用户名: 密码: 验证码:
Mg-RE基稀土镁合金组织、性能与腐蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土镁合金具有重量轻、比强度高、屏蔽性能好、抗冲击减震性优良,以及较优良的耐热性能,得到了较广泛地研究和应用,成为研究的热点,但其耐腐蚀性较差,工程化应用范围受到了限制,因此提高镁合金的抗腐蚀性能十分重要。本文采用电感耦合等离子直读光谱仪、光学显微镜、带能谱分析的扫描电子显微镜、X射线衍射仪、力学性能试验机、电化学测试系统等分析手段,分别研究了稀土元素Y对Mg-Y系合金在铸态、均匀化处理态、挤压态和时效态的显微组织、力学性能、腐蚀速率、腐蚀形貌、开路电位、极化曲线、阻抗频谱等的变化规律。
     铸态合金晶粒尺寸随Y元素含量的增加由1100μm减小到约180μm;均匀化处理后,Mg-(0.25,2.5,5和8)Y中的第二相基本上全部溶入基体中,而Mg-15Y则残存有大量的Mg24Y5相。随着Y元素含量的增加,Mg-Y合金的晶粒明显细化,Mg-0.25Y与Mg-2.5Y的微观组织为单一的α-Mg相,Mg-5Y、Mg-8Y与Mg-15Y的微观组织为α-Mg相和沿晶界呈骨骼状分布的共晶组织Mg24Y5相;随着Y含量的增加,不同状态下合金的抗拉强度增加,仲长率下降。
     确定了合金的均匀化处理工艺:(1)525℃均匀化处理时:Mg-0.25Y、Mg-2.5Y、 Mg-5Y、Mg-8Y、Mg-15Y的均匀化时间为:2h、2h、4h、10h和28h;(2)535℃均匀化处理时:Mg-0.25Y、Mg-2.5Y、Mg-5Y、Mg-8Y、Mg-15Y的均匀化时间为:2h、2h、2h、6h和24h,以及Mg-(0.25,2.5,5,8和15)Y合金在250℃峰时效时的时间:4h、6h、10h、12h和16h,此处理工艺可作为制定均匀化或时效处理工艺的依据。
     不同状态下的Mg-(0.25,2.5,5,8和15)Y合金在3.5%NaCl溶液中的动电位极化曲线显示五种镁合金的点蚀点电位都比它们各自的自腐蚀电位要负,说明五种镁合金在NaCl溶液中均能自发的产生局部腐蚀。随着Y含量的提高,不同状态下合金的自腐蚀电位和开路电位呈现出先正向移动后负向移动的规律,且以2.5%Y合金的自腐蚀电位和开路电位最正。五种合金极化曲线的形状类似,阳极电流都上升得比较快,且都不对称,阳极分支斜率大于阴极分支斜率,表明阴极过程在腐蚀反应中发挥更重要作用。
     不同状态下Mg-(0.25,2.5,5,8和15)Y合金的阻抗频谱都由一个高频容抗环和一个中低频容抗环组成,随着Y含量的增大,高频容抗弧的半径明显增大,当Y含量达到2.5%时达到最大,当Y含量继续增加时,高频容抗弧半径减小,并且Mg-(2.5,5,8和15)Y合金大于Mg-0.25Y合金高频容抗弧半径,这说明合金的耐蚀性随着Y含量的增加先提高后降低。根据电化学反应过程及阻抗分析理论,得出不同状态下Mg-(0.25,2.5,5,8和15)Y合金阻抗频谱曲线的等效电路:一个溶液电阻Rs,一个腐蚀膜阻抗RF,一个电荷传递电阻Rt、一个电感L和一个常相位角元件CPE。通过阻抗谱分析显示Mg-(0.25,2.5,5,8和15)Y合金的腐蚀阻抗Rt(Mg-0.25Y)     不同状态下Mg-(025,2.5,5,8和15)Y合金的腐蚀过样分为三个阶段:腐蚀初期、腐蚀中期、腐蚀后期,合金的腐蚀失重速率递减的顺序为Mg-0.25Y     根据不同状态下Mg-(0.25,2.5,5,8和15)Y合金在3.5%NaCl溶液中的腐蚀行为和腐蚀形貌,建立了Mg-(0.25,2.5,5,8和15)Y合金腐蚀的腐蚀动力学模型模型、腐蚀机理模型和点蚀形成模型:合金中的α-Mg基体与β-Mg24Y5第二相粒子或富含Y的共晶体存在电势差,在溶液中产生电偶腐蚀,β-Mg24Y5第二相稀土粒子或富含Y共晶体是诱发点蚀的根源:Mg-(0.25和2.5)Y合金腐蚀机理模型是均匀腐蚀,Mg-(8和15)Y合金腐蚀机理模型是点蚀,Mg-5Y均匀化处理后腐蚀机制由点蚀转变为均匀腐蚀,在其他状态仍为点蚀。
     Mg-Y合金在挤压过程中承受较大的三向压应力,发生动态再结晶,晶粒明显细化,晶粒排列除宏观的带状排列外,微观上有择优取向,而垂直于挤压方向的晶粒则任意排列。纵断面的耐蚀性能优于横断面,性能优于横断面,挤压比提高可以提高合金的耐蚀性能。
     Mg-(0.25.2.5,5,8和15)Y合金的主要腐蚀产物是Mg(OH)2,以及少量的Mg2(OH)3Cl.4H20。
     Mg-(0.25,2.5,5,8和15)Y合金的耐蚀性能递增顺序为:铸态<热处理态<时效态<挤压态。
Magnesium containing RE alloy with the excellent characteristics of light weight, high strength, shielding performance, excellent impact shock absorption and heat resistance, et al, has been extensively studied and applied. However, its poor corrosion resistance limits the large-scale application in the engineering field, so how to improve the corrosion resistance of magnesium alloy is very important and has drawn great attention at home and abroad. In this paper, inductively coupled plasma direct-reading spectrometer, optical microscopy, scanning electron microscopy with energy spectrum, X-ray diffraction, mechanical testing machine, electrochemical test systems and other analytical tools were adopted to research on the changing rules of Y on the microstructures, mechanical properties, corrosion rates, corrosion morphologies, the open-circuit potentials, polarization curves, et al for the Mg-Y alloys in as-cast, homogenization state, squeezed state and aged state.
     The grain size of as-cast Mg-Y alloy reduced to about180μm from1100μm with increasing Y content. After the homogenization treatment, the second phases of Mg-(0.25,2.5,5and8)Y alloys dissolved into substrate substantially, but there were a large number of Mg24Y5phase of Mg-15Y remained on the grain boundaries. The grain size significantly refined with the increase in the content of the Y elements. The microstructures of Mg-0.2Y and Mg-2.5Y were consisted of the single a-Mg phases, and the microstructures of Mg-5Y, Mg-8Y and Mg-15Y had the a-Mg phases and the bone-shaped eutecticsβ-Mg24Y5phases along the grain boundaries. With increasing Y content, the tensile strength and elongation of Mg-Y alloy with different states increased and decreased respectively.
     The optimum heat treatment processes were determine through series of experiments:the treatment homogenized at525℃of Mg-0.25Y Mg-2.5Y, Mg-5Y, Mg-8Y, Mg-15Y were2h,2h,4h,8h and28h respectively, the treatment homogenized at535℃of Mg-0.25Y Mg-2.5Y, Mg-5Y, Mg-8Y, Mg-15Y were2h,2h,2h,6h and24h respectively, the peaking treatment aged at250℃of Mg-0.25Y Mg-2.5Y, Mg-5Y, Mg-8Y, Mg-15Y were4h,6h,10h,12h and16h. The treatment processes could act as the basis for drafting the homogenization and aging treatment process.
     According to the potentiodynamic polarization curves, the pitting point potentials were positive than the self-corrosion potentials of Mg-(0.25,2.5.5.8and15)Y of different states in3.5%NaCl solution, which stated that the alloys could generate localized corrosion spontaneously. With the increase of the Y content, the corrosion potential and open-circuit potentials of different states alloys moved positively first, then moved positively, and corrosion potential and open-circuit potentials of Mg-2.5Y alloy had the highest values.'The polarization curves of different alloys in the different states had the similar shape, and the anode current rise faster than the cathodic current. The anode and cathode branches of polarization curves were asymmetric. The anode branch slopes were greater than that of the cathode branch, indicating that the cathodic process played a more important role in the corrosion reaction.
     The impedance spectroscopies of Mg-(0.25,2.5,5,8and15) Y alloy in different states were consisted of a high-frequency capacitance and a low-frequency capacitance, with the increase of the Y content, the radius of high-frequency capacitive arc increased apparently, and the radius reached the maximum value when the Y content was up to2.5%. but the radius of high-frequency capacitive arc decreased when Y content continued to increase above2.5%, which indicated that the corrosion resistance of the alloy increased first increased and then decreased with increasing of Y content. According to the theory of electrochemical reaction process and impedance analysis, the equivalent circuit of impedance spectrum curve of Mg-(0.25,2.5,5.8and15) Y alloys in different states was consisted of a solution resistance Rs, a corrosion film resistance Rf, a The charge transfer resistance Rt, an inductor L and a constant phase angle element CPE. The analysis of impedance spectroscopy analysis showed that the corrosion resistance decreased progressively as following: Rt (Mg-0.25y)     The corrosion processes of Mg-(0.25,2.5,5.8and15)Y alloys in different states could be divided into three stages: the initial stage of corrosion, corrosion interim and the late stage of corrosion. According to weight loss, the corrosion rate of Mg-(0.25,2.5,5,8and15)Y alloys in different states decreased progressively as following: Mg-0.25Y     According to the corrosion behavior and corrosion morphology of Mg-(0.25,2.5,5,8and15)Y alloys in different states in3.5%NaCl solution, the corrosion kinetics model, the corrosion mechanism model and pitting formation model were established. The potential difference of α-Mg and β-Mg24Y5phases produced the galvanic corrosion in the solution, and the β-Mg24Y5phases were the origins of pitting corrosion. The corrosion mechanism model of Mg-(0.25,2.5)Y alloys and Mg-(8and15)Y alloy were the uniform corrosion, pitting and localized corrosion. After the homogenization treatment, the corrosion mechanism model of Mg-5Y became to the uniform corrosion from the localized corrosion in other state.
     Mg-Y alloy withstand the three-dimensional stress during the extrusion process, and the extrusion was accompanied by the occurrence of dynamic recrystallization and the grain refinement. After extrusion, the grains rearranged on the preferred orientation of the direction of extrusion, and the grains arranged in any order perpendicular to the squeeze direction. The corrosion resistance of the longitudinal section was better than that of the transverse section, and the corrosion resistance of the alloys improved with increasing of the extrusion ratio.
     The main corrosion products of Mg-(0.25,2.5,5,8and15)Y alloys were Mg (OH)2and small amounts of Mg2(OH)3Cl·4H20in the corrosion process.
     The corrosion resistance of Mg-(0.25,2.5,5.8and15)Y alloys increased progressively as following:cast
引文
[1]丁文江.镁合金科学与技术[M].北京:北京科学岀版社,2007:4-7.
    [2]B.L.Niardike, T. Ebert. Magnesium:Properties-applications-potential[J]. Material Science and Engineering A,2001, A302:37-45.
    [3]Kojiman Y. Project of platform science and technology for advanced magnesium alloys [J]. Materials Transaction,2001,42(7):1154-1159.
    [4]曾荣昌,柯伟.Mg合金的最新发展及应用情景[J].金属学报,2001,37(7):673-685.
    [5]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:1-4.
    [6]陈振华.耐热镁合金[M].化学工业岀版社,2007.
    [7]王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属,2004,7:8-12.
    [8]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006:4-12.
    [9]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:6-13.
    [10]Polmer I. J.. Magnesium Alloy sand Applications[J]. Materials Science and Technology,1994(10):1-7.
    [11]Lyon P, King J F, Fowler G A. Developments in magnesium based materials and process [J]. J Eng Gas Turbines Power Trans ASME,1993,115(1):193-199.
    [12]Eliezer D, Aghion E, Fores F H. Magnesium science, technology and applications [J]. Advanced Performance Materials,1998(5):201-212.
    [13]A. Saccone, D. Maccio, S. Delfino, et al. Rare Earth Metalls in Light Alloys[J]. Journal of Alloy and Compound,1995,220(1):161-166.
    [14]陈振华.镁合金[M].北京:化学工业出版社,2004:6-12.
    [15]Minglong Ma, Kui Zhang, Xinggang Li, et al. The hot deformation behavior of as-cast Mg-7Gd-5Y-1.2Nd-Zr magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2008,18(s1):132-139.
    [16]D.L.Hawke, J.E.Hillis, M.Pekguleryuz, et al. Magnesium and Magnesium Alloys[M], ASM Handbook,ed. M.M. Avedesian and H.Baker, ASTM Inter.,Materials Park, OH,1999:94-210.
    [17]G.Song, A.Atrens. Proceeding on Advanced Engineering Materials[C],5(12), Weinheim, Germany,2003:837-858.
    [18]Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corosion in sodium sulfate solutions[J], Journal of the Electrochemical Society,2007,154(2):C108--C113.
    [19]Yamasaki M, Hayashi N, Izumi S, et al. Corrosion behavior of rapidly solidified Mg-Zn-rare earth element alloys in NaCl solution [J]. Corrosion Science. 2007, 49: 255-262.
    [20]K. U. Kainer, P. Bala Srinivasan, C. Blawert. et al. Corrosion of Magnesium and its Alloys. Non-Ferrous Metals and Alloys[M], Elsevier B.V., 2010: 2011-2039.
    [21]Edgar. R.L., Global overview on demand and application for magnesium alloys[C], Proceeding on magnesium alloy and their application, ed. K. U. Kainer. WILEY-VCH, Weinheim, Germany, 2000: 3-8.
    [22]R. Tunold, M. Holtan, M. B. Hagg-Berfe, et al. The corrosion of magnesium in aqueous solution containing chloride ions[J]. Corrosion Science. 1977. 17: 353-365.
    [23]G. L. Makar, J. Kruger. A. Joshi. The effect of alloying elements on the corrosion resistance of rapidly solidified magnesium alloys[C]. Advances in Magnesium Alloys and Composites, International Magnesium Association and the Non-Ferrous Metals Committee. TMS, Phoenix. Arizona, January 26. 1998: 105-121.
    [24]S.Krishnamutthy,E.Robertson, F.H.Fores.Proceeding on Advances in Magnesium Alloys and Composites[M].ed. H. Paris and W.H.Hund. Tms, Weinheim.1988: 77-88.
    [25]G.L.Maker. J.Kruger, A.Joshi, Proceeding on Advances in Magnesium Alloys and Composites[M],ed.H. Paris and W.H.Hund, Tms. Weinheim. 1988: 102-121.
    [26]B.M.Carlson and J.W.Jones. Proceeding on Light Metals Proceeding and Applications[C]. Metsoc Conference. Quebec, 1993: 833-847.
    [27]Nordlien J H, Nisancioglu K. Ono S. et al. Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water [J]. Journal of Electrochemical Society. 1996.143:2564.
    [28]李晓刚,董超芳,肖葵,等.金属大气腐蚀初期行为与机理[M].北京:科学出版社,2009年:12-15.
    [29]Nordlien J H, Ono S, Masuko N. A TEM investigation of naturally formed oxide films on pure magnesium [J]. Corrosion Science, 1997, 39: 1397-1414.
    [30]Song G. L., A. Atrens. Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corrosion Science, 1998,40 (10): 1769-1791.
    [31]G. Song, A. Atrens. Proc. Magnesium Alloys, Corrosion of Non-ferrous Alloys[C],ed. R.W.Cahn, P.Haasen and E.J. Kramer, Material Science And Technology, New York, 2000: 131-171.
    [32]林翠,李晓刚,李明,等.Mg合金AZ91D在城市大气环境中的腐蚀行为[J].金属学报.2004,40(2):191-196.
    [33]D.L. Hawke, J.E. Hillis, M.Pekguleryuz, et al. Magnesium and Magnesium Alloys[M], ASM Handbook, ed. M.M. Avedesian and H. Baker, ASTM Inter., Materials Park, OH,1999:194-210.
    [34]A.Froats, T.K.Aune, D.Hawke, et al. Corrosion Metals Handbook[M]. Vol.13,9th ed. ASM Inter., Ohio Metals Park, USA,1987:740-754.
    [35]E.E.Emley. Priciples of Magnesium Technology[M], ed. Pergamon Press, New York, 1966.
    [36]E.Ghali. Magnesium and Magnesium Alloys[M], Uhlig's Corrosion Handbook, ed. R.W. Revie, John Wiley, New York,2000:793-830.
    [37]朱祖芳.有色金属腐蚀性及其应用[M].北京:化学工业出版社,1995:23-34.
    [38]Hillis, J. E. The effects of heavy metal contamination on magnesium corrosion performance[P]. SAE Technical Paper No.830523. Detroit,1983.
    [39]G. Song, B. Johannesson, S. Hapugoda, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminum alloy steel and zinc[J]. Corrosion Science,2004, 46:955-977.
    [40]D. L. Hawke, J. E. Hillis, M. Pekguleryuz, et al. Magnesium and Magnesium Alloys[M], ASM Handbook, ed. M.M. Avedesian and H.Baker, ASTM Inter., Materials Park, OH,1999:194-210.
    [41]Y. L. Huang, C. N. Cao, M. Lu, et al. Inhibition effects of I-and I2 on stress-corrosion cracking of stainless steel in acidic chloride solutions[J]. Corrosion,1993,49 (8): 644-649.
    [42]卫英慧,许并社.镁合金腐蚀防护的理论与实践[M].北京:冶金工业出版社,2007:34-38.
    [43]G. L. Song, C. N. Cao. On the linear response of a passivated metallic electrode to potential step perturbation[J]. Corrosion Science,1992,33 (3):413-423.
    [44]Lunder O, Aune T K, Nisanciogl U K. Effect of Mn additions on the corrosion behavior of mould cast magnesium ASTM AZ91[J]. Corrosion,1987,43(5):291-295.
    [45]C. Kirby. Galvanic and crevice corrosion effects in Magnox A180 alloy[J]. Corrosion Science,1987,27(6):567-573.
    [46]S. M. Sharl, C. P. Jackson, A. J. Diver. A finite-Element model of the propagation of corrosion crevices and pits[J]. Corrosion Science,1989,29(9):1149-1166.
    [47]MAKER G L, KRUGER J. Corrosion of magnesium[J]. International Material Review,1993,38:138-153.
    [48]Makar G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloy[J]. Journal Electrochemical Society,1990,137(2):414-421.
    [49]宋光玲,曹楚南.林海潮,等.钝化金属电极恒电位阶跃线性响应分析研究[J].中国腐蚀与防护学报,1991,14(3):209-216.
    [50]曾荣昌,韩恩厚,柯伟.镁合金AZ80-T5的晶间腐蚀研究[C].第四届全国腐蚀大会,北京,2003:282-284.
    [51]刘英.李元元,张卫文、等.镁合金疲劳的研究进展[J].材料导报,2005.19(2):87-89.
    [52]W.S. Loose. In Magnesium and Magnesium Alloy. 1st ed. Corrosion Handbook. H.H. Uhlig. The Electrochemical Socicty[M], ed. lohn Wiley NY, 1967: 218-251.
    [53]C.L. Zeng, W. Wang, W.T. Wu. Electrochemical impedance models for molten salt corrosion[J]. Corrosion Science, 2001,43: 787-801.
    [54]Eliezer A, Gutman E M, Abramov E, et al. Corrosion fatigue of die cast and extruded magnesium alloys[J]. Journal of Light Metals, 2001, 1: 179-186.
    [55]V. Mitrovic Scepanovic, R. J. Brigham. Localized corrosion initiation on magnesium alloylJ]. Corrosion, 1992,48(9): 780-784.
    [56]Robert A. Rapp. Hot corrosion of materials: a fluxing mechanism[J]. Corrosion Science, 2002,4: 209-221.
    [57]李冠群,吴国华,樊昱,等.主要合金元素对镁合金组织及耐蚀性能影响[J].铸造技术,2006.29(1):79-83.
    [58]A. Froats, T.K. Aune, W. Unsworth. Corrosion of Magnesium and Magnesium Alloys, Corrosion[M]. ASM Handbook, ASM International, 1987: 740-754.
    [59]Sonf G, Atrens A. Corrosion mechanisms of magnesium alloys[J]. Advance Engineering Materials, 1999,1: 11-33.
    [60]Akavipat S, Hale E B, Habermann C E, et al. Effects of iron implantation on the aqueous corrosion of magnesium[J]. Materials Science and Engineering A. 1984, 69: 311-316.
    [61]闵学刚,孙扬善,杜温文,等Ca、Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报(自然科学版),2002,32(3):409-414.
    [62]Reichek K N. Controlling the salt water corrosion performance of magnesium AZ91 alloy[R]. SAE Technical Paper 850417, Detroit, 1985.
    [63]张文毓.耐蚀镁合金研究与应用[J].轻金属,2007,8:40-43.
    [64]张诗昌,段汉桥,蔡启舟,等.主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):310-314.
    [65]王益志.杂质对高纯镁合金耐蚀性的影响[J].铸造,2001,2(50):61-65.
    [66]Guangling Song, Amandal Bowles, et al. Corrosion resistance of aged die cast magnesium alloy AZ91D[J]. Materials Science and Engineering A,2004,366:74-86.
    [67]Guangling Song, Andrej Atrens, Matthew Dargusch. Influence of microstructure on the corrosion of diecast AZ91D[J]. Corrosion Science,1999,41:249-273.
    [68]O. Lunder, J.E. Lein, T. Kr. Aune, et al.The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91[J]. Corrosion,1989,45(9):741-748.
    [69]S. Mathieu, C. Rapin, J. Hazan, et al. Corrosion Behavior of High Pressure Di-cast and Semi-solid Cast AZ91D Alloys[J]. Corrosion Science,2002(44):2737-2756.
    [70]Guangling Song, Andrej Atrens, Xianliang Wu, et al. Corrosion Behavior of AZ21, AZ51,and AZ91 in Sodium chloride[J]. Corrosion Science,1998,40(10):1769-1791.
    [71]程英亮,陈振华,王慧敏,等.镁合金的腐蚀与防护研究进展[J].机械工程材料,2005,29(5):1-4.
    [72]樊昱,吴国华,丁文江:,等.Ca对镁合金显微组织、力学性能和腐蚀性能的影响[J].中国有色金属学报,2005,(15)2:210-216.
    [73]WEI Liuying. Development of microstructure in cast magnesium alloys [D]. Gotebory: Chalmers University of Technology,1990.
    [74]SONG G. Recent progress in corosion and protection of magnesium alloys[J]. Advance Engineering Materials,2005,7(7):563-586.
    [75]Eliezer D, Uzan Aghion E. Effect of second phases on the corrosion behavior of magnesium alloys[J]. Material Science Forum,2003,419-422:857-866.
    [76]ZHOU Wanqiu, SHAN Dayong, HAN Enhou, et al. Effect of T4 and T6 treatment on corrosion of, die cast AZ91D magnesium alloys in 3.5% NaCl[J], Transaetious of Nonferrous Metals Society of China,16(2006):s1793-s1797.
    [77]李冠群,吴国华,樊昱,等.镁合金的腐蚀研究现状与防护途径[J],材料导报,2005,19(11):60-64.
    [78]余琨,黎文献,李松瑞,等.含稀土镁合金的研究与开发[J].特种铸造及有色合金,2002,专刊:314-316.
    [79]E. D. M orales, E. Ghali.Corrosion Behaviour of Magnesium Alloys with RE Additions in Sodium Chloride Solutions[J], Materials Science Forum,2003:867-872.
    [80]I. Nakatsugawa, S. Kamado, Y. Kojima, et al. Corrosion of magnesium alloys containing rare earth elements[J], Corrosion Review,1998,16(1/2):139-158.
    [81]刘楚明,葛位维,李慧中,等.Er对铸态AZ91镁合金显微组织和耐腐蚀性能的影响[J].中国有色金属学报,2009,19(5):847-853.
    [82]丁文江,向亚贞,常建卫,等Mg-Al系和Mg-RE系合金在NaCl溶液中的腐蚀电化学行为[J].中国有色金属学报,2009,19(10):1713—1719.
    [83]Lee Sunghk, Lee Seung-Hyuk, Klm Do-Hyang. Effect of Y, Sr, and Nd additions on the microstructure and microstructure mechanism of squeeze-cast AZ91-x magnesium alloys [J]. Metall Mater Trans, 1998, 29A: 1221-1226.
    [84]Xin ZHANG. Kui ZHANG, Xia DENG, et al. Corrosion behavior of Mg-Y alloy in NaCl aqueous solution[J]. Progress in Natural Science: Materials International, 2012, 22(2): 169-174.
    [85]LI Zhuoqun, SHAN Dayong, CHEN Rongshi.et al. Corrosion behavior of WE54 magnesium alloy in 3.5%NaCl solution[J]. Transaction of Nonferrous Metals society of China, 16(2006): s1806-s1809.
    [86]A.J. Davenport, C. Padovani, B.J. Connolly, et al. A. Groso and M. Stampanoni, Synchrotron X-ray microtomography study of the role of Y in corrosion of magnesium alloy WE43[J]. Electrochemical Solid-State Letters, 2007, 10: C5-C8.
    [87]Xin ZHANG, Kui ZHANG. Xinggang LI. et al. Corrosion and electrochemical behavior of as-cast Mg-5Y-7Gd-lNd-0.5Zr magnesium alloys in 5% NaCl aqueous solution[J]. Progress in Natural Science: Materials International, 2011, 21(4): 314-321.
    [88]K.L. Heidersbach. An evaluation of the corrosion performance of Mg-Y and Y-Mg nonequilibrium alloys[D]. Ph.D. Thesis in Engineering Science and Mechanics, The Pennsylvania State University. University Park. PA. 1998.
    [89]J.F. King, S. Thistlethwaitc. New corrosion resistant wrought magnesium alloy, in: M. Barry, L.F. Hehmann (Eds.), Magnesium Alloys and Their Applications DGM[M], Garmisch-Partenkirchen, FRG, 1992: 327-334.
    [90]W. Unsworth, J. King. New high performance casting alloy deveIoped[J]. Metallurgia, 1986,53: 199-200.
    [91]J.F. King, G.A. Fowler. P. Lyon, A. High Strength, Corrosion resistant magnesium alloy, in: E.W. Lee, N.J. Kim (Eds.), Light Weight Alloys for Aerospace Applications II[M], TMS, New Orleans, LA, 1991:423-438.
    [92]A.J. Davenport, C. Padovani, B.J. Connolly, et al. Synchrotron X-ray microtomography study of the role of Y in corrosion of magnesium alloy WE43[J]. Electrochem. Solid-State Lett, 2007,10: C5-C8.
    [93]Jinghuai Zhang, Xiaodong Niu, Xin Qiu, et al. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy[J]. Journal of Alloys Compounds, 2009,471(1-2, 5): 322-330.
    [94]M. Yamasaki, K. Nyu, Y. Kawamura. Corrosion behaviour of rapidly solidified Mg-Zn-Y alloy ribbons[C], in:Y. Kojima, T. Aizawa, K. Higashi, S. Kamado (Eds.), The Second Osaka International Conference on Platform Science, Technology for Advanced Magnesium Alloys, vol.419-422.
    [95]W. He, E. Zhang, K. Yang. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Materials Science and Engineering:C,2010, 30:167-174.
    [96]O.I. Velikokhatnyi, P.N. Kumta. First-principles studies on alloying and simplified thermodynamic aqueous chemical stability of calcium-Zinc-, aluminum-, yttrium-and iron-doped magnesium alloys[J]. Acta Biomaterials,2010,6:1698-1704.
    [97]P.L. Miller, B.A. Shaw, R.G. Wendt, et al. Improving corrosion resistance of magnesium by nonequilibrium alloying with yttrium[J]. Corrosion,1993,49: 947-950.
    [98]冒国兵,张光胜,孙宇峰,等.钇对AM60B镁合金显微组织和性能的影响[J].铸造,2009,58(6):607-610.
    [99]Zhiming Shi, Ming Liu, Andrej Atrens. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation[J]. Corrosion Science,2010,52 (2): 579-588.
    [100]赵艳娜,朱元良,齐公台.钇对AZ91在NaCI溶液中腐蚀的影响[J].材料开发与应用,2005,20(5):12-13+25.
    [101]姚素娟,李旺兴,杨胜,等.钇对AZ91镁合金微观组织及腐蚀性能影响的研究[J].中国稀土学报,2007,25(3):329-333.
    [102]霍宏伟,李瑛,王福会.热处理对AZ91D和AM50合金组织和腐蚀行为的影响[J].材料热处理学报,2004,4:8-11.
    [103]Staiger M, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials:A review[J]. Biomaterials,2006,27(9):1728-1734.
    [104]王迎新,关绍康,王建强.RE对Mg-8Zn-4Al-0.3Mn合金组织的影响[J].中国有色金属学报,2003,3:616-621.
    [105]左铁镛.中国镁及镁合金发展战略[J].科学中国人,2006(2):28-29.
    [106]Qiuming Peng, Jian Meng, Yangde Li, et al. Effect of yttrium addition on lattice parameter, Young's modulus and vacancy of magnesium [J]. Materials Science and Engineering:A,2011,528(4-5):2106-2109.
    [107]Gao H.T., Fan Y, Gao Y. H., et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D[J]. Materials Science and Engineering A,2005.408:255-263.
    [108]Zhang Chengfu. Purity and Modify of Liquid Metal[M]. Shanghai:Shanghai Science and Technology Press,1989.
    [109]王春建,金青林,周荣,等AI、Zn元素对镁合多的晶粒细化机理分析[J].稀有金属材料与工程,2010,39(增刊1):208-211.
    [110]崔红卫.闵光辉,胡立杰,等.含钇Mg-AI系镁合金的研究现状和进展[J].材料导报,2009,23(8):70-73.
    [111]袁亲松,赵平,赵亮.Y对铸态Mg-Li合金显微组织和力学性能的影响[J].铸造,2009,58(5):494-497.
    [112]ZHANG Kui, LI Xinggang, LI Yongjun. et al. Lffects of Gd contents on microstructure and mechanical properties of Mg-Y-RE-Zr magnesium alloy [J]. Transactions of Nonferrous Metals Society of China.2008,18(s1):12-15
    [113]Lunder O, Lein JE, Hasjevik SM, et al. Corrosion morphologies on magnesium alloy AZ91[J]. Werkstoffe und Korrosion 1994,45:33-40.
    [114]Pardo A, Merino M C, Coy A E. et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt% NaCl[J]. Corrosion Science,2008,50: 823-34.
    [115]王荣贵,张代东,康云、等.稀土Y对AZ61镁合金金相组织和力学性能的影响[J].铸造设备研究,2008,3:33-35.
    [116]郅青,高瑾,董超芳,等.AZ91D镁合金微弧氧化膜的腐蚀行为研究[J].金属学报,2008,44(8):986-990.
    [117]贺睿.AZ81基稀土镁合金组织与腐蚀性能的研究,河南理工大学硕士论文[D],2010.
    [118]王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].化学工业出版社,北京,2008:57-65.
    [119]Z.Y. Liu, X.G. Li, Y.F. Cheng. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution[J]. Electrochimica Acta,2011,56:4167-4175.
    [120]R.Ambat, N.N.Aung, W.Zhou. Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy[J]. Corrosion Science,2000,42(8):1433-145
    [121]J.Q. Zhang, C.N. Cao. Introduction of Electrochemical Impedance Spectroscopy[M], Science Press, Beijing,2002.
    [122]G.L. Makar, J. Kruger. Corrosion of magnesium[J]. International Materials Review, 1993,38(3):138-153.
    [123]G. Baril, G. Galicia, C. Deslouis, et al, An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulphate solution[J]. Journal of the Electrochemical Society,2007,154:C108-C113.
    [124]J. Chen, J.Q. Wang, E.H. Han, et al. AC impedance spectroscopy study of the corrosion behavior of an AZ91D magnesium alloy in 0.1M sodium sulfate solution[J]. Electrochim Acta,2007,52:3299-3309.
    [125]A.M. Lafront, W. Zhang, S. Jin, et al. Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques[J]. Electrochimica Acta,2011,56:4167-4175.
    [126]樊昱,吴国华,高洪涛,等.La对AZ91 D镁合金力学性能和腐蚀性能的影响[J].金属学报,2006,42(1):35-40.
    [127]于海棚,王蜂,于宝义,等.工艺参数和热处理对压铸AZ91D力学性能的影响[J].特种铸造及有色合金,2002,2:27-28.
    [128]胡连喜,李小强.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响[J].中国有色金属学报,2000,10(5):680-683.
    [129]ZHOU Wanqiu, SHAN Dayong, HAN Enhou, et al. Efect of T4 and T6 treatment on corrosion of, die cast AZ91D magnesium alloys in 3.5% NaCl[J]. Transaetious of Nonferrous Metals Society of China,2006,16,1793-1796.
    [130]黄光胜,范永革,汤爱涛,等.镁及镁合金腐蚀最新研究进展[J],材料导报,2002,16(4):38-40.
    [131]李永军Mg-Y-RE-Zr合金的制备及组织与性能研究[D],北京:北京有色金属研究总院博士论文,2009.
    [132]李成侣,潘清林,刘晓艳,等.2124铝合金的均匀化热处理[J],中国有色金属学报,2010,20(2):209-216.
    [133]郭强,严红革,陈振华,等.均匀化退火工艺对铸态AZ80镁合金组织与性能的影响[J],金属热处理,2006,31(7):77-80.
    [134]W.W. Du, Y.S. Sun, X.G. Min, et al. Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions [J]. Materials Science and Engineering A,2003,356(1-2):1-7.
    [135]M.S. Ong, Y. Li, D.J. Blackwood, et al. The influence of heat treatment on the corrosion behaviour of amorphous melt-spun binary Mg-18 at.% Ni and Mg-21 at.% Cu alloy[J]. Materials Science and Engineering: A. 2001. 304-306: 510-514.
    [136]M. Ben-Haroush, G. Ben-Hamu, D. Elieze. et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures[J]. Corrosion Science. 2008. 50: 1766-1778.
    [137]G. Ben-Hamu, D. Eliezer, L. Wagner. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J]. Journal of Alloys and Compound, 2009,468: 222-229.
    [138]T. Abuleil, N. Hort, W. Dietzel, et al. Microstructure and corrosion behavior of Mg-Sn-Ca alloys after extrusion[J]. Transaction of Nonferrous Metals Society of China. 2009. 19:40-44.
    [139]S. Mathieu, C. Rapin, J. Steimetz, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys[J]. Corrosion Science, 2003.45: 2741-2755.
    [140]邓霞.Mg-Y二元合金腐蚀行为研究[D],北京:北京有色金属研究总院硕士论文,2012.
    [141]LI Yongjun, ZHANG Kui, LI Xinggang, et al. Effects of heat treatment and plastic deformation on structure and properties of Mg-9Al-1.2Nd-0.45Y-0.7Zn Mg alloy [J]. Transactions of Nonferrous Metals Society of China. 2007. V17(s1): 363-367.
    [142]张猛,胡亚民.金属塑性变形[M].重庆大学岀版社,重庆,1983.
    [143]翟秋亚,王智民,袁森,等.挤压变形对AZ31镁合金组织和性能的影响[J].西安理工大学学报,2002,18(3):254-258.
    [144]N. Aung. W. Zhou. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010. 52: 589-594.
    [145]G. Song, Z. Xu. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet[J]. Electrochimical Acta, 2010. 55: 4148-4161.
    [146]G. Song, B. Johannesson, S. Hapugoda. et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminum alloy steel and zinc[J], Corrosion Science, 2004, 46: 955-977.
    [147]Song G, Atrens A., Dargusch M.. Influence of microstructure on the corrosion of die cast AZ80D[J]. CormsionScience, 1999.41(5): 249-273.
    [148]Apps P.J., Karimzadeh H., King J.F., et al. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium[J]. Scripta Materialia, 2003, 48(5): 475-481.
    [149]Wang J., Meng J., Zhang D.,et al. Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys[J]. Materials Science & EngineeringA,2007,456(1-2):78-84.
    [150]Nie J.F., Muddle B.C. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy[J], ActaMaterialia,2000,48(8):1691-1703.
    [151]Honma T., Kamado S., Hono K. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J], Acta Materialia,2007,55:4137-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700