用户名: 密码: 验证码:
TiO_(2-x)N_x薄膜托槽的制备、性能及生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
错(牙合)畸形是常见的口腔疾病,固定矫治技术是目前最主流的矫治方法。托槽是固定矫治技术中最核心的装置,贯穿固定矫治全程。然而,固定矫治过程中托槽周围出现的釉质脱矿已经成为了主要的不良并发症。据研究显示,固定矫治中托槽周围釉质脱矿的发病率从2%-96%不等。在以往的研究中,发现16.23%-97%的患者在正畸治疗结束后均存在不同程度的釉质脱矿。控制菌斑是预防釉质脱矿最有效的方法,以往预防固定矫治过程中出现的釉质脱矿主要是通过应用氟化物、抗菌粘接剂、激光照射、中药等手段。但以上方法因依赖于患者的合作以及药物浓度难以保持等原因而存在不足。
     本研究通过磁控溅射法,按照实验设计,在不锈钢金属托槽表面制备了18组Ti02薄膜试样,通过X射线衍射(XRD)、扫描电镜(SEM)、可见光光催化性能综合分析,确定溅射温度300℃、时间180分钟、氩/氮流量比30/1、退火温度450℃条件下制备的TiO2-xNx薄膜为日标薄膜试样,且目标薄膜均匀、致密,厚度为500nm左右,结晶性好,晶粒粒径30nm,是锐钛矿相结构,并在(101)方向上有良好的择优取向,氮元素质量比为4.24%;利用多功能材料表面试验仪、原子力显微镜(AFM)、14FW往复摩擦试验机检测表明TiO2-xNx薄膜与托槽的附着性良好,托槽表面粗糙度降低,TiO2-xNx薄膜托槽表面最大静摩擦系数和动摩擦系数均变小;通过UMT-2MT型摩擦磨损试验机进行TiO2-xNx薄膜托槽耐摩擦磨损性能的测试,结果表明TiO2-xNx薄膜在干摩擦下和两种润滑介质条件下均表现出了明显的减摩效果,不锈钢金属托槽表面制备的TiO2-xNx薄膜具有良好的耐磨性;通过离子析出检测分析认为TiO2-xNx薄膜托槽具有良好的抗腐蚀性,薄膜稳定性高;采用Shimadzu电子万能材料试验机对TiO2-xNx薄膜托槽的粘接强度进行了评价,其粘接强度大于8Mp,能够满足正畸临床要求。
     选择菌落计数法考察了TiO2-xNx薄膜托槽在可见光作用下的抗菌性能,通过SEM观察细菌的表面粘附能力。结果显示TiO2-xNx薄膜托槽对口腔主要致病菌变形链球菌、乳酸杆菌、粘性放线菌以及白色念珠菌的抗菌率分别为95.19%、91.00%、69.44%和98.86%。TiO2-xNx薄膜托槽表面黏附的变形链球菌明显少于不锈钢金属托槽。
     TiO2-xNx薄膜托槽的生物相容性结果显示,TiO2-xNx薄膜托槽的细胞毒性为0级,与对照组相比,薄膜托槽组细胞相对增殖率差异无统计学意义(P>0.05);扫描电镜显示细胞在薄膜托槽表而贴壁生长良好:荧光显微镜显示粘附在薄膜表面的细胞其细胞核呈亮黄绿色荧光,细胞质呈绿色荧光,细胞生长良好,表明TiO2-xNx薄膜托槽具有良好的细胞相容性。动物研究说明,TiO2-xNx薄膜托槽无口腔黏膜刺激性、无短期全身毒性、无溶血性以及无遗传毒性。
     以上结果表明通过磁控溅射法制备的TiO2-xNx薄膜托槽具有良好的材料性能、抗菌性以及生物相容性,可以成为固定正畸治疗中预防釉质脱矿的一种新型方法。
Malocclusion is one of the common oral diseases while fixed orthodontic technology is the dominating treatment method. Brackets are the core devices of fixed orthodontic technology, and penetrating the whole process of orthodontic treatment. Nevertheless, white spot lesions, or enamel demineralization around brackets are the primary complication. Studies showed that the incidence of such disease ranges from2%to96%during the treatment. In horizontal approaches16.23%~97%of orthodontic patients had enamel demineralization after orthodontic treatment. Currently, to prevent the occurrence of enamel demineralization, constructing patients how to reduce dental plaque is the most commonly used method. Formly, prevention approach against enamel demineralization during fixed orthodontic treatment, such as, fluoride, antibacterial adhesives, laser irradiation, Chinese Traditional Medicine and different ways of acid etching were used. However, there are certain deficiencies in the methods above which depends on the cooperation of patients as well as drug concentration.
     In this study, RF magnetron sputtering method was used to prepare TiO2-xNx thin film on the surface of stainless steel metal bracket, and18groups of samples were made according to the experiment parameters. The crystal structure, surface morphology were characterized by XRD, SEM; photocatalytic performance were tested by photocatalytic analysis. The parameters of the target thin film samples were set as follows:the sputtering temperature was set as300℃, and the time was set as180min, ratio of Ar/N was30:1, annealing temperature was at450℃. The thickness and element contents were also analyzed. It was found that TiO2-xNx thin film was well-distributed and compact, and the thickness was about500nm, and of high crystallinity. The grain size was around30nm. Demonstrating the thin film was anatase phase. The ratio of nitrogen content was4.24%.
     The results showed the film has good adhesion strength; the surface roughness and the coefficient of static friction and coefficient of kinetic friction of orthodontic brackets coated with TiO2-xNx thin film were lower than orthodontic brackets without TiO2-xNx which tested by multifunctional material surface tester, atomic force microscope and14FW reciprocating friction tester respectively. Scanning electron microscopy and UMT-2MT friction-abrasion testing machine was used to study frictional wear properties of the TiO2-xNx films. It was found that the TiO2-xNx films revealed apparent anti-friction under dry friction and two lubrication conditions, that is to say, the TiO2-xNx films on the surface of stainless steel brackets had good wear resistance. TiO2-xNx film brackets had good corrosion resistance and film stability which were analysed by studying the ion release ratio of the samples. Shimadzu electronic universal testing machine was used to study the adhesive strength of TiO2-xNx film to brackets, the result indicated the value of adhesive strength was greater than8Mp. The strength could meet the requirements of orthodontic treatment.
     The antibacterial performance of the samples under visble light was conducted by colony counting method. The adhesive ability was tested by SEM. And the results showd that the antibacterial effects of TiO2-xNx against the four main pathogenic bacterium(streptococcus mutans, lactobacillus, actinomuces viscosus, Candida albicans) in oral environment. The antibacterial ratio were95.16%,91.00%,69.44%and98.86%in order. Meanwhile, streptococcus mutans adhered to the surface of TiO2-xNx thin film was less than that of common MBT brackets.
     Biocompatibility study of TiO2-xNx thin film brackets showed that the cytotoxicity of the samples was on grade0. Compared with control group, the percentage of cell proliferation showed no statistical difference(p>0.05). The SEM photos showed the cells grew well on the surface of the films. The nulei was bright yellow-green fluorescent, cytoplasm was green fluorescent on the surface of the films under fluorescence microscope. Animal research showed TiO2-xNx brackets had good biocompatibility with no oral mucosa irritation response, short-term systematic toxicity, hemolysis and genotoxicity.
     The above research results demonstrating TiO2-xNx thin film has great material performance, antibacterial ability and biocompatibility, would be able to be a effective method to prevent enamel demineralization during the whole process of orthodontic treatment.
引文
[1]樊明文.牙体牙髓病学[M].北京:人民卫生出版社,2002,20.
    [2]刘正.牙菌斑和生物膜[J].牙体牙髓牙周病学杂志,2003,13(1):1-3.
    [3]王瑞.五倍子水提取物对菌斑生物膜形成的抑制作用的研究[D].西安.第四军医大学,2007.
    [4]潘一春,张丁,傅民魁.固定矫治器粘结前后牙齿颊面菌斑pH值和变形链球菌附着的改变[J].口腔正畸学,2003,10(1):23-25.
    [5]Matingly J A, Sauer G J, Yancey J M, et al. Enhancement of streptococcus mutans colonization by direct bonded orthodontic appliances[J]. Dent Res,1983,62(12):1209-1211.
    [6]Rosenbloom R G, Tinanoff N. Salivary streptococcus muntans levels in patients before, during, and after orthodontic treatment J]. Am J Orthod Dentofac Orthop,1991,100(1):35-37.
    [7]Eliakim Mizrahi, B.D.S, Dip.Orth, et al. Enamel demineralization following orthodontic treatment[J]. Am J Orthod,1982,82(1):62-67.
    [8]Hitchell L. An investigation into the effect of a fluoride releasing adhesive on the prevalence of enamel surface changes associated with directly bonded orthodontic attachments[J]. Br J Orthod,1992,19:207-214.
    [9]胡炜,王勤,傅民魁,等.口腔正畸固定矫治器应用中牙釉质脱矿的临床调查[J].口腔正畸学,2001,8(2):51-54.
    [10]Banks P A, Richmond S. Enamel sealants:a clinical evaluation of their value during fixed appliance therapy[J]. Eur J Orthod,1994,16:19-25.
    [11]包柏成,蔡一雯,王臻,等.固定矫治器对牙釉质脱矿的影响及其防治[J].现代口腔医学杂志,1997,11(4):307-308.
    [12]陆建锋.固定正畸中定期牙周洁治的临床疗效分析[J].淮海医学,2007,25(6):520-521.
    [13]胡炜,王晓灵,王勤,等.正畸粘接用树脂改良型玻璃离子粘固剂的氟离子释放[J].北京大学学报(医学版),2002,34(2):144.
    [14]陈亚刚,胡德渝,李克增.应用含氟漱口液防治正畸治疗中釉质脱矿的临床研究[J].徐州医学院学报,2007,27(7):764-766.
    [15]华咏梅,陈捷,Jean Gong.不同浓度含氟牙膏对正畸牙龋病与脱矿的预防效果[J].华西口腔医学杂志,2006,24(2):146-147.
    [16]高晓辉,吴晶,杨圣辉,等.不同材质托槽对菌斑附着的实验研究[J].首都医科大学学报,2002,23(3):256-257.
    [17]赵康,苏波.正畸托槽上涂敷含氟缓释涂层以预防牙釉质脱矿的方法:中国,200510042700.8[P].2005-05-25. http://www.patent-cn.com/A61K/CN1706360.shtml
    [18]Song Li, Ross S. Hobson, Yuxing Bai, et al. A method for producing controlled fluoride rele-ase from an orthodontic bracket[J]. Eur J Orthod,2007,29(6):550-554.
    [19]束嫘,纳米陶瓷涂层正畸槽的开发研制及其力学、生物学特性研究[D].西安:第四军医大学,2005.
    [20]Alok Girish Shah, Pradeep Chandra Shetty, C. S. Ramachandra, et al. In vitro assessment of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiad-herent and antibacterial properties against Lactobacillus acidophilus[J]. Angle Orthodontist, 2011,81:1028-1035.
    [21]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. The Smithsonian,1972,238(5358):37-38.
    [22]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J].Bulletin of Environmental Contamination and Toxicology, 1976,16(6):697-701.
    [23]Kaewgun S, Lee B I. Deactivation and regeneration of visible light active brookite titania in photocatalytic degradation of organic dye[J]. Journal of Photochemistry and Photoboilogy A: Chemistry,2010,210(2-3):162-167.
    [24]Hu Y, Tsai H L, Huang C L. Phase transformation of precipitated TiO2 nanoparticles[J]. Materials Science and Engineering.2003, A344:209-214
    [25]Tundo P, Anastas P T. Green chemistry:Challenging perspectives[M]. Oxford University Press, USA,2000.
    [26]二氧化钛光催化材料的掺杂改性及其对气体污染物净化性能的研究[D].兰州:兰州大学物理学院.2010.
    [27]Umar Ibrahim Gaya, Abdul Halim Abdullah. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews.2008, 9:1-12.
    [28]李娜,曹宝成,王育华,等.掺氮TiO2-xNx薄膜托槽的制备及其性能研究[J].功能材料,2011,V(42),S5增刊:835-838.
    [29]崔玉民,张文保,洪文珊.二氧化钛光催化薄膜[M].化学工业出版社.2011,1.
    [30]Teruo Kishi. Materials outlook for energy and environment national institute for materials science (2008).
    [31]Kim S, Hwang S J, Choi W. Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst[J]. J Phy Chem B,2005,109(51):24260-24267.
    [32]Stathatos E, Lianos P, Falaras P, et al. Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films[J]. Langmuir,2000,16(5):2398-2400.
    [33]Dahmen C, Sprafke A N, Luysberg M, et al. Photochromic silver nanoparticles fabricated by sputter deposition[J]. J Appl Phy,2005,97(9):094305-094306.
    [34]Man Sig Lee, Seong-Soo Hong, Madjid Mohseni. Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent[J]. J of Mole Catal A:Chem,2005, 242(1-2):135-140.
    [35]Yang Tian, Tetsu Tatsuma. Mechanisms and Applications of Plasmon-Induced Charge Separa-tion at TiO2 Films Loaded with Gold Nanoparticles[J]. J. Am. Chem. Soc,2005,127 (20):7632-7637.
    [36]Liu S X, Qu Z P, Han X W, et al. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide[J]. Catal. Today,2004,93-95:877-884.
    [37]Baryshevsky V G, Korzhik M V, Moroz V I, et al. YAlO3:Ce-fast-acting scintillators for detection of ionizing radiation[J]. Nuclear Instruments and methods in physics research section B,1991,58(2):291-293.
    [38]Arabatzis I M, Stergiopoulos T, Bernard M C, et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange[J]. Appl. Catal. B:Environmental, 2003,42(2):187-201.
    [39]Baifu Xin, Liqiang Jing, Zhiyu Ren, et al. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2[J]. J. Phys. Chem. B,2005,109 (7):2805-2809.
    [40]Shi J W, Zheng J T, Peng W. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles[J]. Journal of Hazardous Materials,2009, 161(1):416-422.
    [41]Khan M A, Han D H, Yang O B. Enhanced photoresponse towards visible light in Ru doped titania nanotube[J]. Appl Surf Sci,2009,6(255):3687-3690.
    [42]Khan M Alam, Woo Seong Ihl, Yang O Bong. Hydrothermally stabilized Fe(Ⅲ) doped titania active under visible light for water splitting reaction[J]. International Journal of Hydrogen Energy,2008,33(20):5345-5351.
    [43]Putta T, Lu M C, Anotai J. Characterization and activity of visible-light driven TiO2 photocat-alyst doped with tungsten[J]. Water Sci Technol,2010,62(9):2128-2133.
    [44]Ghasemi S, Rahimnejad S, Setayesh S R, et al. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid[J]. J. Hazard. Mater,2009,172 (2-3):1573-1578.
    [45]Iwasaki M, Hara M, Kawada H, et al. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light[J]. Journal of Colloid and Interface Science,2000,224(1):202-204.
    [46]Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2[J]. Catalysis Today,2003,84(3-4):191-196.
    [47]Gratzel M, Howe R F. Electron-paramagnetic resonance studies of doped TiO2 colloids[J]. J Phys Chem.1990,94(6):2566-2572.
    [48]金华峰,李文戈,向纪明,等Fe3+-TiO2/SiO2复合纳米微粒的合成及光催化降解NO2[J].应用化学,2001,18(8):6362-6391.
    [49]陆诚,杨平,杜玉扣,等Fe3+/V5+/Ti02复合纳米微粒光催化性能的研究[J1.化学研究与应用,2002,14(3):265-268.
    [50]Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2 Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. Phys Chem,1994,98(51):13669-13679.
    [51]李芳柏,李湘中,李薪军,等.金离子掺杂对Ti02光催化性能的影响[J].化学学报,2001,59(7):1072-1077.
    [52]陈建华,王晓林,龚竹青,等.Cr3+掺杂对Ti02薄膜光催化活性的影响[J].环境科学报,2005,25(5):606-610.
    [53]Khan S U M, Al-Shahry M, Ingler J W B, et al. Efficient photochemical water splitting by a chemically modified N-TiO2 [J]. Science,2002,297:2243-2245.
    [54]Irie H, Watanabe Y, Haahimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst [J]. Chem Lett,2003,32:772-777.
    [55]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide[J]. Angew Chem Int Edit,2003,42(40):4908-4911.
    [56]Tachikawa T, Tojo S, Kawai K, et al. Photocatalytic oxidation reactivity of holes in the sulfur-and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy[J]. J Phys Chem:B,2004,108(50):19299-19306.
    [57]G6mez R, Lopez T, Ortiz-Islas E, et al. Effect of sulfation on the photoactivity of TiO2 sol-gel derived catalysts[J]. Journal of Molecular Catalysis A:Chemical,2003, 193(1-2):217-226.
    [58]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chemistry Letters,2003,32(4):364-365.
    [69]Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters,2002,81:454-456.
    [60]Wei Zhao, Ma W D, Chen C C, et al. Efficient degradation of toxic organic pollution with Ni2O/TiO2-xBx under visible irradiation[J]. J Am Chem Soc,2004,126:4782-4783.
    [61]Chen Daimei, Yang Dong, Wang Qun, et al. Effect of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles[J]. Industry and Engineering Chemistry Research,2006,45(12):4110-4116.
    [62]Hattori A, Yamamoto M, Tada H, et al. A promoting effect of NH4F addition on the photocat-alytic activity of sol-gel TiO2 films[J]. Chemistry Letters,1998,27(8):707-708.
    [63]Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem Mater,2002,14:3808-3816.
    [64]Yamaki T, Umebayashi T, Sumita T, et al. Fluorine-doping in titanium dioxide by ion implantation technique[J]. Nucl Instrum Methods Phys Res Sect B,2003,206:254-258.
    [65]Luo H M, Takata T, Lee Y G, et al. Photocatalytic activity enhancing for titanium dioxide by CO-doping with bromine and chlorine[J]. Chem Mater,2004,16:846-849.
    [66]Xu J H, Dai W L. Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation[J]. Catalysis Communications,2008,9(1):146-152.
    [67]Liu Jianjun, Qin Wei, Zuo Shengli, et al. Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-doped titania[J]. Journal of Hazardous Materials,2009, 163(1):273-278.
    [68]Fan D, Zhao W R. Band structure and visible light photocatalytic activity of multitype nitrogen doped TiO2 nanoparticles prepared by thermal decomposition[J]. Journal of Hazardous Materials,2009,162(2-3):763-770.
    [69]Asahi R, Morikawa T, Ohwaki T, et al. Visible light photocatalysis in nitrogen doped titanium oxides[J]. Science,2001,293:269-271.
    [70]Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped futile TiO2(111)in visible Iight[J]. J Phys Chem B,2004,108:6004-6008.
    [71]Irie H, Watanabe Y, Hashimoto K J. Nitrogen-concentration dependence on photocatalytic activity of TiO2[J]. J Phys Chem B,2003,107:5483-5486.
    [72]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Applied Catalysis B:Environmental,2003,42(4):403-409.
    [73]Di Valentin C, Pacchioni G, Selloni A. Origin of the different photoactivity of N-doped anatase and futile TiO2[J]. Phy Rev B,2004,108:10617-10620.
    [74]Asahi R, Morikawa T, Ohwaki T. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,2001,293(5528):269-271.
    [75]Sujaree Kaewgun, Burtrand I. Lee. Deactivation and regeneration of visible light active brookite titania in photocatalytic degradation of organic dye[J]. Journal of Photochemistry and Photobiology A:Chemistry,2010,210(2-3):162-167.
    [76]Hu Y, Tsai H L, Huang C L. Phase transformation of precipitated TiO2 nanoparticles[J]. Materials Science and Engineering:A,2003,344(1-2):209-214.
    [77]Chen Z J, Zhao G L, Li H, et al. Preparation of Nanocrystalline TiO2 by Sol-Gel-Method at Room Temperature[J]. Chinese Journal of Inorganic Chemistry,2010,26(5):860-866.
    [78]Daoud W A, Xin J H. Photocatalytic Titania Coatings by a Low-Temparature Sol-Gel Process Surfaces[J]. Interfaces and Science of Ceramic Joining,2012:29-35.
    [79]Chegroune R, Keddam M, Wouters Y, et al. Sol-gel titania films on YHfAl foils and their influence on inhibition of transition aluminas during oxidation at high temperatures[J]. Applied Surface Science,2011,257, (9):3929-3935.
    [80]Hsieh, Tung-Li; Chu, Ann-Kuo; Huang, Wen-Yao. Porous Titania Films Prepared by the Sol-Gel Method with Applications for Dye-Sensitized Solar Cells[J]. Advanced Science, Engineering and Medicine,2013,5(3):229-233.
    [81]Sobczyk-Guzenda A, Pietrzyk B, Szymanowski H, et al. Photocatalytic activity of thin TiO2 films deposited using sol-gel and plasma enhanced chemical vapour deposition methods[J]. Ceramics International,2013,39(3):2787-2794.
    [82]魏绍东,王杏.热处理对纳米Ti02晶型和粒度的影响[J].干燥技术与设备.2005,1:20-22.
    [83]Zhao Xu, Liu Manhong, Zhu Yongfa. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances[J]. Thin Solid Films,2007,515(18):7127-7134.
    [84]Aita Y, Komatsu M, Yin S, et al. Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process[J]. Journal of Solid State Chemistry,2004,177(9):3235-3238.
    [85]Yin S, Aita Y, Komatsu M, et al. Visible-light-induced photocatlytic activity of TiO2-xNx prepared by solvothermal process urea-alcohol system[J]. J Eur Ceram Soc,2006,26: 2735-2742.
    [86]Grzegorz D Sulka, Joanna Kapusta-Koiodziej, Agnieszka Brzozka, et al. Fabrication of nanoporous TiO2 by electrochemical anodization[J]. Electrochimica Acta,2010,55(14):4359.
    [87]Katrin Wessels, Miyuki Maekawa, Jiri Rathousky, et al. Highly porous TiO2 films from anodically deposited titanate hybrids and their photo-electronchemical and photocatalytic activity[J]. Microp Mesop Mater,2008,111:55.
    [88]Bayati M R, Moshfeghc A Z, Golestani-Fard F. In situ growth of vanadia-titanianano/micro-porous layers with enhanced photocatalytic performance by micro-are oxidation[J]. Electrochim Acta,2010,55:3093.
    [89]Yao Z Q, Ivanisenko Yu, Diemant T, et al. Synthesis and properties of hydroxyapatite containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation[J]. Acta Biomaterialia,2010,6(7):2816-2825.
    [90]Masayuki Okuya, Koji Nakade, Shoji Kaneko. Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD)technique and their application to dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells,2002,70(4):425-435.
    [91]Chen K C, Hong Franklin C-N, Jeng Yeau-Ren. Deposition of Titania-containing Diamond-like Carbon Nanocomposite Films by Sputtering-assisted Chemical Vapor Deposition[J]. Plasma Processes and Polymers,2011,8:324-332.
    [92]Castro V de, Benito G, Hurst S, et al. One step production of magnetic nanoparticle films by laser pyrolysis inside a chemical vapour deposition reactor[J]. Thin Solid Films,2011,519 (22):7677-7682.
    [93]Serio S, Melo-jogeb M E, Maneiraa M J, et al. Influence of O2 Partial Pressure the Growth of Nanostructured Anatase Phase TiO2 Thin Films Prepared by DC Reacttive Magnetron sputtering[J]. Materials Chemistry and Physics,2011,126(1-2):73-81.
    [94]冯磊,罗十雨,黄涛华等.射频磁控溅射法制备TiO2薄膜的结构性能研究[J].人工晶体学报,2008,37(5):1127-1131.
    [95]Zhang Can, Ding Wanyu, Wang Hualin, et al. Influences of working Pressure on Properties for TiO2 Films Deposited by DC Pulse Magnetron Sputtering[J]. Journal of Environmental sciences,2009,21(6):741-744.
    [96]Eufinger K, Janssen E.N., Poelman H, et al. The effect of argon pressure on the structural and photocatalytic characteristics of TiO2 thin films deposited by d.c. magnetron sputtering[J]. Thin Solid Films,2006,515(2):425-429.
    [97]Preetam S, Davinder K. Room Temperatute Growth of Nanocrystalline Anatase TiO2 Thin Films by dc Magnetron Sputtering[J]. Physica,2010,405(5):1258-1266.
    [98]Liu B S, Hu Q, Wen L P. The Effect of sputtering Power the Strengthen and Photocatalytictivt-y of TiO2 Film Prared by Magnetron Sputtering[J]. The Solid Films,2009,517(24):16569-16575.
    [99]Han M M, Haseeb A S M A, Saidur R. Influence of substrate and Annealing Tempe-ntures on Optical Properies oRF-Sputtered TiO2 Thin Film[J]. Optical Materials,2010, 32(6):690-695.
    [100]Zhang Yuanyuan, Ma Xiangyang, Chen Peiliang, et al. Effect of the substrate Temperature on the crystallization of TiO2 Films Prepared by DC Reactive Magnetron Sputting[J]. Journal of Crystal Growth,2007,300(2):551-554.
    [101]Meng F M, Lu F. Chracterization and Photocatalytic Activity of TiO2 Thin Films Prepared by RF Magnetron sputtering[J]. Vacuum,2010,85(1):84-88.
    [102]Pradhan S S, Sahoo S, Pradhan S K. Influence of Annealing Temperatture on the Structual, Mechanical and Wetting Properyt of TiO2 Film Deposited by RF Magnetron Sputtering[J]. Thin Solid Films,2010,518(23):6904-6908.
    [103]Zhao Baoxing, Zhou Jicheng, Chen Yu, et al. Effect of Annealing Temperature on the Structure and Optical Properties of sputtered TiO2 Films[J]. Journal of Alloys and Compounds,2011,509(9):4060-4064.
    [104]Li Z G, Miyake S. Characteristics of N-Doped TiO2 Thin Films Grown on unheated Glass Substrate by Inductively coupled Plasma Assisted DC Reactive Magnetron Sputtering[J]. Applied Surface Science,2009,255(22):9149-9153.
    [105]Carneiro J O, Teixeira V, Portinha A, et al. Study of the Deposition Parameters and Fe-Dopant Effect in the Photocatalytic Activity of TiO2 Films Prepared by DC Reactive Magnetron Sputtering[J]. Vacuum,2005,78(1):37-46.
    [106]Lin S S, Wu D K. The Properties of Al-Doped TiO2 Nanoceramic Films Deposited by simultaneous RF and DC Magnetron Sputter[J]. Ceramics International,2010,36(1):87-91.
    [107]Long T C, Tajuba J, Samp, et al. Nanosize titanium dioxide geimulates reactive oxygen species in brain microglia and damages neurons in viro[J]. Envion Health perspect,2007, 115(11):1631-1637.
    [108]朱融融,汪世龙,陈小平等.纳米二氧化钛对卵巢肿瘤细胞的选择性凋亡的诱导作用[J].化学学报,2006,64(21):2161-2164.
    [109]Hirakawa K, Mori M, Yoshidam, et al. Photo-irradiated titanium dioxide catalyze site specific DNA damage ria generation of hydrogen peroxide[J]. Free Radic Res,2004, 38(5):439-447.
    [110]Wang J J,Sanderson B J S, Wang H. Cyto-and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells[J]. Mutation Research,2007,628(2):99-106.
    [111]Wang Jiangxue, Zhou Guoqiang, Chen Chunying, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration[J].Toxicology letters,2007,168(2):176-185.
    [112]Gunter Oberdorster, Eva Oberdorster, Jan Oberdorster. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health perspectives, 2005, 113(7):823-839.
    [113]Borm P J A, Kreyling Wolfgang. Toxicological Hazards of Inhaled Nanoparticle-Potential Implications for Drug Delivery[J]. Nanoscience Nantechnology,2004,4(5):521-531.
    [114]Simona Popescu, Ioana Demetrescu, Christos Sarantopoulos, et al. The biocompatibility of titanium in a buffer solution:compared effects of a thin film of TiO2 deosited by MOCVD and of collagen deposited from a gel[J]. Journal of Materials Science:Materials in Medicine, 2007,18(10):2075-2083.
    [115]Ramji Karpagavalli, Anhong Zhou, Prithiviraj Chellamuthu, et al. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6A14V[J]. Journal of Biomedical Materials Research Part A,2007,83A(4):1087-1095.
    [116]Marshal Dhayal, Renu Kapoor, Pavana Goury Sistla, et al. Growth, differentiation, and migration of osteoblasts on transparent Ni doped TiO2 thin films deposited on borosilicate glass[J]. Journal of Biomedical Materials Research Part A,2012,100A (5):1168-1178.
    [117]Mrata Vandrovcova, Jan Hanus, Martin Drabik, et al. Effect of different surface nanoroughness of titanium dioxide films on the growth of human osteoblast-like MG 63 cells[J]. Journal of Biomedical Materials Research Part A,2012,100A(4):1016-1032.
    [118]Hsi-Kai Tsou, Ping-Yen Hsieh, Meng-Hui Chi, et al. Improved osteoblast compatibility of medical-grade polyetheretherketone using arc ionplated rutile/anatase titanium dioxide films for spinal implants[J]. Journal of Biomedical Materials Research Part A,2012,100A (10):2787-2792.
    [1]张媛娥.不同弓丝-结扎方式磨擦力的实验研究[D].青岛:青岛大学,2010.
    [2]司徒镇强,吴军正.细胞培养/2版[M].西安:世界图书出版西安有限公司,2007,1(2011,7重印)ISBN 978-7-5062-8396-0.
    [3]GB/T 16886.12-2005/ISO10993-12:2002,医疗器械生物学评价第12部分:样品制备与参照样品[S].
    [4]刘新强,张丁,孙志辉,等.托槽即刻粘接强度与24小时粘接强度的对比研究[J].口腔正畸学,2002,9(1):18-19.
    [5]Wang Xue, Xia Yang, Liu Laikui, et al. Comparison of MTT assay, flow cytometry, and RT-PCR in the evaluation of cytotoxicity of five prosthodontic materials[J]. J Biomed Mater Res B Appl Biomater,2010,95B(2):357-364.
    [1]Alok Girish Shah, Shetty P C, Ramachandra C S, et al. In vitro assessent of photocatalytic titanium oxide surface modified stainless steel orthodontic brackets for antiadherent and antibacterial properties against Lactobacillus acidophilus[J]. Angle Orthodontist,2011, 81(6):1028-1035.
    [2]Balenseifen J W, Madonia J V. Study of Dental Plaque in Orthodontic Patients[J]. Balenseifen and Madionia,1970,49(2):320-324.
    [3]Scott M. Behnan, Airton O. Arruda, Carlos Gonzalez-Cabezas, et al. In-vitro evaluation of various treatments to prevent demineralization next to orthodontic brackets[J] Am J Orthod Dentofacial Orthop,2010,138(6):712.e1-712.e7.
    [4]Ekaterini Paschos, Thomas Kleinschrodt, Tatiana Clementino-Luedemann, et, al. Effect of different bonding agents on prevention of enamel demineralization around orthodontic brackets [J]. Am J Orthod Dentofacial Orthop,2009,135(5):603-612.
    [5]Makiya Nishikawa, Sakulrat Rattanakiat, Yoshinobu Takakura. DNA-based nano-sized systems for pharmaceutical and biomedical applications[J]. Advanced Drug Delivery Reviews, 2010,62(6):626-632.
    [6]Nejand B A, Sanjabi S, Ahmadi V. Sputter deposition of high transparent TiO2-xNx/TiO2/ZnO layers on glass for development of photocatalytic self-cleaning application[J]. Applied Surface Science,2011,257(24):10434-10442.
    [7]Pan J, Leygraf C, Thierry D, at al. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering[J]. Journal of Biomedical Materials Research Part A,1997,35(3):309-318.
    [8]Evans P, Sheel D W. Photoactive and antibacterial TiO2 thin films on stainless steel[J]. Surface and Coatings Technology,2007,201(22-23):9319-9324.
    [9]Poma A M. Biocompatibility evaluation of TiO2 nanoparticles and thin films by meansof the murine macrophages RAW 264.7 cell line. Special Abstracts/Journal of Biotechology.2010, 150S:S1-S576.
    [10]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science,2001,293(5528):269-271.
    [11]Nicholas T. Nolan, Damian W Synnott, Michael K. Seery, et al. Effect of N-doping on the photocatalytic activity of sol-gel TiO2[J]. Journal of Hazardous Materials,2012, 211-212:88-94.
    [12]Xiong Yuqing, Wu Hao, Guo Yan, et al. Preparation and characterization of nanostructured silver thin films deposited by radio frequency magnetron sputtering[J]. Thin Solid Films, 2000,375(1-2):300-303.
    [13]Cristiana Di Valentin, Gianfranco Pacchioni, et al. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. J Phys Chem B, 2006,110:24011
    [14]Enrique A, Reyes-Garcia, Sun Yanping, et al.15N solid state NMR and EPR characterization of N-doped TiO2 photocatalysts[J]. J Phys Chem C,2007,111:2738.
    [15]Meng F M, Lu F. Chracterization and Photocatalytic Activity of TiO2 Thin Films Prepared by RF Magnetron sputtering[J]. Vacuum,2010,85(1):84-88.
    [1]樊明文.口腔生物学第2版[M].人民卫生出版社.2004,7,1.
    [2]Taher N M, A1 Jabab A S. Galvanic corrosion behavior of implant suprastrueture dental alloys[J]. Dental Materials,2003,19(1):54-59.
    [3]Grosgogeat B, Reclaru L, Lissac M, et al. Measurement and evaluation of galvanic corrosion between titaniunt/Ti6A 14V implants and dental alloys by electrochemical techniques and auger spectrometry[J]. Bio-materials,1999,20(10):933-936.
    [4]Horasawa N, Takallashi S, Marek M. Galvanic interaction between ti-tanium and gallium alloy or dental amalgam[J]. Dent Mater,1999,15(5):318-320.
    [5]Downing A, McCabe J F, Gordon P H. The effect of artificial saliva on the frictional forces between orthodontic brackets and archwires[J]. Journal of Orthodontic,1995,22(1):41-46.
    [6]Baker KL, Nieberg LG, Weimer AD, et al. Frictional changes in force values caused by saliva substitution[J]. Am J Orthod Dentofacial Orthop,1987,91(4):316-320.
    [7]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2003.
    [8]余凤斌,陈莹.磁控溅射对薄膜附着力的影响[J].绝缘材料,2008,41(6):41-44.
    [9]Thorstenson GA, Kusy RP. Resistance to sliding of self-ligating brackests versus conventional stainless steel twin brackets with second-order angulation in the dry and wet(saliva) states[J]. Am J Orthod Dentofacial Orthop,2001,120(4):361-370.
    [10]刘新强,张丁,孙志辉等.托槽即刻粘接强度与24小时粘接强度的对比研究[J].口腔正畸学,2002,9(1):18-19.
    [11]谢晓华,梁甲兴.影响托槽黏接强度的因素分析[J].医学综述,2006,12(18):1124-1126.
    [12]穆宏,刘学丽,吴永生,等.影响托槽粘结强度的因素[J].现代口腔医学杂志,2007,21(6):650-652.
    [13]G. Willems, C.E.L.Carels, G.Verbeke. In vitro peel/shear bond strength evaluation of orthodontic bracket base design[J]. Journal of Dentistry,1997,25(3-4):271-278.
    [14]殷桢,曲虹,等.不同托槽底板结构影响粘结质量的三维有限元分析[D].大连:大连医科大学,2011.
    [15]陈玉玲,张端强,吴维青,等.不同底板结构及黏接剂对托槽粘接强度的影响[J].福建医科大学学报,2006,40(3):259-262.
    [16]李国俊,赵乃勤,姚家鑫,等.奥氏体不锈钢低温退火强化机制的研究[J].物理测试,1990,4:15-17.
    [17]杨方敏,回士旭,高雷雷.奥氏体不锈钢的变形程度及再结晶退火对硬度性能的影响[J].河北理工大学学报(自然科学版),2011,33(1):67-71.
    [18]Yasuyuki lizuka, Naoki Kudou, Shigeru Tanaka, et al. Bond strength of an orthodontic bonding material and adhesion energy of artificial saliva to an experimental titanium bracket[J]. Orthodontic Waves,2011,70(1):21-26.
    [19]Selim A, Nursel A. Effects of thermocycling on the bond strength of a Resin-Modified Glass Ionomer Cement:An In Vitro Comparative Study[J]. Angle Orthodontist,2003,73(6):692-696.
    [20]宋志芸,陈中坚,邵胜,等.激光优化金属托槽与普通金属托槽剪切强度比较的研究[J].口腔医学,2010,30(3):143-145,163.
    [21]Mogi M. Study on the application of 4-META/MMA-TBB resin to orthodontics[J]. Jpn Orthod Soc,1982,41:260-271.
    [22]Reynolds I R. A review of direct orthodontic bonding[J]. Br J Orthod,1975,2:171-178.
    [23]Wang R, Hashimoto K, Fujishima A. Light-induced amphiphilic surfaces[J]. Nature,1997, 388:431-432.
    [24]程峰,李波,李小伙,等.医用NiTi形状记忆合金表面类金刚石薄膜的生物磨擦磨损性能研究[J].摩擦学学报,2006,26(6):525-529.
    [25]Qiu J, Yu W Q, Zhang F Q, et al. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing [J]. Eur J of oral science,2011, 119(1):93-101.
    [26]Schroeder H A, Balassa J J, Tipton I H. Abnormal trace metals inman-nickel[J]. Chron Disease 1962,15:51-62.
    [27]Myron D R, Zimmerman T J, Shuler T R, et al. Intake of nickel and vanadium by humans. A survey of selected dietsl-3[J]. Am. J. Clin. Nutr,1978,31:527-531.
    [1]Tufekci E, Dixon J S, Gunsolley J C, et al. Prevalence of white spot lesions during orthodontic treatment with fixed appliances[J]. Angle Orthod.2011,81 (2):206-210.
    [2]Bollen A M, Cunha-Cruz J, Bakko D W, et al. The effects of orthodontic therapy on periodontal health:a systematic review of controlled evidence[J]. J Am Dent Assoc.2008, 139(4):413-422.
    [3]Rosenbloom RG, Tinanoff N. Salivary Streptococcus mutans levels in patients before, during, and after orthodontic treatment[J]. Am J Orthod Dentofacial Orthop.1991,100(1):35-37.
    [4]Samir E. Bishara, Adam W. Ostby. White Spot Lesions:Formation, Prevention, and Treatment [J]. Seminars in Orthodontics,2008,14(3):174-182.
    [5]Heng H, Maness P C, Blake D M, et al. A Baetericidal mode oft itanium dioxide Photoeatalysis [J]. J Photochem Photobiol A, Chem,2000,130(2-3):163.
    [6]徐瑞芬,佘广为,许秀艳.复合涂料中纳米TiO2降解污染物和抗菌性能研究[J].化工进展,2003,22(11):1193-1195.
    [7]Saito T, Iwase T, Horie J, et al. Mode of Photocatalytic bactericidal action of Powdere-d semiconductor TiO2 on mutans streptococci[J]. J Photochem Photobiol B,1992,14 (4):369-379.
    [8]彭文爆,汤华钊,向晶晶.纳米TiO2抑菌机理研究[J].四川大学学报,2006,43(4):908-912.
    [9]Sawada T, Yoshino F, Kimoto K, et al. ESR detection of ROS generated by TiO2 coat-ed with fluoridated apatite[J]. J Dent Res,2010,89(8):848-853.
    [10]Ktlhn K P, Chabemy I F, Massholder K, et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light[J]. Chemosphere.2003,53(1):71-77.
    [11]Bin Liu,Yuhua Wang, Shu Yin, et al. TiO2/TiO2-xNy nanocomposite and its acetaldehyde photodecomposition ability[J]. Res Chem Intermed,2010,36(1):39-49.
    [12]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271.
    [13]Kleinegger C L, Lockhard S R, Vargas K, et al. Frequency, intensity species, and strainsofora Candida vary as a function of hostage[J]. J Clin Microbiol,1996,30(l):2246-2254.
    [14]樊明文.口腔生物学第2版[M].人民卫生出版社.2004,7,1.
    [15]曹平.光催化纳米TiO2在净化领域中的应用进展[J].洁净与空调技术,2006,2:21-24.
    [16]赵芙蓉,周晓琴,洪樟连,等.二氧化钛基光催化抗菌材料的研究进展[J].材料导报,2005,19(11):35-38.
    [17]McCullagh C, Robertson J M C, Bahnemann D W, et al. The application of TiO2 phot-ocatalysis for disinfection of water contaminated with pathogenic micro-organisms:a revi-ew[J]. Research on Chemical Intermediates,2007,33(3-5):359-375.
    [18]Matsunaga T, Tomoda T, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett,1985,29:211-214.
    [19]Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film[J]. J Photochem Photobiol A Chem,2003,156:227-233.
    [20]Maness P C, Smolinski S, Blake D M, et al. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism[J]. Applied and environmental microbiology, 1999,65(9):4094-4098.
    [21]Nadtochenko, VA, AG Rincon, SE Stanca and J. Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FT1R spectroscopy and AFM microscopy[J]. Photochem Photobio A Chem.2005,169:131-137.
    [22]Nadtochenko V, Denisov N, Sarkisov O et al. Laser kinetic spectroscopy of the interfa-cial charge transfer between membrane cell walls of E. coli and TiO2[J]. J Photoche-m Photobiol A Chem,2006,181:401-407.
    [23]Ogino C, Farshbaf Dadjour M, Takaki K, et al. Enhancement of sonocatalytic cell lys-is of Escherichia.coli in the presence of TiO2 [J]. Biochemical Engineering Journal,2 006,32(2):100-105.
    [24]马绪荣,苏德模.药品微生物检测手册[M].北京:科学出版社出版,2000.
    [25]魏鸿刚,李元广,刘健,等.一种快速的活菌计数新方法研究[J].微生物学通报,2002,29(2):89-93.
    [1]郝和平.医疗器械生物学评价标准 实施指南[s].北京:中国标准出版社,2002:55-155.
    [2]Kneser U, Voogd A, Ohnolz J, et al. Fibrin gel-immobilized primary osteoblasts in cal-cium phosphate bone cement:in vivo evaluation with regard to application as injectabl-e biological bone substitute[J]. Cells Tissues Organs,2005,179(4):158-169.
    [3]罗毅,李奇,林荔军,等.新型多孔型磷酸钙骨水泥骨内移植的生物学特点:生物相容性、骨传导性及可降解性[J].中国组织工程研究与临床康复,2007,11(18):3496-3499.
    [4]孙明林,胡蕴玉,贾新斌,等.磷酸钙骨水泥/骨形态发生蛋白复合人工骨的生物相容性[J].第四军医大学学报,2001,22(11):1006-1009.
    [5]Long T C, Tajuba J, Sama P, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro[J]. Environ Health Perspect,2007,115(11):1631-1637.
    [6]Lu Zhe-Xue, Zhou Lei, Zhang Zhi-Ling, et al. Cell damage induced by photocatalysis of TiO2 thin films[J]. Langmuir,2003,19(21):8765-8768.
    [7]P. Amezaga-Madrid, R. Silveyra-Morales, L. Cordoba-Fierro, et al. TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films [J]. J Photochem Photobiol B,2003,70(1):45-50.
    [8]朱融融,汪世龙,陈小平,等.纳米二氧化钛对卵巢肿瘤细胞的选择性凋亡的诱导作用[J].化学学报,2006,64(21):2161-2164.
    [9]Yuzuki Nakagawa, Shinobu Wakuri, Kyoko Sakamoto, et al. The photogenotoxicity of titanium dioxide particles[J]. Mutation Research,1997,394(1-3):125-132.
    [10]Kazutaka Hirakawa, Masafumi Mori, Mami Yoshida, et al. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide[J]. Free Radical Research,2004,38(5):439-447.
    [11]Gurr J R, Wang A S S, Chen C H, et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells[J]. Toxicology,2005,213(1-2):66-73.
    [12]Jing J. Wang, Barbara J.S. Sanderson, He Wang, et al. Cyto- and genotoxicity of ultr-afine TiO2 particles in cultured human lymphoblastoid cells[J]. Mutation Research, 2007,628(2):99-106.
    [13]Wang Jiangxue, Zhou Guoqiang, Chen Chunying, et al. Acute toxicity and biodistribu-tion of different sized titanium dioxide particles in mice after oral administration[J]. Toxicology Letters,2007,168(2):176-185.
    [14]Noreen Parks. New Nano-headache[EB/OL]. [2006-6-15]. http://news.sciencemag.org/sc-iencenow/2006/06/15-01.html
    [15]Afaq F, Abidi P, Matin R, et al. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide[J]. J Appl Toxicol,1998,18(5):307-312.
    [16]Zhang Q W, Kusaka Y, Sato K, et al. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals:Role of free radicals[J]. Toxicol Environ Health A,1998,53(6):423-438.
    [17]Bermudez E, Mangum J B, Wong B A, et al. Pulmonary response of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles[J]. Toxicol Sci, 2004,77(2):347-357.
    [18]Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats[J]. Am J Respir Cell Mol Biol,1992,6:535-542.
    [19]G Oberdorster, J Ferin, B E Lehnert. Correlation between particle sizes, in vivo particle persistence, and lung injury [J]. Environ Health Perspect,1994,102(5): 173-179.
    [20]王燕,康现江,丁士文,等.纳米二氧化钛对小鼠肝肾的影响[J].环境与健康杂志,2008,25(2):112-114.
    [21]范轶欧,张颖花,刘冰,等TiO2、SiO2、Fe纳米及微米粉体对红细胞毒性作用的比较[J].中国工业医学杂志,2005,18(2):67-69.
    [22]郑丽舒,金一和,张颖花.二氧化钛纳米颗粒和雌二醇对小鼠子宫脏器系数和过氧化物酶活性的影响[J].中国工业医学杂志,2002,15(2):83-84.
    [23]ISO(E) Dentistry-Evaluation of biocompatibility of medical devices used in dentist-ry[S].2008:7405.
    [24]Mossman T. Rapid colorimetric assay for cellular growth and survival:Application to proliferation and cytotoxic assays[J]. J Immunol Meth,1983,65:55-63
    [25]Wang X, Xia Y, Liu L K, et al. Comparison of MTT assay, flow cytometry, and RT-PCR in the evaluation of cytotoxicity of five prosthodontic materials[J]. J Biomed Mater Res B:Appl Biomater,2010,95B(2):357-364.
    [26]Zhang Dan, Zhang Yang, Lu Li, et al. Cytotoxicity of a new type of antibiotic stainl ess micro-screw implant [J]. Journal of Clinical Rehabilitative Tissue Engineering Rese-arch.2010,14(16):2916-2920.
    [27]张林,庞小峰.纳米二氧化钛的细胞增殖效应及其安全性[J].生命科学仪器,2007,5:54-56.
    [28]Boyan B D, Hummert T W, Dean D D, et al. Role of material surfaces in regulating bone and cartilage cell response [J]. Biomaterials,1996,17(2):137-146.
    [29]Baraba A, Zeljezic D, Kopjar N, et al. Evaluation of cytotoxic and genotoxic effects of two resin-based root-canal sealers and their components on human leucocytes in vitro[J]. International Endodontic Journal,2011,44(7):652-661.
    [30]Miura K K, Ito I Y, Enoki C, et al. Anticariogenic effect of fluoride-releasing elasto-mers in orthodontic patients[J]. Brazilian Oral Research,2007,21(3):228-233.
    [31]Wang J X, Zhou G Q, Chen C Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration[J]. Toxicity Lett,2007, 168:176-185.
    [32]刘冬生,翁景宁TiO2/PMMA人工晶状体的制备及动物安全性评价[J].国际眼科杂志,2008,8(8):1533-1535.
    [33]Warheit D B, Hoke R A, Finlay C, et al. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management J]. Toxicology Letters.2007,171 (3):99-110.
    [34]Simona Popescu, Ioana Demetrescu, Christos Sarantopoulos, et al. The biocompatibility of titanium in a buffer solution:compared effects of a thin film of TiO2 deosited by MOCVD and of collagen deposited from a gel[J]. Journal of Materials Science:Materials in Medicine, 2007,18(10):2075-2083.
    [35]Ramji Karpagavalli, Anhong Zhou, Prithiviraj Chellamuthu, et al. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6A14V[J]. Journal of Biomedical Materials Research Part A,2007,83A(4):1087-1095.
    [36]Marshal Dhayal, Renu Kapoor, Pavana Goury Sistla, et al. Growth, differentiation, and migration of osteoblasts on transparent Ni doped TiO2 thin films deposited on borosilicate glass[J]. Journal of Biomedical Materials Research Part A,2012,100A (5):1168-1178.
    [37]Mrata Vandrovcova, Jan Hanus, Martin Drabik, et al. Effect of different surface nanoroughness of titanium dioxide films on the growth of human osteoblast-like MG 63 cells[J]. Journal of Biomedical Materials Research Part A,2012,100A(4):1016-1032.
    [38]Hsi-Kai Tsou, Ping-Yen Hsieh, Meng-Hui Chi, et al. Improved osteoblast compatibility of medical-grade polyetheretherketone using arc ionplated rutile/anatase titanium dioxide films for spinal implants[J]. Journal of Biomedical Materials Research Part A,2012, 100A (10):2787-2792.
    [39]Long T C, Tajuba J, Samp, et al. Nanosize titanium dioxide geimulates reactive oxygen species in brain microglia and damages neurons in viro[J]. Envion Health perspect,2007, 115(11):1631-1637.
    [40]朱融融,汪世龙,陈小平等.纳米二氧化钛对卵巢肿瘤细胞的选择性凋亡的诱导作用[J].化学学报,2006,64(21):2161-2164.
    [41]Hirakawa K, Mori M, Yoshidam, et al. Photo-irradiated titanium dioxide catalyze site specific DNA damage ria generation of hydrogen peroxide[J]. Free Radic Res,2004,38(5):439-447.
    [42]Wang J J,Sanderson B J S, Wang H. Cyto-and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells[J]. Mutation Research,2007,628(2):99-106.
    [43]Wang Jiangxue, Zhou Guoqiang, Chen Chunying, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration[J].Toxicology letters,2007,168(2):176-185.
    [44]Gunter Oberdorster, Eva Oberdorster, Jan Oberdorster. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health perspectives, 2005,113(7):823-839.
    [45]Borm P J A, Kreyling Wolfgang. Toxicological Hazards of Inhaled Nanoparticle-Potential Implications for Drug Delivery[J]. Nanoscience Nantechnology,2004,4(5):521-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700