans W J. Optimising mechianical properties in α+β titanium alloys[J]. Materials Science andEngineering A.1998,243:89-96.
    [161] Holm, K., Embury, J.D., Purdy, G.R.,1977. The structure and properties of microduplex Zr-Nballoys[J]. Acta Metallurgica.1977,25(10):1191-1200.
    [162] Cho JR, Dye D, Conlon, K T, et al. Intergranular strain accumulation in a near-alpha titaniumalloy during plastic deformation[J]. Acta Materialia.2002.50:4847-4864.
    [163] Mayeur J R, McDowell D L. A three-dimensional crystal plasticity model for duplexTi-6Al-4V[J]. International Journal of Plasticity.2007,23:1457-1485.
    [164] Zhang M, Zhang J, McDowell D L. Microstructure-based crystal plasticity modeling of cyclicdeformation of Ti-6Al-4V[J]. International Journal of Plasticity.2007,23:1328-1348.
    [165] Kabir M R, Chernova L, Bartsch M. Numerical investigation of room-temperature deformationbehavior of a duplex type γTiAl alloy using a multi-scal modeling approach[J]. Acta Materialia.2010,58:5834-5847.
    [166] Birosca S, Buffiere J Y, Karadge M, et al.3D observations of short fatigue crack interaction withlamellar and duplex microstructures in a two-phase titanium alloy[J]. Acta Materialia.2011,59(4):1510-1522.
    [167] Barlat F, Glazov M V, Berm J C, et al. A simple model for dislocation behavior, strain and strainrate hardening evolution in deforming aluminum alloys[J]. International Journal of Plasticity.2002,18:919-939.
    [168] Liu F C., Yang Z N, Zheng C L, et al. Simultaneously improving the strength and ductility ofcoarse-grained Hadfield steel with increasing strain rate[J]. Scripta Materialia.2012,66:431-434.
    [169] Zan X, Wang Y, Xia Y M, et al. Strain rate effect on the tensile behavior of duplexTi-46.5Al-2Nb-2Cr intermetallics at elevated temperatures[J]. Materials Science and Engineering A.2008,498:296-301.
    [170] Khan A S, Yu SJ, Liu H W. Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II:A strain rate and temperature dependent anisotropic yield criterion[J]. International Journal of Plasticity.2012,38:1-13.
    [171] Bhattacharjee A, Ghosal P, Gogia A K, et al. Room temperature plastic flow behaviour ofTi-6.8Mo-4.5Fe-1.5Al and Ti-10V-4.5Fe-1.5Al: Effect of grain size and strain rate[J]. MaterialsScience and Engineering A.2007,452-453:219-227.
    [172] Thomson R D, Hancock J W, Ductile failure by void nucleation, growth and coalescence[J].International Journal of Fracture.1984,26:99-112.
    [173] Rizal S, Homma H. Dimple fracture under short pulse loading[J]. International Journal of ImpactEngineering.2000,24:69-83.
    [174] Bandstra J P, Koss D A, Geltmacher A, et al. Modeling void coalescence during ductile fractureof a steel[J]. Materials Science and Engineering A.2004,366:269-281.
    [175] Peace R, Miller R E. Experimental observations of void growth in the Zr-2.5Nb pressure tubealloy[J]. Journal of Nuclear Materials.2005,341:231-234.
    [176] Benzerga A A, Besson J, Pineau A. Anisotropic ductile fracture Part I: experiments[J]. ActaMaterialia.2004,52:4623-4638.
    [177] Broek D. The role of inclusions in ductile fracture and fracture toughness[J]. EngineeringFracture Mechanics.1973,5:55-66.
    [178] Hsu H-H, Tsay L-W. Fracture properties of hydrided Zircaloy-4cladding in recrystallization andstress-relief anneal conditions[J]. Journal of Nuclear Materials.2012,422:116-123.
    [179] Das A, Tarafder S. Experimental investigation on martensitic transformation and fracturemorphologies of austenitic stainless steel[J]. International Journal of Plasticity.2009,25:2222-2247.
    [180] Shewmon P G, Mehl Medalist R F. Grain boundary cracking[J]. Metallurgical and MaterialsTransactions A.1998,29A:1535-1544.
    [181] Barai P, Weng G J. The competition of grain size and porosity in the viscoplastic response ofnanocrystaline solids[J]. International Journal of Plasticity.2008,24:1380-1410.
    [182] Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions[J].International Journal of Fracture.1981,17:389-407.
    [183] Zurek K, Meyers M A. In: Davison L, D E, Shahinpoor M (Eds.), High-pressure shockcompression of solids II[M]. Springer, New York,1970. pp.25-70.
    [184] Chandra T, Jonas J J, Taplin D M R. Grain-boundary sliding and intergranular cavitation duringsuperplastic deformation of α/β brass[J]. Journal of Materials Sciences.1978,13:2380-2384.
    [185] Pervoic V, Pervoic A, Weatherly G C, et al. Microstructure and microchemical studies ofZr-2.5Nb pressure tube alloy[J]. Journal of Nuclear Materials.1993,205:251-257.
    [186] Zhilyaev A P, Sabirov I, Gonzalea-Doncel G, et al. Effect of Nb additions on the microstructure,thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions[J].Materials Science and Engineering A.2011,528:3946-3505.
    [187] Pervoic A, Pervoic V, Weatherly G C, et al. A study of the distribution of Nb and Fe in two-phaseZr-2.5wt%Nb alloys[J]. Journal Nuclear Materials.1993,199:102-111.
    [188] Holt R A. Recovery of cold-work in extruded Zr-2.5wt%Nb[J]. Journal of Nuclear Materials.1976,59:234-242.
    [189] Ells C E, Cheadle B A. Aging and recovery in cold rolled Zr-2.5wt%Nb alloy[J]. Journal ofNuclear Materials.1967,23(3):257-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700