用户名: 密码: 验证码:
水面舰船设备冲击环境与结构抗冲击性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代舰船在海战中必然会面临非接触爆炸引起的冲击破坏问题。随着导弹、激光炸弹和水中兵器的快速发展,爆炸当量和冲击持续时间明显增加,为保证舰船的安全和正常使用,提高舰船生命力和战斗力,应对舰船设备冲击环境与舰船结构、设备抗冲击性能进行详细深入的研究。
     舰船承受水下爆炸载荷是舰船结构在很短的时间内在巨大冲击载荷作用下的一种复杂的非线性动态响应过程,属大变形、强非线性问题。它涉及到水下爆炸冲击波和舰船结构的相互耦合作用,同时水下爆炸还包含很多不确定因素,如水下爆炸的炸药类型、药量大小、炸药到结构的距离、水下环境、舰船自身结构的特点等。由于水下爆炸的复杂性,对其进行详细的理论研究并企图通过建立一个精确的数学模型而使水下爆炸问题得到完全解析是十分困难的。水下爆炸试验固然可以获得准确可靠的结果,但它是一种极其昂贵的破坏性试验,对环境及舰员产生巨大的损伤,不可能经常性的采用,而且问题本身的强非线性特征和不确定性也使试验结果存在很大的局限性。随着计算机技术和数值计算技术的发展,使得计算机虚拟仿真试验的作用地位日益突出,以数值仿真试验为主,实验试验为辅的技术路线开始成为大多数国家海军舰船抗冲击研究的有效途径,同时也成为今后舰船抗冲击技术的发展方向。
     本文采用理论分析、数值仿真和试验验证相结合的研究方法,对舰船结构及设备的抗冲击性能进行了深入的研究。通过对显式非线性有限元求解技术的消化吸收,研究了适合船舶水下爆炸分析的数值仿真方法,实现了炸药爆轰、水下爆炸荷载在水中传播、舰艇结构在水下爆炸载荷作用下的动态响应的仿真过程。计算分析获得舰船典型设备冲击环境,建立典型水面舰船设备冲击环境仿真预报的理论和方法,对舰船设备的冲击环境进行了仿真预报,在此基础上提出了快速简便、准确可靠的舰船设备冲击环境的预报公式,实现对大、中、小三型典型水面舰船设备冲击环境快速、准确预报,为进一步开展舰船设备抗冲击设计与研究打下了坚实的基础。同时本文还对舰船结构的抗冲击性能进行了详细的研究,探讨了典型舰船在非接触水下爆炸载荷作用下结构的变形破坏模式及损伤机理,在此基础上对新型抗冲击结构形式进行了探索,提出了吸能效果较好的四种新型结构形式,并进行水下爆炸模型试验,对上述数值仿真结果进行验证。
     本文的主要研究工作如下:
     (1)对爆轰波理论和炸药爆轰冲击波理论进行了研究,建立炸药爆轰和水下爆炸荷载在水中传播的数值仿真方法。采用大型通用有限元程序MSC.DYTRAN对水下爆炸载荷进行了数值模拟和分析,实现了水下爆炸全过程数值仿真,获得了水下爆炸载荷特点及变化规律。对水下爆炸载荷数值仿真技术进行了研究,探讨了爆炸水域范围、网格划分大小、流场边界条件、炸药和水等参数的确定方法,引入无因数综合网格尺寸系数,获得最佳网格尺寸,解决数值仿真结果的精度问题。研究砂土、砂岩、岩石、绝对刚性等不同水底介质对水中冲击波的影响效果。试验比较研究表明,本文的数值仿真方法能较好的模拟水下爆炸的爆轰过程及冲击波的传播过程。
     (2)对舰船在水下爆炸载荷作用下的动态响应进行数值仿真计算,获得大、中、小三型典型舰船结构与设备动态响应特点。提出了炸药量、爆距等爆炸冲击特征参数对典型舰船冲击响应的影响趋势,总结出了影响的规律,获得舰船典型设备冲击环境,并分析了无限水深与刚性底面海底条件以及舷侧不同角度爆炸等因素对水面舰船设备冲击环境的影响规律。
     (3)在水下爆炸载荷作用下舰船动态响应研究的基础上,分析典型舰船各主要设备位置处的位移、速度、加速度响应特点,绘制其冲击环境图谱,建立爆炸冲击因子、设备位置参数与冲击环境之间的关系。在此基础上,建立大、中、小三型典型水面舰船设备冲击环境仿真预报的理论和方法,对舰船设备的冲击环境进行了仿真预报,提出快速简便、准确可靠的舰船设备冲击环境的预报公式,实现对典型水面舰船设备冲击环境快速、准确预报。实例计算表明,此方法快速简便、准确可靠。
     (4)对水下爆炸载荷作用下舰船结构损伤模式及构件塑性变形能吸收特性进行了深入的研究。在吸能理论研究的基础上,提出了吸能效果好、结构材料轻、制造工艺简单、符合舰船设计要求的舰船双层底新型抗冲击结构形式,计算其抗冲击性能。分析舰船双层底船底纵桁填充泡沫材料后的舰船抗冲击性能及单层隔冲器和双层隔冲系统的隔冲效果。
     (5)在水面舰船冲击环境和结构抗冲击性能理论及有限元数值仿真研究的基础上,进行了舰船结构及设备抗冲击模型试验研究,获得水下爆炸荷载实际分布规律,验证了帽形结构(CS)、半圆管结构(STS)等新型结构形式的吸能效果以及不锈钢钢丝绳隔冲系统的抗冲击性能。
Modern warship inevitably encounters shock damage due to water explosion in a naval battle. With the quick development of guided missile, laser-bomb and weapon in water, and with the obviously increasing of mass and explosion time of bomb, shock environment for equipments, anti-shock characteristics of structures and equipments of warship should be deeply studied in detail, which will assure the safety and the normally work of ship structure and increase vital force and battle effectiveness of warship.
     However, it is a very complex nonlinear dynamic process that warship is shocked by underwater explosion. The process that the structure of warship is attacked by huge shock load within very short time belongs to big deformation and strong nonlinear problem due to interaction between the fluid and the hull. The underwater explosion includes many parameters, such as the type of detonator, the mass of detonator, the distance, the environment of underwater and the structural properties of the warship. For the complication of underwater explosion, it is very difficult to build an explicit numerical model for describe the problem of underwater explosion by using analytical method. In the same time experiments of underwater explosion are not often carried out for that it is a kind of very expensive devastating experiment. In addition, the experimental results are limited for generalization because there are some uncertainty and strongly nonlinear in the underwater explosion problem. Therefore, with the development of technology of nonlinear finite element (NFEM) method and the improvement of computer, the numerical simulation strategy will take on a more and more important role in dealing with the underwater explosion problem.
     The paper adopts a compositive research method including analytical method, numerical simulation strategy and model experiment method studying the shock environment of equipment on warship and the anti-shock properties of the warship structure. The paper presents a numerical simulation method applied to the problem of underwater explosion of ship on the basis of studying visualized NFEM. A serial of processes from detonator explosion, the spread of shock wave, to the dynamic response of the structure under shock wave are numerical simulated in the paper. Based on the simulation results, the paper concludes the structural damage deformation and mechanics of damage of the typical warship. The shock environment of equipment on the warship is predicted in the paper and the prediction equations of shock environment of equipments on surface ship are deduced. In addition, the paper discusses the new type shock resistance structures, and gives four new type shock resistance structures, which show favorable energy absorption behavior. Finally, the model experiment is carried out, and the experimental results validate the numerical simulation results.
     The main research contents of the paper are as follows:
     (1)The numerical simulation method of explosion of detonator and the spread of explosion load are built based on studying the theory of shock wave. The paper obtains the properties of underwater load and the spread rule by simulating the underwater loads with the MSC.DYTRAN software,and realize the simulation of the whole process of underwater explosion. In the same time, some key technologies in simulation are discussed including the reasonable determination the range of water, element size, the boundary condition of fluid, parameters of detonator and water,and adopts the parameter of element size which is dimensionless, to obtain the best element size in order to solve the problem about the explicit for simulation results. Simultaneously, the effects of different sea bottom which include soil, sandstone,rock, and rigid bottom to shock wave are studied in detail. The experimental results show that the presented method can preferably simulates the spread process of shock wave.
     (2)The paper calculates numerically the dynamic response of warship under explosion load, and concludes the properties of the dynamic response about structure and equipments. Furthermore the effect trend of mass of detonator and the distance of explosion to the dynamical response are given, and the effect rules are concluded. In addition, some factors such as bomb in different angle with the shipside and the different sea floor condition including infinite water depth and the rigid boundary are considered, and the effect principals are given.
     (3)The properties of the dynamic response of main equipments including displacement, velocity and acceleration are analyzed based on studying the dynamic response of the structure. And the shock spectrums of main equipments on the warship are plotted. The paper concludes the relationship among explosion shock factor, location parameters of equipment and shock environment of equipments. Finally, the prediction equations of shock environment of equipments on surface ship are deduced. The example results show that the predict method is convent, quick and correct.
     (4)The paper analyzes deeply the structural damage deformation and mechanics of damage of the typical warship. Furthermore, the paper presents new type double-bottom structures, which satisfy the requirement of warship design and have the excellence on energy absorption, the density of material, the technics of manufacture. The prosperities of shock resistance of new type double-bottom structures are simulated. The paper also analyzes the properties of shock resistance of the warship with the longitudinal flitch filled within foam and the effect of single floor shock isolator and double floors shock isolator.
     (5)The shock resistance model experiment of warship structure and equipment is carried out on basis of the numerical simulation about shock environment of surface ship and the theoretical research on structural anti-shock . Through analyzing the experimental results, the paper obtains the spread rule of underwater explosion load. In the same time the experiment results validate the effectiveness of shock resistance of cap-structure and semi-tube-structure. The stainless steel wire isolator shows favorable shock resistance property.
引文
1. Cole R H . Underwater Explosions. New Jersy: LISA, Princeton University Press,1948.
    2. Keil A H . Introduction to Underwater Explosion Research . UERD,Norfolk Naval Ship Yard,Portsmouth,Virginia:1956.
    3. Keil A H . The Response of Ships to Underwater Explosions . SNAME,1961,69: 366~410.
    4. Zamyshlyayev B V. Dynamic Loads in Underwater Explosion. AD-757183,1973.
    5. R.Rajendren,K.Narasimhan . Deformation and Fracture Behaviour of Plate Specimens Subjected to Underwater Explosion—a Review. International Journal of Impact Engineering, 2006,(32):1945~1963.
    6. 汪玉,华宏星. 舰船现代冲击理论及应用. 北京:科学出版社,2005.
    7. 刘建湖. 舰船非接触水下爆炸动力学的理论与应用,[博士论文] ,无锡:中国船舶科学研究中心,2003 年.
    8. 罗松林. 水下爆炸研究现状. 工程爆破,1999,3: 84~87.
    9. 翁长俭. 我国船舶振动冲击与噪声研究近年进展. 中国造船,2001,40(9):68~83.
    6. 10.吴有生. 世纪之交船舶结构力学研究展望. 力学—现代工程技术的支柱,南京:河海大学出版社,2001:45~66.
    11. 吴有生等. 爆炸载荷作用下舰船板架的变形与破损. 中国造船,1995,36(11):34~40.
    12. 唐文勇等. 加筋板结构的塑性动力响应分析. 上海交通大学学报,1996,30(8):12~17.
    13. 刘士光, 唐文勇. 加筋板结构在冲击载荷作用下的塑性动力响应. 华中理工大学学报,1996,1 .
    14. Didoszak J M. Parametric Studies of DDG—81 Ship Shock Trial Simulations, [ Master’ Thesis] , Monterey:Naval Postgraduate School,2004 .
    15. Department of the Navy. Shock Testing the Seawolf Submarine. Final Environmental Impact Statement,May 1998 .
    16. Schneider N.A. Prediction of Surface Ship Response to Severe Underwater Explosioin Using a Virtual Underwater Shock Environment. Master’ Thesis,Naval Postgraduate School,Monterey,2003 .
    17. Schneider N. A(LT).ship Shock TrialModeling and Simulation of USS Winstons . Churchill(DDG 81),[ Master’ Thesis],Monterey:Naval Postgraduate School, 2003 .
    18. 恽寿榕等. 爆炸力学. 北京: 国防工业出版社,2005: 1~34 .
    19. Akio Kira. Underwater Explosion of Spherical Explosive. Journal of Materials Proassing Technology,1999,85 : 64~68.
    20 Kenji Murata . Precise Measurements of Underwater Explosion Phenomena by Pressure Sensor Using Fluoropolymer. Journal of Materials Processing Technology ,1999,85:39~42.
    21. Snay H G.. Hydrodynawics of Underwater Explosions . 1st Processing Symposium . Naral Hydrodyn,Washington D.C:1965,8.
    22. Gaspin J B. Depth Scaling of Underwater Explosion Phenomena . AD-A020473, 1975,12.
    23. 张挺. 爆炸冲击波测量技术. 北京:北京国防工业出版社,1984.
    24. Slifko J P. Pressure-Pluse Characteristics of Decp Explosions as Functions of Depth and Range . AD-661804,1967,11.
    25. Michael M . Explosion Effects and Properties:Part Ⅱ—Explosion Effects in the Water. AD-A056694,1978,12.
    26. SnayH G . The Scaling of Underwater Explosion Phenomena .AD-271468,1961,6.
    27.Gaspin J B. Depth Scaling of Underwater Explosion Source Levels. AD-A020473, 1975,12.
    28. Temkin S A .Review of the Propagation of Pressure Pulses Produced by Small Underwater Explosion Charges. NOLTR-6181,1988,5.
    29. 许春勤等. 水中爆炸对障碍物的冲击压力测试及计算. 第五届榴弹技术交流会论文,1992.
    30. 钱胜国等. 近自由水面水下爆炸时水中特性. 爆炸与冲击,1983,3(4).
    31. 王中黔. 水下爆破冲击波. 水下爆破文集. 北京:人民交通出版社,1980.
    32. 长江航运局. 四川维尼纶厂通用码头水下爆破安全观察总结. 水运工程,1976 (8).
    33. 马乃耀. 水下爆破-黄埔水下爆破经验介绍,1977.
    34. 顾文彬. 浅层水中爆炸水底影响的试验研究. 解放军理工大学学报,2001(4)
    35. 张鹏翔. 浅层水中爆炸冲击波切断现象现象. 爆炸与冲击,2002,22(7).
    36. 顾文彬. 水底对浅水中装药爆炸效果的影响. 爆破,2003(12)
    37. 赵汉中. 在封闭结构中水对爆炸冲击波的削波、减压作用. 爆炸与冲击,2002,22(7).
    38. 方正. 水下爆炸气泡脉动周期的试验研究.工程爆破,2001,8.
    39. Suresh Menon,Mihir Lal. On the Dynamics and Instability of Bubbles Formed During Underwater Explosion. Experimental Thermal and Fluid Science ,1998,16: 305~321.
    40. MSC.DYTRAN User Manual ,Version 4.0,1997 .
    41. 孙锦山,朱建士. 理论爆轰物理. 北京:国防工业出版社,1989.
    42. 鲁传敬. 三维水下爆炸气泡的数值模拟. 航空学报, 1996,6.
    43. 刘榕海等. 利用水下爆炸法评价爆炸危险性的研究. 爆炸与冲击,1993,13(2) .
    44. 李玉民等. 水中爆炸气泡脉动流场的数值计算. 爆炸与冲击,1996,13(4) .
    45. Kell J B. Damping of Underwater Explosion Bubble Oscillation ,Journal of Applied Physics. 1956,27 (10) .
    46. Klaseboer E. Experimental and Numerical Investigation of the Dynamic of an Underwater Explosion Bubble Near a Resilient/Rigid Structure. Journal of Fluid Mechanics , 2005,8: 387~413.
    47. Rungsiyaphornrat. The Merging of Two Gaseous Bubbles with an Application to Underwater Explosions. Computers and Fluids,2003,32: 1049~1074.
    48. Chan S K. An Improvement in the Modifed Finite Element Procedure for Underwater Shock Analysis. Proceeding of 62nd Shock and Vibration Symposium,1992,12.
    49. Williamson R. Pediction Techniques for Refraction of Underwater Explosion Shock Waves: Programs for Computing Refraction Effects and Peak Transnational Veloctity. AD-A003435,1974,11.
    50. 王继海. 二维非定常流和激波. 北京: 科学出版社,1994.
    51. Britt J R. Bottom Reflection of Underwater Explosion Shock Waves: Computer Program. AD-A204130,1971,7.
    52. 柏劲松. 水下爆炸过程的高精度计算. 应用力学学报,2003,3:35~41.
    53. Kamegai M. A Study of Near Surface and Underwater Explosions by Computer Simulations. UCRL-ID-116360,1994,12.
    54. Cushing V J. On the Theory Bulk Cavitation. AD-704616,1969,12.
    55. 郑哲敏等. 爆炸处理水下海淤软基. 工程爆破文集(第四集), 1993.
    56. 顾文彬. 半无限流畅中装药爆炸作用的初步仿真分析. 南京大学学报(自然科学), 1997,33.
    57. 方斌等. 水下爆炸冲击波数值模拟中的参数影响. 哈尔滨工程大学学报,2005,8:12~17.
    58. 任新见等. 集团装药浅层水中爆炸数值模拟技术. 西部探矿工程,2005,10.
    59. 李伟. 爆炸冲击波的提取和显示方法. 爆炸与冲击,2003,23(3):32~38.
    60. 张振华. 水下爆炸冲击波的数值模拟研究. 爆炸与冲击,2004,24(3):21~26.
    61. R. Rajendren. Linear Elastic Shock Response of Plane Plates Subjected to Underwater Explosion. International Journal of Impact Engineering,2001,25: 493~506.
    62. R. Rajendren. Interaction of Finite Amplitude Acoustic Waves With a Plane Plate . Journal Acoust Soc,India,1997,25 :1~7.
    63. R. Rajendren. Underwater Shock response of Circular HSLA Steel Plate . Shock Vibration,2000,7 : 251~262.
    64. K Ramajeyathilagam. Non-Linear Eransient Dynamic Response of Rectangular Plates Under shock Loading. International Journal of Impact Engineering,2000,24: 999~1015.
    65. Houlston R Shaten JE. Structural Response of Panels Subjected to Shock Loading. 55TH Shock And Vibration Bulletin,Part 2. 1985.
    66. Houlston R. Damage Assessment of Naval Steel Panels Subjected to Tree-field and Enhanced Air-blast Loading. Advances in Marine Structures-2,London:Elsevier Science Publishers Limited,1991.
    67. 张效慈等. 深水爆炸水动压力场对潜体结构的动态影响. 中国造船,1997,38(11).
    68. 李国华,李玉节,张效慈. 浮动冲击平台水下爆炸冲击谱测量与分析. 船舶力学,2002,4.
    69. R. Rajendren. Damage Prediction of Clamped Circular Plates Subjected to Contact Underwater Explosion. International Journal of Impact Engineering,2001,25: 373~386.
    70. John M Brett. Time-Resolved Measurement of the Deformation of Submerged Cylinder Subjected to Loading from a Nearby Explosion. International Journal of Impact Engineering,2000,24:875-890.
    71. 朱锡等. 船体板架在水下接触作用下的破口试验.中国造船,2003,44(1):42~48.
    72. 刘希国. 冲击载荷下纤维复合材料裂纹起裂的实验研究. 爆炸与冲击,2002,4: 112~118.
    73. B Bosman. Shock Trials TROJKA DRONE Measurment Shot1 , 2 and 3. TNO-Report 96-CMC-R0294,1996,8.
    74. 彭兴宁. 船舶结构对水下非接触爆炸的响应. 舰船力学情报,1994 ,4.
    75. 高秋新. 爆炸引起的船体振荡. 舰船力学情报,1992,9:41~55.
    76. 国防科学技术工业委员会. 水面舰艇舱段模型水下爆炸试验方法. CB/Z272-2004,2004.
    77. 李珙华等. ***舰弹性船模的三维水弹性理论分析及试验结果比较. 中国船舶科学研究中心科技报告,1994.
    78. 张绮蓉等. 水下非接触爆炸对舰船总纵强度与局部强度影响的分析, “028G 艇实船度验资料”,中华人民共和国国家标准 GJB2329-95,“舰船抗核加固总要求” .
    79. C F Hung. Elastic Shock Response of an Air-Backed Plate to Underwater Explosion. International Journal of Impact Engineering,2003,2.
    80. K Y Lam,Z Zong. Dynamic Response of a Laminated Pipeline on the SeabedSubjected to Underwater Explosion. Composites Part B 2003,34:59-66.
    81. James L O’Daniel. An UNDEX Response Validation Methodology. International Journal of Impact Engineering,2002,27:919-937.
    82. Z Zon,K Y Lam. Viscoplastic Response of a Circular Plate to an Underwater Explosion Shock. Acta Mechanica ,2001,148:93~104.
    83. Petr Schneider . Predicting Damage of Slender Cylindrical Steel Shells Under Pressure Wave Load . Journal of Loss Prevention in the Process Industries ,1988,11: 223~228.
    84. J Jiang . Non-Lnear Transient Analysis of Submerged Circular Plates Subjected to Underwater Explosion. Computer Mothods in Applied Mechanics and Engineering ,1996,134:163~179.
    85. Keith A Beiter .The Effect of Stiffener Smearing in a Ship-Like Box Structure Subjected to an Underwater Explosion[Master’ Thesis] . Monterey : Naval Postgraduate School,1998 .
    86. Richard E . Simplified Finite Element Modeling of Stifened Cylinders Subjected to Underwater Explosion,[ Master’ Thesis] , Monterey :Naval Postgraduate School,1996 .
    87. Y W Kwon .Comparison of USA-DYNA Finite Element Models for a Stiffened Shell Subjected to Underwater Shock. Computers& Structrres,1998,1:127~144 .
    88. S W Gong. Structural Analysis of a Submarine Pipeline Subjected to Underwater Shock. International Journal of Pressure Vessel and Piping,2000,77:417~423 .
    89. 金乾坤,丁刚毅. 水下爆炸对船板冲击仿真. 计算机仿真,2005,6 .
    90. 堪勇等. 刚塑性圆板受水下爆炸载荷时的动力响应. 爆炸与冲击,2005,25(1) :28~44 .
    91. 梅志远,朱锡,刘润泉. 加筋板结构爆轰载荷下动态响应数值分析. 北京:MSC论坛,2003 .
    92. 汪俊,刘建湖等. 加筋圆柱壳水下爆炸动响应数值模拟. 北京:ABAQUS 用户论文集,2005.
    93. S W Gong. On Attenuation of Floating Structure Response to Underwater Shock. International Journal of Impact Engineering,2006,32:1857~1877.
    94. Zhongqi Wang. A Full Couple Numerical Analysis Approach for Buried Structure Subjected to Subsurface Blast . Computers and Structures,2005,83:339~356.
    95. Young S Shin. Ship Shock Modeling and Simulation for Far-Field Underwater Explosion. Computers and Structures,2004,82:2211~2219
    96. Kato Y Response of Model Structure to the Proximity of an Underwater Explosion.Computational Ballistics,2005,40:99~106.
    97. Klomfass. A Analysis of blast Loaded Structures by Numerical Simulation Fluid Structure Interaction and Moving Boundary Problems . 2005,84:403~412.
    98. Cho-Chung Liang. Study of the Nonlinear Responses of a Submersible Pressure Hull. International Journal of Pressure Vessels and piping,1998,75:131~149.
    99. Mark H Oesterreich. Transient Response Analysis of the 72 Inch TAC-4 Ruggedized Shippboard Rack Subjected to an Underwater Explosion Event[Master’ Thesis] .Monterey :Naval Postgraduate School,1998 .
    100. 张振华等. 潜艇艇体结构在水下爆炸冲击载荷下损伤研究. 振动与冲击,2005,5
    101. 张振华等. 水下爆炸冲击波作用下自由环肋圆柱壳动态响应的数值仿真研究. 振动与冲击,2005,1
    102. 万泉等 分析小型圆柱壳结构响应的一种近似方法. 振动与冲击,2002,1.
    103. 姚熊亮.圆筒结构水下爆炸数值实验研究.哈尔滨工程大学学报,2002,3.
    104. 王刚等. 园柱壳在水下径向爆炸载荷下的弹塑性动力向应. 上海交通大学学报, 1997,31(11).
    105. 刘忠族等. 水下爆炸冲击波作用下多层园柱壳的动力响应. 华中理工大学学报, 1997,9.
    106. 金咸定. 舰船整船结构在水下爆炸载荷下动力响应的数值模拟. 首届船舶与海洋工程结构力学学术讨论会文集, 1999.
    107. 姚熊亮. 爆炸载荷下航母飞行甲板的弹塑性动力响应.哈尔滨工程大学学报. , 1996.
    108. Robert E Kaufman. Effects of Geometric and Material Imperfections on the Dynamic Response of Cylindrical Shells Subjected to an Underwater Explosion. [Master’ Thesis],Monterey :Naval Postgraduate School,1995 .
    109. Y S Shin. Damage Response of Submerged Imperfect Cylindrical Structures to Underwater Explosion. Computers & Structures ,1996,60:683~693
    110. 王远功. 冲击载荷作用下裂纹的动态响应分析. 福州大学学报,1994,8.
    111. 艾艳辉. 水下小目标近场抗爆的建模和计算分析. ABAQUS 用户论文集,北京:2005.
    112. Chih-Hao . A Conservative Compressible Multifluid Model for Multiphase Flow:Shock—Interface Interaction Problems . 17th AIAA Commputation Fluid Dynamics Conference ,2005,6:6~9.
    113. Ronald. P .Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with the Ghost Fliud Method,[Master’ Thesis] . Monterey :Naval PostgraduateSchool,2001 .
    114.Theodore Trevino. Application of Arbitrary Lagrangian Eulerian (ALE) Ayalysis Approach to Underwater and Air Explosion Problems[Master’ Thesis] . Monterey :Naval Postgraduate School,2001 .
    115 F H Hamdan. Near-Field Fluid-Interaction Using Lagrangian Fluid Finite Element .Computers & Structures ,1999,71:123~141 .
    116 Cichocki K. Analysis of Damages Due to Underwater Explosions on a Hybrid Structure. International Journal Engineering and Design. 1994,1:341~361.
    117. Chocki K. Effects of Underwater Blast Loading on Structures with Proteative Elements. International Journal of Impact Engineering, 1999,22:609~617.
    118. S W Gong. Transient Response of Stiffened Composite Submersible Hull Subjected to Underwater Explosive Shock. Composite structure,1998,41.
    119. S W Gong. Transient Response Of Floating Composite Ship Section Subjected To Underwater Shock. Composite Structures,1999,46:65~71.
    120. Liu Jian-hu. A Simplified Method for Analyzing the Response of GRP Ship to Underwater Explosion. Journal of Ship Mechanics,2000,6.
    121. C T Dyka. Damage in Marine Composites Causd by Shock Loading. Composites Science and Technology ,1998,58:1433~1442.
    122. A P Mouritz . The Damage to Stitched GRP Laminates by Underwater Explosion Shock Loading . Composites Science and Technology ,1995,55:365~374.
    123. Sang-Gab Lee. Fluid Mesh Modeling on Surface Ship Shock Response Under Underwater Explosion. Practical Design of ships and other floating structures,2001.
    124. 姚熊亮. 流场网格划分对水下爆炸结构响应的影响. 哈尔滨工程大学学报, 1996,8.
    125. 张阿漫,姚熊亮等. 舰船建模简化方法在水下爆炸数值模拟中的应用. 北京:ABAQUS 耦合用户论文集,2005.
    126. Z. Zong. A Hydroplastic Analysis of a Free-Free Beam Floating on Water Subjected to an Underwater Bubble . Journal of Fluids and Structures,2005,20:359~372.
    127. C Wang. Elastic Mesh Technique for 3D BIM Simulation with an Application to Underwater Explosion Bubble Dynamics . Computers & Fluids,2003,32:195~1212.
    128. E Llaseboer. Dynamics of an Oscillation Bubble Near a Floating Structure. Journal of Fluids and Structures,2005,21:395~412.
    129. 姚熊亮等. 水下爆炸二次脉动压力下舰船抗爆性能研究. 中国造船,2001,42(6): 48~54
    130. 陈建平. 水下爆炸气泡脉动压力下舰船及其设备抗冲击性能研究. 舰船科学技术,2001,6:17~25.
    131. 李玉节等. 水下爆炸气泡激起的船体鞭状运动. 中国造船,2001,9:1~7.
    132. Geer T L .Residual Potential and Approximate Methods for Three Dimensional Fluid—Structure Interaction Problem . Journal Acoust Soc. ,1971 ,49 :1505~1510.
    133. Geer. T L Doubly Asymptotic Approximations for Transient Motions of Submerged Structures. Journal Acoust. Soc. ,1978,64(5) :1152~1159.
    134. Geer T L .Doubly Asymptotic Approximations for Vibration Analysis of Submerged Structures . Journal Acoust. Soc. ,1989 ,73(4) :505~1510.
    135. 邢景棠等. 流固耦合力学概述. 力学进展,1997,12.
    136. 汪玉等.考虑流固耦合作用的舰船抗冲击仿真计算. 振动与冲击,2005,1.
    137. Chun Li. Fusion Analysis of Lifecycle Safety and Damage Tolerance for Cracked Structures International Journal of Fatigue ,2005,27:429~437.
    138. Dongkon Lee. Knowledge Base System for Safety Contral of Damaged Ship . Knowledge—Based System,2005,15:1~5.
    139. Dongkon Lee. A Study on the Framework for Survivablity Assessment System of Damaged Ship. Ocean Engineering,2005,32:1122~1132.
    140. J. Keith Clutter. Hydrocode Simulation of Air and Water Shock for Facility Vulnerability Assessments. Journal of Hazardous Materials ,2004,106A:9~14.
    141. Cho-Chung Liang. Shock Responses of a Surface Ship Subjected to Noncontact Underwater Explosions . Ocean Engineering ,2006,33(7):48~77.
    142. 李典庆. 张圣坤水面舰艇生命力研究现状及方向概述. 造船技术,2003,5.
    143. 张振华等. 潜艇艇体结构生命力评估体系研究. 船舶工程,2004,5.
    144. 尹日建等. 提高舰船生命力方法研究. 船舶工程,2005,3.
    145. 袁卫锋等. 壳体结构受水下爆炸的危害距离讨论. 福州大学学报,1994,8: 85~89
    146. 刘希国等. 裂纹在冲击载荷作用下起裂的临界载荷面. 爆炸与冲击,2001,21(7): 197~204.
    147. 周斌兴. 冲击响应谱分析的实现方法. 江南学院学报,1998,4.
    148. 胡海岩. 机械振动与冲击. 北京:航空工业出版社,1998:242~246.
    149. 国防工业技术委员会.舰船系统界面要求—机械环境冲击环境. GJB1446.6 2—92,1993.
    150. 中国人民解放军总装备部. 振动、冲击环境测量数据归纳方法. GJB/Z126—99,2000.
    151. AMSC7651. Department of Defense Test Method Standard-Mechanical Vibrations of Shipboard Equipment. MIL-STD-167-1A,2005,11.
    152. 余晓菲,刘士光. 水下爆炸与冲击载荷作用下结构物的响应特性. 中国造船(增刊),2004,12.
    153. Greenhorn J. The Assessment of Surface Ship Vulnerability to Underwater Attack , Transaction of the Royal Institution of Naval Architects, 1989.
    154. 吴用舒. 水面舰船冲击环境的理论研究. 船舶系统工程部,1992.
    155. Remmers G. The Evaluation of Spectral Techniques in Navy Shock Design ,Shock and Vibration Bulletin,Part I,1983.
    156. 姚熊亮等. 水下爆炸冲击载荷作用时船舶冲击环境仿真. 中国造船,2003,44(1).
    157. Niessen E. Structural Design for Enhanced Survivability of Ship's Hull. Advanced Marine Structures –2,LONDON:Elesvier Applied Science Press,1991:352~372.
    158. S Guruprasad. Layered Sacrificial Cladding Under Blast Loading Part2-Experimental Studies. International Journal of Impact Engineering , 2004,24:975~984.
    159. Liviu Librescu. Dynamic Response of Anisotropic Sandwich Flat Panels to Underwater and In-Air Explosions. International Journal of Solids and Structures, March ,2005.
    160. Helmuch Toftegaard. Design and Test of Lightweight Sandwich T-Joint for Naval Ships. Composites,2005,36:1055~1065.
    161. 陈海天等.用多层管材内衬提高抗爆结构比强度及比刚度. 工程力学,2001 年增刊.
    162. 陈斌等. 带吸能装置的组合式抗爆结构的试验分析工程力学,2002 年增刊.
    163. 汪玉等. 舰船抗冲击瓦结构新概念及水下抗爆机理研究.中国科协第五届青年学术年会论文集,2003.
    164. 朱锡等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究. 爆炸与冲击,2004,24(3) .
    165. 张振华等. 水面舰艇舷侧防雷舱结构水下抗爆防护机理研究. 船舶力学,2006,1
    166. 周文亮等. 冲击隔离发展浅谈. 噪声与振动控制,2002,5.
    167. 王斌耀等. 舰艇海上对接时抗冲击元件的应用. 噪声与振动控制,2000,6.
    168. 黄震球等. 内部爆炸后舰船总体结构的剩余强度. 武汉造船,1996,6:1~3.
    169. 钱网生,高立冬. 船用设备的冲击隔振研究. 振动工程学报,2000,4.
    170. 刘永明. 减振浮筏系统多向冲击谱研究. 上海交通大学学报,1997,31(6).
    171. A K Mallik. Principle of Vibration Control.New Ddhi : Affiliated East —WESTPRESS,1990.
    172. 王自力. 船舶碰撞损伤机理与结构耐撞性研究,[博士学位论文],上海交通大学,2000.
    173. 王仁等. 塑性力学进展. 北京:中国铁道出版社,1988.
    174. 徐秉业等. 考虑应变率敏感性的塑性动力学. 机械强度,1984,3.
    175. Jones N. Structural Impact. Cambridge :Cambrigde University Press,1989.
    176. 北京工业学院《爆炸及其运用》编写组,《爆炸及其运用》,北京:国防工业出版社,1979.
    177. 李世海等. 水下爆炸加密基床引起地基及水中结构二次振动的试验研究. 工程爆破,1999,6:15~20.
    178. 项晨. 复合材料加筋结构的流固耦合振动及动力响应分析. 复合材料学报,1996.
    179. 沈国光. 水下近水面爆炸兴波. 天津:天津大学.1992.
    180. 余同希. 利用金属塑性变形原理的碰撞能量吸收装置. 力学进展,1986,1.
    181. 余同希. 结构的耐撞性和能量能量吸收装置. 应用力学学报,1988,3.
    182. 唐德高,周布奎,周早生. 侧向爆炸冲击波加载作用下钢管吸能特性的实验研究.爆炸与冲击,2002,22(2) :41~46..
    183. 刘瑞同. 轴向载荷下复合材料元件吸能能力的试验研究. 南京航空航天大学学报,2002,10:31~37..
    184. 张振淼. 轨道车辆碰撞能量吸收装置原理及结构设计. 国外铁道车辆,2001,3:
    22~28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700