用户名: 密码: 验证码:
铁铈蜂窝金属丝网催化剂用于选择催化还原NO_x的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨法选择催化还原(NH3-SCR)技术由于其低成本和高效率的特点已成为国内外首选的脱硝技术。目前已广泛应用的商业脱硝催化剂是V2O5-WO3(MoO3)/TiO2,并且在实际工况中为了获得较低的压降,该类催化剂通常以蜂窝整体式催化剂的形式存在。然而,在实际应用中该钒基催化剂仍存在活性组分有毒、活性窗口窄、较高的SO2氧化率和易尘堵等缺陷。针对以上问题,本研究分别从催化剂的载体和活性组分两方面入手进行研究,为新型脱硝催化剂的开发做出积极有益的探索。
     首先,本研究采用两步浸渍法制备了以蜂窝金属丝网为载体的钒基脱硝催化剂。通过与具有相同活性组分的蜂窝陶瓷催化剂对比研究发现,蜂窝状金属丝网催化剂表现出了优良的低温活性、抗硫抗水以及抗尘性能。在60h耐硫耐水实验(600ppmSO2+10%H2O)和40h抗尘实验中,蜂窝状金属丝网催化剂的脱硝活性始终保持在92%和90%左右。
     而通过对催化剂在耐硫耐水实验前后的各种测试表征和分析后发现,硫酸铵盐的沉积是催化剂在含硫含水气氛中失活的主要原因,且蜂窝状金属丝网催化剂表面的硫酸铵盐含量明显低于蜂窝陶瓷催化剂。这是由于蜂窝状金属丝网催化剂独特的三维通透结构不利于粉末状颗粒物在其表面大量沉积,使其在耐硫耐水及抗尘实验中表现出了优良的脱硝活性。
     其次,本研究采用浸渍法制备了掺铁铈钛催化剂,通过活性实验发现铁的加入可以大大提高催化剂的低温SCR舌性与抗硫中毒能力。当Fe/Ti摩尔比为0.2,煅烧温度为500℃时,Fe-Ce/TiO2催化剂在160℃即能到80%左右NO、去除率,且在250℃,11h耐硫实验(500ppm SO2)后仍能保持95%左右的NOx去除率。各种测试表征结果表明:将Fe掺杂入Ce/TiO2催化剂中能够提高催化剂表面NH4+和吸附态NO2的数量,从而促进了催化剂的低温SCR舌性。
     在此研究基础上,本研究对上述Fe-Ce/TiO2催化剂进行了SCR机理的研究:当反应温度低于200℃时是典型的Langmuir-Hinshelwood机理,即反应是在吸附态NO2和Lewis酸性位上配位态NH3与Bronsted酸性位上NH4+之间发生;当反应温度高于200℃时是典型的Eley-Rideal机理,即反应是在吸附态NH3和气相/弱吸附态NO之间发生。
     最后,本研究以蜂窝状金属丝网为载体,Fe-Ce/TiO2为活性组分制备了整体式催化剂,并比较了不同SO2浓度下Fe-Ce/TiO2/蜂窝金属丝网催化剂的抗硫中毒能力。当反应温度为250℃时经过100h耐硫实验(1000ppm SO2), Fe-Ce/WMH的脱硝活性仍能保持在85%以上。各种测试表征和分析结果表明:在含硫气氛中进行SCR反应时,Fe-Ce/WMH催化剂表面的Ce02易与烟气中的SO2发生反应,并且有少量硫酸铵盐形成。这里,烟气中的SO2会促进催化剂表面Ce4+→Ce3+,从而导致催化剂表面化学吸附氧含量的增多,这可能也是Fe-Ce/WMH在100h耐硫实验中具有优良抗硫中毒能力的重要原因。在整个耐硫过程中Fe-Ce/WMH催化剂表面的反应主要遵循E-R反应机理。
Selective catalytic reduction with NH3(NH3-SCR) is the most reliable method to remove the NOX from stationary sources due to the low cost and high efficiency. Currently, the commercial catalysts for this process are V2O5-WO3(MoO3)/TiO2catalysts and they are preferentially applied in form of monolithic honeycombs due to their low pressure drop. However, these catalysts commonly suffer from the toxicity of active component to environment, the narrow operation temperature window, the high activity for the oxidation of SO2to SO3and easy to dust blocking. Aiming to develop new DeNOx catalyst, catalyst support and active component were investigated in this paper.
     Firstly, V2O5-WO3/TiO2/Al2O3/wire-mesh honeycomb catalyst was prepared by a two-step impregnation method. In comparison with ceramic honeycomb catalyst with the same composition, the wire-mesh honeycomb catalyst exhibited good low-temperature activity and resistance to H2O, SO2and dust. During the60h H2O and SO2durability test (600ppm SO2+10%H2O) and40h dust exposure experiment, the wire-mesh honeycomb catalyst could provide nearly92%and90%NOX conversion, respectively. Characteration analyses of fresh and spent catalysts demonstrated that the deposition of sulfate-ammonium salts on catalyst surface was the dominant reason for the catalyst deactivation in the H2O and SO2durability test, and there was less sulfate-ammonium salts deposited on the surface of the wire-mesh honeycomb catalyst than that on the ceramic honeycomb catalyst. For the wire-mesh honeycomb catalyst, the unique three-dimensional structure was unfavorable for the high particle material deposition, which was the reason for the excellent resistance to H2O, SO2and dust.
     Secondly, Fe doped Ce/TiO2catalyst was prepared by impregnation method. From the activity test results, it was found that the addition of Fe could enhance the low-temperature activity and sulfur-poisoning resistance of Ce/TiO2. The Fe-Ce/TiO2catalyst with Fe/Ti molar ratio of0.2could attain80%NOx conversion at160℃, provide above85%NOx conversion after11h SO2durability test (500ppm SO2) at250℃. The characteration results indicated that the Fe doping to Ce/TiO2could increase the amount of NH4+and adsorbed NO2on catalyst surface, and thus promte the low-temperature SCR activity.
     Furthermore, the SCR reaction mechanism of the Fe-Ce/TiO2catalyst was studied. In the relatively low temperature range (<200℃), coordinated NH3and ionic NH4+sprcies as well as adsorbed NO2were involved in the SCR reaction following a Langmuir-Hinshelwood mechanism. In the relatively high temperature range (>200℃), coordinated NH3and gas-phase/weakly adsorbed NO predominated on the catalyst surface following Eley-Rideal mechanism.
     Finally, Fe-Ce/TiO2/Al2O3/wire-mesh honeycomb catalyst was prepared, and its resistance to sulfur-poisoning for different SO2concentrations (100-1000ppm) was investigated. At250℃, the Fe-Ce/TiO2/Al2O3/wire-mesh honeycomb catalyst could provide approximately90%NOX conversion during100h SO2durability test (1000ppm SO2). The characteration results indicated that the sulfation of CeO2occurred preferentially during the SCR reaction in the presence of SO2, and a little sulfate-ammonium salts was formed. The sulfation of CeO2could promote conversion of Ce4+to Ce3+, resulting in the increase of chemisorbed oxygen species which might be the reason for the excellent resistance to sulfur-poisoning of the Fe-Ce/TiO2/Al2O3/wire-mesh honeycomb catalyst. The SCR reaction followed the Eley-Rideal mechanism during the SO2durability test.
引文
[1]Abelson P. H. Air pollution and acid rain [J].Science,1985,8:617-617.
    [2]Taylor K. C. Nitric oxide catalysis in automotive exhaust systems [J].Catalysis Reviews:Science & Engineering,1993,35:457-481
    [3]Richter A., Burrows J. P., Niemeier U., et al. Increase in troposphericnitrogen dioxide over China observed from space [J].Nature,2005,437:129-132.
    [4]Armor J. N. Environmental catalysis [J].Applied Catalysis B:Environmental,1992,1:221-256.
    [5]郑小明,周仁贤.环境保护中的催化治理技术[M].北京:化学工业出版社,2003:84-84.
    [6]张楚莹,王书肖,刑佳,等.中国能源相关的氮氧化物排放现状与发展趋势分析[J].环境科学学报,2008,28(12):2470-2479.
    [7]全国燃煤二氧化硫、氮氧化物污染治理技术研讨会.中国氮氧化物排放现状、趋势及控制对策建议[R].郝吉明:2004.
    [8]2008年环境统计年报[M].北京:中华人民共和国环境保护部,2008:1-8.
    [9]田贺忠.中国氮氧化物排放现状、趋势及控制对策建议[D].北京:清华大学,2003.
    [10]刘孜,易斌,岳涛.我国火电行业氮氧化物排放现状及减排建议[J].环境保护,2008,402:7-10.
    [11]Busca G., Lietti L., Ramis, G., et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOxby ammonia over oxide catalysts:A review [J].Applied Catalysis B: Environmental,1998,18:1-36.
    [12]Choo S. T., Yim S. D., Lee J. B., et al. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3 [J].Applied Catalysis B:Environmental,2003,44:237-252.
    [13]Dunn J. P., Koppula P.R., Stenger H.G. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts [J].Applied Catalysis B:Environmental,1998,19:103-114.
    [14]Boger T., Heibel A. K., Sorensen C. M. Monolithic catalysts for the chemical industry [J].Industry Engineering Chemistry Research,2004,43:4602-4614.
    [15]Long R. Q., Yang R. T. Superior Fe-ZSM-5 catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia [J].Journal of The American Chemical Society,1999,121(23):5595-5596.
    [16]Berndt H., Schutze F. W., Richter M., et al. Selective catalytic reduction of NO under lean conditions by methane and propane over indium/cerium-promoted zeolites [J].Applied Catalysis B:Environmental,2003,40:51-67.
    [17]Irfan M. F., Goo J. H., Kim S. D., et al. Effect of CO on NO oxidation over platinum based catalysts for hybrid fast SCR process [J].Chemosphere,2007,66:54-59.
    [18]Janssen F., Meijer R. Quality control of DeNOx catalysts:Performance testing, surface analysis and characterization of DeNOx catalysts [J].Catalysis Today,1993,16(2):157-185.
    [19]Beeckman J. W., Hegedus L. L. Design of monolith catalysts for power plant NOx emission control [J].Industry Engineering Chemistry Research,1991,30:969-978.
    [20]Parvulescu V. I., Grange P., Delmon B. Catalytic removal of NO [J].Catalysis Today,1993,16(2): 157-185.
    [21]贺泓,李俊华,何洪,等.环境催化-原理及应用[M].北京:科学出版社,2008:39-40.
    [22]Forzatti P. Present status and perspectives in DeNOx SCR catalysis [J].Catalysis Today,2007, 119:106-113.
    [23]环境保护部.HJ 562-2010火电厂烟气脱硝工程技术规范选择性催化还原法[S]//中国人民共和国国家环境保护标准.北京:中国环境科学出版社,2010:1-24.
    [24]Kondratenko E. V., Ramirez J. P. Transient studies on the effect of oxygen on the high-temperature NO reduction by NH3 over Pt-Rh gauze [J].Applied Catalysis A:General,2005, 289:97-103.
    [25]Miller D. D., Chuang S. S. C. In situ infrared study of NO reduction over Pd/Al2O3 and Ag-Pd/Al2O3 catalysts under H2-rich and lean-burn conditions [J].Jounral of Chinese Industry Chemistry Engineering,2009,40:613-621.
    [26]Qi G. S., Yang R. T., Thompson L. T. Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays [J].Applied Catalysis A:General,2004,259:261-267.
    [27]Rubert A. A., Quincoces C. E., Mamede A. S., et al. Preparation and characteration of Pd-Co/sulfated zirconia catalysts for selective reduction by methane [J].Catalysis Communications,2008,9:1096-1100.
    [28]Qi G. S.. Yang R. T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania [J].Applied Catalysis B:Environmental,2003,44: 217-225.
    [29]Xu W. Q., He H., Yu Y. B. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3 [J].The Journal of Physical Chemistry C,2009,113:4426-4432.
    [30]Amiridis M. D., Wachs I. E., Deo G., et al. Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3:Influence of vanadia loading, H2O and SO2 [J].Journal of Catalysis, 1996,161:247-253.
    [31]Chen J. P., Yang R. T. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3 [J]. Journal of Catalysis,1990,125:411-420.
    [32]Chen J. P., Yang R. T. Selective catalytic reduction of NO with NH3 on SO42/TiO2 superacid catalyst [J].Journal of Catalysis,1993,139:277-288.
    [33]Svachula J., Alemany L. J., Ferlazzo N., et al. Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNOxing catalysts [J]. Industry Engineering Chemistry Research,1993,32: 1053-1060.
    [34]Delahay G., Valade D., Coq B. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods [J].Applied Catalysis B:Environmental,2005, 55:149-155.
    [35]Salker A. V., Weisweiler W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions [J].Applied Catalysis A:General,2000,203: 221-229.
    [36]Shin Q. G., Yang R. T. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia [J].Applied Catalysis B:Environmental,2006,67:187-196.
    [37]Topsoe N. Y. Mechanism of the Selective Catalytic Reduction of Nitric-Oxide by Ammonia Elucidated by in Situ On-Line Fourier Transform Infrared Spectroscopy [J].Science,1994, 265(5176):1217-1219.
    [38]Topsoe N. Y., Topsoe H., Dumesic J. A. Vanadia/Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia:1. Combined Temperature-Progammed in-Situ FTIR and On-line Mass-Spectroscopy Studies [J].Journal of Catalysis,1995,151(1):226-240.
    [39]Topsoe N. Y., Dumesic J. A., Topsoe H. Vanadia/Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia:II. Studies of Active Sites and Formulation of Catalytic Cycles [J].Journal of Catalysis,1995,151(1):241-252.
    [40]周燕,徐晓红,陈虹.堇青石质蜂窝陶瓷载体[J].陶瓷研究,2002,17:9-12.
    [41]张益群,余立挺,马建新.构件化催化剂的研究现状与应用[J].工业催化,2003,11(1):1-7.
    [42]张宏艳,牟元平,常志伟.汽车尾气净化三效催化剂研究进展[JJ.化工科技,2006,14(5):70-72.
    [43]Benson S. A., Laumb J. D., Crocker C. R. SCR catalyst performance in flue gases derived from subbituminous and lignite coals [J].Fuel Processing Technology,2005,86:577-613.
    [44]Zheng Y., Jensen A. D., Johnsson J. E., Laboratory investigation of selective catalytic reduction catalysts:Deactivation by potassium compounds and catalyst generation [J].Industry Engineering Chemistry Research,2004,43:941-947.
    [45]Svachula J., Ferlazzo N., Forzatti P. Selective reduction of NOx by NH3 over honeycomb DeNOx catalysts [J].Industry Engineering Chemistry Research,1993,32(6):1053-1060.
    [46]金云舟,钱君律,伍艳辉.溶胶-凝胶法制备催化剂的研究进展[J].工业催化.2006,14(11):60-63.
    [47]Teresa V. S., Marban G., Fuertes A. B. Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts [J].Applied Catalysis B:Environmental,2003,46:261-271.
    [48]Zheng Y., Jensen A. D., Johnsson J. E., Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant [J].Applied Catalysis B:Environmental,2005,60: 253-264.
    [49]Chen J. P., Yang R. T., Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3 [J].Journal of Catalysis,1990,125:411-420.
    [50]Kling A., Andersson C, Myringer A., et al. Alkali deactivation of high-dust SCR catalysts used for NOX reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers: Influence of flue gas composition [J]. Applied Catalysis B:Environmental,2006,69:240-251.
    [51]Prins W. L., Nuninga Z. L., Design and experience with catalytic reactor for SCR-DENOx [J]. Catalysis Today,1993.16:187-205.
    [52]Gutberlet H., Schallert B., Selective catalytic reduction for NOx from coal-fired plants [J].Catalysis Today,1993.16:207-236.
    [53]Lange F. C, Schmelz H., Knozinger H., An X-ray photoelectron spectroscopy study of oxides arsenic supported on TiO2 [J].Journal of Electron Spectrosc Related Phenomena,1991,57: 307-315.
    [54]Kim S. S., Choi S. H., Lee S. H. Enhanced catalytic activity of Pt/Al2O3 on the CH4 SCR [J].Industry Engineering Chemistry Research,2012,18(1):272-276.
    [55]Liu Q. Y., Liu Z. Y., Huang Z. G., et al. A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas:preparation and evaluation [J].Catalysis Today,2004.94:833-837.
    [56]Li J. H., Chang H. Z., Ma L., et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review [J].Catalysis Today,2011,175(1):147-156.
    [57]Yang K. S., Mul G., Choi J. S., et al. Development of TiO2/Ti wire-mesh honeycomb for catalytic combustion of ethyl acetate in air [J].Applied Catalysis A:General 2006,313:86-93.
    [58]Garcia-Bordeje E., Lazaro M. J., Moliner R., et al. Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures:Influence of the oxidation pre-treatment [J].Carbon,2006,44:407-417.
    [59]Tang X. L., Hao J. M., Yi H. H., et al. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts [J].Catalysis Today,2007,126:406-411.
    [60]Ouzzine M., Cifredo G. A., Gatica J. M., et al. Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO:Effects of preparation variables [J].Applied Catalysis A:General,2008,342:150-158.
    [61]Liu Q. Y., Liu Z. Y., Huang Z. G. CuO Supported on Al2O3-Coated Cordierite-Honeycomb for SO2 and NO Removal from Flue Gas:Effect of Acid Treatment of the Cordierite [J].Industry Engineering Chemistry Research,2005,44:3497-3502.
    [62]Liu Q. Y., Liu Z. Y., Su J. H. Al2O3-coated cordierite honeycomb supported CuO catalyst for selective catalytic reduction of NO by NH3:Surface properties and reaction mechanism [J].Catalysis Today,2010,158:370-376.
    [63]Heck R. M., Farrauto R. J., Gulati S. T. Catalytic air pollution control [M].New York:John Wiley&Sons, Inc.2002.
    [64]Ahlstrom-Silversand A. F., Odenbrand C. U. I. Thermally sprayed wire-mesh catalysts for the purification of flue gases from small-scale combustion of bio-fuel Catalyst preparation and activity studies [J].Applied Catalysis A:General,1997,153(1-2):177-201.
    [65]Jiang Z. D., Chung K. K., Kim G. R., et al. Mass transfer characteristics of wire-mesh honeycomb reactors [J].Chemical Engineering Science,2003,58(7):1103-1111.
    [66]Yang K. S., Jiang Z. D., Chung K. K. Electrophoretically Al-coated wire mesh and its application for catalytic oxidation of 1,2-dichlorobenzene [J].Surface and Coating Technology,2003, 168(1-3):103-110.
    [67]孙红.蜂窝状金属丝网催化剂的制备及其贫燃条件下选择催化还原NOx的研究[D].大连:大连理工大学,2007.
    [68]Yang K. S., Choi J. S., Lee S. H., et al. Development of TiO2/Ti wire-mesh honeycomb for catalytic combustion of ethyl acetate in air [J].Applied Catalysis A:General,2006,313:86-93.
    [69]Gu T. T.. Jin R. B., Wu Z. B., et al. Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature [J].Applied Catalysis B: Environmental,2013,129:30-38.
    [70]Xie J. L., Fang D., Chen J. F., et al. Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature [J].Catalysis Communications,2012,28:77-81.
    [71]Lee S. M., Park K. H., Hong S. C. MnOx/CeOr-TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature [J].Chemical Engineering Journal,2012, (195-196):323-331.
    [72]Ma Z. R., Weng D., Wu X. D., et al. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability [J].Catalysis Communications,2012,27:97-100.
    [73]Kobayashi M, Kuma R., Masaki S., et al.TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3 [J].Applied Catalysis B:Environmental,2005,173:173-179.
    [74]Goo J. H., Irfan M. F., Kim S. D., Effects of NO2 and SO2 on selective catalytic reduction of nitrogen oxides by ammonia [J].Chemosphere,2007,67:718-723.
    [75]Casanova M., Rocchini E.,Trovarelli A.,et al. High-temperature s tability o f V2O5/TiO2-WO3-SiO2 SCR catalysts modified with rare-earths [J].Journal of Alloys and Compounds,2006,408-412:1108-1112.
    [76]Vargas M. L., Casanova M., Trovarelli A., Busca G., An IR study of thermally stable V2O5-WO3-TiO2 SCR catalysts modified with silica and rare-earths (Ce,Tb,Er) [J].Applied Catalysis B:Environmental,2007,75:303-311.
    [77]Traa M., Burger B., Weitkamp J., Zeolite-based materials for the selective catalytic reduction of NOX with hydrocarbons [J].Micropor Mesopor Mater,1999,30:3-41.
    [78]Jiang B. Q., Wu Z. B.,Liu Y., et al. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2 [J].The Journal of Physical Chemistry C,2010,114(11):4961-4965.
    [79]Wu Z. B., Jiang B. Q., Liu Y., et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method [J]. Journal of Hazardous Materials,2007,145: 488-494.
    [80]Wu Z. B., Jin R. B., Wang H. Q., et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature [J].Catalysis Communications, 2009,10:935-939.
    [81]Kim Y. J., Kwon H. J., Heo I., et al. Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust [J].Applied Catalysis B:Environmental,2012,126:9-21.
    [82]Yu J., Guo F., Wang Y. L., et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3 [J].Applied Catalysis B:Environmental,2010,95: 160-168.
    [83]Gupta A., Hegde M. S., Priolkar K. R., et al. Structural Investigation of Activated Lattice Oxygen in Ce1-xSnxO2 and Ce1-x.ySnxPdyO2-δ by EXAFS and DFT calculation [J].Chemistry of Materials, 2009,21(24):5836-5847.
    [84]Gupta A., Kumar A., Waghmare U. V., et al. Origin of activation of Lattice Oxygen and Synergistic Interaction in Bimetal-Ionic Ce0.89Fe0.1Pd0.01 Catalyst [J].Chemistry of Materials, 2009,21(20):4880-4891.
    [85]Gupta A., Waghmare U. V., Hegde M. S. Correlation of Oxygen Storage Capacity and Structural Distortion in Transition-Metal-, Noble-Metal-, and Rare-Earth-Ion-Substituted CeO2 from First Principles Calculation [J].Chemistry of Materials,2012.22(18):5184-5198.
    [86]Devadas M., Krocher O., Elsener M., et al. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5 [J].Applied Catalysis B:Environmental,2006,67:187-196.
    [87]Liu F. D., He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study [J].Catalysis Today,2010,153:70-76.
    [88]Yeom Y. H., Henao J., Weitz E., et al. The role of NO in the mechanism of NOx reduction with ammonia over a BaNa-Y catalyst [J].Journal of Catalysis,2005,231:181-193.
    [89]Nova 1., Ciardelli C., Tronconi E., et al. NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction [J].Catalysis Today,2006,114:3-12.
    [90]Ruggeri M. P., Grossale A., Nova I., et al. FTIR in situ mechanistic study of the NH3 NO/NO2 "Fast SCR" reaction over a commercial Fe-ZSM-5 catalyst [J]. Catalysis Today,2012,184: 107-114.
    [91]Qi G. S., Yang R. T., Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J].Applied Catalysis B: Environmental,2004,51:93-106.
    [92]Xu W. Q., Yu Y. B., He H., et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst [J].Catalysis Communications,2008,9:1453-1457.
    [93]Chen L., Li J. H., Ge M. F. DRIFT Study on Cerium-Tungsten Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3 [J].Environmental Science & Technology,2010,44(24): 9590-9596.
    [94]Shen Y. S., Zhu S. M., Qiu T., et al. A novel catalyst of CeO2/Al2O3 for selective catalytic reduction of NO by NH3 [J].Catalysis Communications,2009,11:20-23.
    [95]Shan W. P., Liu F. D., He H., et al. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 [J].Chemical Communications,2011,47:8046-8048.
    [96]Long R. Q., Yang R. T. Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia [J].Journal of Catalysis,2000,194(1):80-90.
    [97]Chen H. Y., Sachtler M. H. Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor [J].Catalysis Today,1998,42(1-2):73-83.
    [98]Delahay G., Guzman-Vargas A., Valade D., et al. Selective catalysis reduction of NO by NH3 on Fe-ZSM-5 Elaborated from different methods [J].Studies in Surface Science and Catalysis,2004, 154:2501-2508.
    [99]Brandenberger S., Casapu M., Tissler A., et al. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J].Applied Catalysis B:Environmental, 2010,101:649-106.
    [100]Long R. Q., Yang R. T. Fe-ZSM-5 for selective catalytic reduction of NO with NH3:A comparative study of different preparation techniques [J].Catalysis Letters,2001,74:201-211.
    [101]Akah A., Cundy C, Garforth A. The selective catalytic oxidation of NH3 over Fe-ZSM-5 [J].Applied Catalysis B:Environmental,2005,59:221-234.
    [102]Qi G., Yang R. T. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia [J].Applied Catalysis B:Environmental,2005,60:13-24.
    [103]Krishna K., Seijger G. B. F., Makkee M., et al. Selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalysts prepared by sublimation of FeCl3 at different temperatures [J].Catalysis Letters,2003,86:121-132.
    [104]Iwasaki M., Yamazaki K., Banbo K., et al. Characterization of Fe/ZSM-5 DeNOx catalysts prepared by different methods:Relationships between active Fe sites and NH3-SCR performance [J].Journal of Catalysis,2008,260:205-213.
    [105]Devadas M., Krocher O., Elsener M., et al. Characterization and catalytic investigation of Fe-ZSM-5 forurea-SCR [J].Catalysis Today,2007,119:137-144.
    [106]Kato A., Matsuda S., Nakajima F., et al. Reduction of Nitric Oxide with Ammonia on Iron Oxide-Titanium Oxide Catalyst [J].The Journal of Physical Chemistry C,1981,85:1710-1713.
    [107]Apostolescu N., Geiger B., Jan M. T., et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts [J].Applied Catalysis B:Environmental,2006,62:104-114.
    [108]Wu Z. B., Jiang B. Q., Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia [J].Applied Catalysis B:Environmental,2008,79:347-355.
    [109]Liu F. D., He H., Zhang C. B., et al. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization [J].Applied Catalysis B: Environmental,2010,96:408-420.
    [110]Liu F. D., He H., Zhang C. B., et al. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst [J].Catalysis Today,2011,175(1):18-25.
    [111]Liu F. D., He H., Asakura K., et al. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3 [J].Applied Catalysis B:Environmental,2011,103: 369-377.
    [112]Kijlstra W. S., Biervliet M., Poels E. K., et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures [JJ.Applied Catalysis B:Environmental,1998,16:327-337.
    [113]Yang K. S., Choi J. S., Lee S. H., et al. Development of AI/A 1203-Coated Wire-Mesh Honeycombs for Catalytic Combustion of Volatile Organic Compounds in Air [J].Industry Engineering Chemistry Research,2004,43:907-912.
    [114]Sun H., Zhang Y. B., Quan X., et al. Wire-mesh honeycomb catalyst for selective catalytic reduction of NOx under lean-burn conditions [J].Catalysis Today,2008,139:130-134.
    [115]Bauerle G. L., Wu S. C., Nobe K. Parametric and Durability Studies of NOx Reduction with NH3 on V2O5 Catalysts [J].Industry Engineering Chemistry Product Research and Development, 1978,17(2):117-122.
    [116]Matsuda S., Kamo T., Kato A., et al. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia [J].Industry Engineering Chemistry Product Research and Development,1982,21(1):48-52.
    [117]Nam I. S., Eldridge J. W., Kittrell J. R. Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia [J].Industry Engineering Chemistry Product Research and Development,1986,25(2):192-197.
    [118]Huang Z., Zhu Z. P., Liu Z. Y. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures [J].Applied Catalysis B:Environmental,2002,39: 361-368.
    [119]Huang Z., Zhu Z. P., Liu Z. Y., et al. Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures [J].Journal of Catalysis,2003,214:213-219.
    [120]Zhu Z. P., Liu Z. Y., Niu H. X., et al. Promoting Effect of SO2 on Activated Carbon-Supported Vanadia Catalyst for NO Reduction by NH3 at Low Temperatures [J]. Journal of Catalysis,1999, 187:245-248.
    [121]Seo P. W., Park K. H., Hong S. C. SO2 durability enhancement of ball milled V/TiO2 catalyst [J].Journal of Industrial and Engineering Chemistry,2010,16:283-287.
    [122]Zhu Z. P., Liu Z. Y., Liu S. J. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts:Effect of metal oxides addition and SO2 [J]. Applied Catalysis B: Environmental,2001,30:267-276.
    [123]Zhu Z. P., Liu Z. Y., Niu H. X., et al. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst [J]. Journal of Catalysis,2001,197(1): 6-16.
    [124]Frederickson L. D., Hausen D. M. Infrared spectra-structure correlation study of vanadium-oxygen compounds [J].Analytical Chemistry,1963.35(8):818-824.
    [125]Takagi M., Kawai T., Soma M., et al. Mechanism of catalytic reaction between NO and NH3 on V2O5 in the presence of oxygen [J].The Journal of Physical Chemistry,1976,80:430-437.
    [126]Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds,fourth ed [M].New York:Wiley,1986.
    [127]Ertl G., Knozinger H., Weitkamp J. Handbook of heterogeneous catalysis [M].Weinheim: Wileyvch Company,1997.
    [128]Ganduglia M. V., Hofmann A., Sauer J. Oxygen vacancies in transition metal and rare earth oxides:Current state of understanding and remaining challenges [J].Surface Science Reports, 2007,62(6):219-270.
    [129]Nolan M. Molecular adsorption on the doped (110) ceria surface [J].The Journal of Physical Chemistry C,2009,113(6):2425-2432.
    [130]Lietti L. Reactivity of V2O5-WO3/TiO2 de-NOx catalysts by transient methods [J].Applied Catalysis B:Environmental,1996,10:281-297.
    [131]Lietti L., Alemany J. L., Forzatti P.. et al. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia [J].Catalysis Today,1996,29:143-148.
    [132]Fudong Liu., He H., Liu Yongchun., et al. Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NOx with NH3 [J].Catalysis Today,2011,164: 520-527.
    [133]Long R. Q., Yang R. T. FTIR and Kinetic Studies of the Mechanism of Fe3+-Exchanged TiO2-Pillared Clay Catalyst for Selective Catalytic Reduction of NO with Ammonia [J].Journal of Catalysis,2000,190:22-31.
    [134]Marban G., Fuertes T. Mechanism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4-Role of surface NH3 species:SCR mechanism [J].Journal of Catalysis,2004,226:138-155.
    [135]Marban G., Fuertes T. Mechanism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4-Active phase and role of surface NO species [J].Physical Chemistry Chemical Physics,2004,6:453-464.
    [136]Beche E., Charvin P., Perarnau S., et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide(CexTiyOz) [J].Surface and Interface Analysis,2008,40(3-4):264-267.
    [137]Larachi F., Pierre J., Adnot A., et al. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts [J].Applied Surface Science,2002,195(1-4):236-250.
    [138]Kang M., Park E. D., Kim J. M., et al. Manganese oxide catalysts for NOX reduction with NH3 at low temperatures [J].Applied Catalysis A:General,2007,327:261-269.
    [139]Roy S., Viswanath B., Hegde M. S., et al. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ(M=Cr,Mn,Fe,Co,Cu) [J].The Journal of Physical Chemistry C,2008, 112:6002-6112.
    [140]Reddy E. P., Davydov L., Smirniotis P. G., et al. Characterization of titania loaded V-,Fe-.and Cr-incorporated MCM-41 by XRD,TPR,UV-vis,Raman,and XPS techniques [J].The Journal of Physical Chemistry B,2002,106:3394-3401.
    [141]Campbell C. T., Penden C. H. F. Oxygen vacancies and catalysis on ceria surface [J].Science, 2005,309(5735):713-714.
    [142]Esch F., Fabris S., Zhou L., et al. Electron localization determines defect formation on ceria substrates [J].Science,2005,309(5735):752-755.
    [143]Fang J., Bi X., Si D., et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides [J].Applied Suface Science,2007,253(22):8952-8961.
    [144]Damyanova S., Perez C. A., Schmal M., et al. Characterization of ceria-coated alumina carrier [J].Applied Catalysis A:General,2002,234(1-2):271-282.
    [145]Li Y., Zhang B. C., Tang X. L., et al. Hydrogen production from methane decomposition over Ni/CeO2 catalysts [J].Catalysis Communcation,2006,7(6):380-386.
    [146]Liu F. D., He H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3 [J].The Journal of Physical Chemistry C,2010,114:16929-16936.
    [147]Long R. Q., Yang R. T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts [J].Journal of Catalysis,1999,186(2):254-268.
    [148]Granger P.,Parvulescu V. L. Catalytic NOx abatement systems for mobile source:From three-way to lean burn after-treatment technologies [J].Chemical Review,2011,111:3155-3207.
    [149]Long R. Q., Yang R. T. Selective catalytic reduction of NO with ammonia over Fe3+-exchanged mordenite (Fe-MOR):catalytic performance, characterization and mechanistic study [J].Journal of Catalysis,2002,207(2):274-285.
    [150]Chen L., Li J. H., Ge M., et al. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia [J].Catalysis Today,2010,153:70-78.
    [151]Chi Y., Chuang S. S. C. The effect of oxygen concentration on the reduction of NO with propylene over CuO/γ-Al2O3 [J].Catalysis Today,2000.62:303-314.
    [152]Grossale A., Nova I., Tronconi E., et al. The chemistry of the NO/NO2-NH3 "fast"SCR reaction over Fe-ZSM5 investigated by transient reaction analysis [J].Jounal of Catalysis,2008,256(2): 312-322.
    [153]Pena D. A., Uphade B. S., Reddy E. P., et al. Identification of surface species on titania supported manganese,chromium,and copper oxide low-temperature SCR catalysts [J].The Journal of Physical Chemistry B,2004,108:9927-9936.
    [154]Centeno M. A., Carrizosa I., Odriozola J. A. NO-NH3 coadsorption on vanadia/titania catalysts: determination of the reduction degree of vanadium [J]. Applied Catalysis B:Environmental,2001, 29:307-314.
    [155]Larrubia M. A., Ramis G., Busca G. An FT-IR study of the adsorption of urea and ammonia over V2O5-MoO3-TiO2 SCR catalysts [J].Applied Catalysis B:Environmental,2000,27: 145-151.
    [156]Sayan S., Kantcheva M., Suzer S., et al. FTIR characterization of Ru/SiO2 catalyst for ammonia synthesis [J].Journal of Molecular structure,1999,480-481:241-245.
    [157]Guan B., Lin H., Zhu L. J. Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2-δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method [J].The Journal of Physical Chemistry C,2011.115:12850-12863.
    [158]Long R. Q., Yang R. T. Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst [J].Journal of Catalysis,2002,207(2):224-231.
    [159]Wu Z. B., Jiang B. Q., Liu Y., et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Environmental Science & Technology,2007,41(16):5812-5817.
    [160]Machida M., Kurogi D., Kijima T. MnOx-CeO2 binary oxides for catalytic NOx-sorption at low temperatures [J].Chemistry of Materials,2000,12:3165-3170.
    [161]Hadjiivanov K., Knozinger H. Species formed after NO adsorption and NO+O2 co-adsorption on TiO2:An FTIR spectroscopic study [J].Physical Chemistry Chemical Physics,2000,12: 2803-2806.
    [162]Kijlstra W. S., Brands D. S., Smit H. I., et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3 [J].Journal of Catalysis,1997,171:219-230.
    [163]金瑞奔.负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D].杭州:浙江大学,2010.
    [164]Xie G. Y., Liu Z. Y., Zhu Z. P., et al. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent:Ⅰ. Deactivation of SCR avtivity by SO2 at low temperatures [J].Journal of Catalysis,2004,224:36-41.
    [165]Xie G. Y., Liu Z., Liu Q., et al. Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbent in ammonia [J].Applied Catalysis B:Environmental,2003,45:213-221.
    [166]Wang C. H., Lee C. N., Weng H. S. Effect of acid treatment on the performance of the CuO-MoO3/Al203 catalyst for the destructive oxidation of (CH3)2S2 [J].Industrial Engineering Chemistry Research,1998,37:1774-1780.
    [167]Zhang B. L., Chen B. S., Shi K. Y., et al. Preparation and characterization of nanocrystal grain TiO2 porous microspheres [J]. Applied Catalysis B:Environmental,2003,40:253-258.
    [168]Zhu Z. P., Liu Z. Y., Niu H., et al. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia [J].Journal of Catalysis,2000,195:268-278.
    [169]Xie S., Wang J., He H. Poisoning effect of sulfate on the selective catalytic reduction of NOx by C3H6 over Ag-Pd/Al2O3 [J].Journal of Molecular Catalysis A:Chemical,2006,266:166-172.
    [170]Huang J. H., Tong Z. Q., Huang Y., et al. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica [J].Applied Catalysis B:Environmental,2008,78:309-314.
    [171]Luo T., Gorte R. J. Characterization of SO2-poisoned ceria-zirconia mixed oxide [J].Applied Catalysis B:Environmental,2004,53:77-85.
    [172]Waqif M., Bazin P., Saur O., et al. Study of ceria sulfation [J].Applied Catalysis B: Environmental,1997,11:193-205.
    [173]Peak D., Ford R. G., Sparks D. L. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite [J].Journal of Colloid and Interface Science,1999,218:289-299.
    [174]Goodman A. L., Bernard E. T., Grassian V. H. Spectroscopic study of nitric acid and water adsorption on oxide particles:Enhanced nitric acid uptake kinetics in the presence of adsorbed water [J].Journal of Physical Chemistry A,2001,105:6443-6457.
    [175]Ma Q., Liu Y., He H. Synergistic effect between NO2 and SO2 in their adsorption and reaction on y-alumia [J].Journal of Physical Chemistry A,2008,112:6630-6635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700