用户名: 密码: 验证码:
2,2,6,6-四甲基-3,5-庚二酮铈及其助剂的合成应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着经济的发展,世界环境状况日趋恶化。由于汽车尾气排放是最大的污染源之一,提高汽油质量势在必行。使用汽油添加剂包括汽油辛烷值改进剂(抗爆剂)是提高车用汽油质量最有效和最经济的方法。目前市场应用最广的是甲基叔丁基醚(MTBE)。由于其对地下水有污染,将逐渐退出燃料添加剂市场。有学者认为以高效金属有机抗爆剂为基础的复合添加剂将是热点。在这种背景下,我们课题组展开了新型金属抗爆剂的研发,合成了高效的金属抗爆剂2,2,6,6-四甲基-3,5-庚二酮铈(Ce(thd)_4)及其助剂二异丁烯(DIB)。
     以叔戊酸为原料经酯化、Claisen缩合制备了配体2,2,6,6-四甲基-3,5-庚二酮(Hthd),然后与铈盐络合得到产品2,2,6,6-四甲基-3,5-庚二酮铈。主要研究了配体Hthd的合成方法。通过正交试验得到了优化实验条件:以乙醇钠的乙醇溶液为催化剂,酯酮摩尔比为1.2:1,反应温度90℃,溶剂用量10mL,反应时间5小时。产品Ce(thd)_4经熔点测定和质谱认证。探讨了Ce(thd)_4的抗爆机理
     在文献的基础上以国产强酸型阳离子交换树脂732为催化剂,叔丁醇为选择性改进剂合成了二异丁烯。正交试验得到的二异丁烯合成的优化工艺条件为:反应温度90℃,反应时间2小时;醇烯摩尔比0.5%:1,催化剂用量为1%。产品经标准品定性,气相色谱法定量。
     油溶性和腐蚀性试验结果表明,产品2,2,6,6-四甲基-3,5-庚二酮铈符合要求,适宜作为汽油辛烷值改进剂。辛烷值应用性能检测表明:二异丁烯添加量为5%(体积分数),铈添加量为0.016g/L,可将催化裂化汽油(FCC)升级为合格的90#车用汽油;二异丁烯添加量为10%时,铈添加量为0.08g/L,可将90#车用汽油升级为93#高级汽油。
Going with the development of economy, the world environment condition gets worse.Asthe automobile exhaust is one of the biggest pollutant source, improving the quality ofgasoline is imperative under the situation. Using gasoline additives including octane-improvement agents(anti-knock agents) is the most efficient and economical way to improvethe gasoline quality. MTBE has the most percentage in the present market, but it will quit thethis stage soon because of its pollution to underground water. Scholars believe that efficientcomposite additives based on organometallic antiknock agents will be hot spots. Under thisbackground, our team begin the research on new organometallic antiknock agents.(2, 2, 6, 6-tetramethyl-3, 5-heptanedionato)-cerium(Ⅳ)(Ce(thd)_4) is synthesized accompaniedwith its addition agent diisobutene(DIB).
     Starting with triethylacetic acid, after esterification, claisen condensation and complexing,final product Ce(thd)_4 is obtained. Synthesis of Hthd is studied by orthogonal experiments.Optimized conditions are as follows:using ethanol solution of sodium ethylate as catalyst, themole ratio of ester to ketone is 1.2:1; the temperature is 90℃; the dosage of solvent is 10mLwith reaction time 5h. Final product is confirmed by melting point measuration andMS. Antiknock mechanism of Ce(thd)_4 is discussed.
     Using strong acid cation exchange resin homemade as a catalyst, t-butanol as selectivityimprover, diisobutene is synthesized on the basis of literatures. Optimized conditions are got byorthogonal experiments:the temperature is 90℃, the time is 2h, the mole ratio of t-butanol toisobutene is 0.5%: 1, the dosage of catalyst is 1%. The product is determined by standard product and GC.
     Test results of oil-solubility and corrosiveness indicate that both products are suitable asexcellent gasoline antiknock agents. Application test results indicate that FCC can be upgratedto 90# gasoline with 5%(volume) diisobutene and 0.016g/L Ce; 90# gasoline can be upgradedto 93# gasoline with 10% diisobutene and 0.08g/L Ce.
引文
[1] 王德盛.新标准汽油的挑战及对策.天然气与石油.2000,18(1):56—59.
    [2] 林世雄.石油炼制工程(上册,第二版).北京:石油工业出版社,1988.
    [3] 王宝仁,孙乃有.石油产品分析。北京:化学工业出版社,2004.
    [4] 袁晓东.烃类爆震燃烧机理和抗爆剂作用机理的探讨.石油与天然气化工.2002,31(2):78-81.
    [5] 周士庆,为何要使用无铅汽油,城市公用事业,1995.9(5):37—38.
    [6] Gal Y S , Choi S K. Cyclopolymerization of dipropargylamine and dipropargylammonium bromide by transition metal catalysts. European Polymer Journal, 1995, 31 (10):941-945.
    [7] 曾刚.MMT——高效无铅汽油抗爆添加剂.世界石油工业,1998,8(5):49-57.
    [8] Erhard K H. Studies of knock and antiknock by kinetic spectroscopy. Proca Royal Society,1956, 234A, 178-191.
    [9] 平海宏,仆玉华,邓芳等.对MMT调和汽油应用性能的研究.化工科技,2000,8(3):38-41.
    [10] 王炳根.羰基物替代四乙基铅提高汽油辛烷值.四川有色金属,1999,4:40—46.
    [11] Donaid C F, Grand I. Union Carbide Corporation, assignee. Process for the preparation of cyclopentadienylmanganese tricarbonyl .USP:3040077.1957.
    [12] 任天辉,饶文琦,李久盛等.高效汽油抗爆剂——MMT的研究进展.精细石油化工进展,2000,1(7): 39—43.
    [13] Shapiro H, Detroit, Witt E G et al. Ethyl Corporation, assignee. Cyclomatic manganese carbonyl compounds. USP:2839552.1958.
    [14] Niebylski L M, Mich B. Ethyl Corporation, assignee. Fuel compositions for reducing combustion chamber deposits and hydrocarbon emissions of internal combustion engines. USP:4191536.1980.
    [15] Somorjai G A, Berkeley. San Luis Rd., assignee. Fuel compositions and additive mixtures for reducing hydrocarbon emissions. USP:4390345.1983.
    [16] Birmingham J M. Chemical Engineering and Processing. 1962,58(10):74.
    [17] 徐兆瑜.二茂铁的合成与应用.宁夏石油化工,2000,(4):4—7.
    [18] Xia Y. Synthesized diesel-oil fuel. Fuel and Energy Abstracts, 2001,42(1):15.
    [19] Wilkinson G. Synthesis of Ferrocene. Organic Synthesis. 1956,36:31-34.
    [20] Chernyshev E A, Bukhtiarov A V, Kabanov BK, et al. ol'dekop, Elektrokhimiya. 1982,18:239.
    [21] Leonard M K. Improvement in Hydrocarbon Fuels for Internal Combustion Engines.USP:1053091.1996.
    [22] Ahmadi I H. Liquid Hydrocarbon Containing Alkali Metal Salts of Diarylcarbamates as Antiknock Agents. USP:3771979.1973.
    [23] Ahmadi I H. Liquid Hydrocarbon Fuels Containing Alkali Metal Salts of Alkyl and Dialkyl-Aminoalkyl Phenol as Antiknock Agents. USP:3770397.1973.
    [24] Kovalenko A P, Mavrin V Yu, Evgen I I, Detemination of lithium in hydrocarbon fuels. Chemistry and Techonology of Fuels and Oils. 2003,39(5):290-291.
    [25] 袁晓东,倪春雨.混合稀土羧酸盐作为汽油抗爆剂的研究,石油与天然气化工2001.30(3):132-134.
    [26] 袁晓东,刘治中.羧酸镧作为车用汽油抗爆剂的研究,炼油设计2001.31(2):43—45.
    [27] Adam B, Anna L, Joanna P, et al. The formation of MTBE on supported and unsupported H_4SiW_(12)O_(40). Applied Catalysis A: General 256 (2003) :153-171.
    [28] 吴千里.甲基叔丁基醚(MTBE)对汽油性能的改善.江苏化工,1995,23(1):29—32.
    [29] 于晓章.汽油添加剂甲基叔丁基醚(MTBE)对环境的危害性.生态科学,2003,22(8):257—260.
    [30] Turpin L E. Cut benzene out of reformate. Hydrocarbon Processing, 1992,71(6):86.
    [31] 王伟,郝兴仁,吕爱梅.TAME合成工艺技术.石油化工,2003,32(1):52-55.
    [32] 吴显春,刘路加.二异丙基醚是良好的高辛烷值汽油调合组分.炼油设计,1994,24(5):32—33.
    [33] Nakamura D N. The latest in refining technology. Hydrocarbon Processing, 1995,74(7):15.
    [34] 李衍滨,万江,吕志辉.丙烯水合醚化合成二异丙醚.石油化工,2000,29(2):89—92.
    [35] Intervep S A. Preparation of Alkyl Tert Alkyl Ethers Useful as Octane Improvers for Gasoline. USP:5382706,1995.
    [36] Arthur A C. Process for the Production of Tertiary Alkyl Ethers From FCC Light Naphtha. USP:5166455,1992.
    [37] Cheng Zhang, Weijian Han, Xuedong Jing. Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renewable and Sustainable Energy Reviews. 2003 (7):353-366.
    [38] Man E W, Luiz C B, Denise M G. AlvesFuel ethanol after 25 years. Tibtech. 1999,17:482-487.
    [39] 乔映宾,张永光.甲醇汽油应用情况及存在问题的探讨.石油化工2005年,34(增刊):74-77.
    [40] Derosa T F, Studzinski W M, Russo J M, Kaufman B J, Hahn R T. Non-metallic antiknock fuel additives. USP:5468264, 1995.
    [41] Derosa T F, Studzinski W M, Russo J M, Kaufman B J, Hahn R T. Nonmetallic antiknock fuel additive. USP:5536280,1996.
    [42] 禹茂章主编.《世界精细化工手册》(续编).北京:化学工业部科学技术情报研究所,1986:341-342.
    [43] Licke G C. Gsoline containing N-sulfinyl amines as antiknock agents. USP:3554712,1971.
    [44] Milnovic I, Humski K. Use of MTBE as a gasoline additives. Goriva Maziva, 1977,16(56):11-24.
    [45] Burns, L D. Motor fuel additives. USP:4295861, 1981.
    [46] Parlman R M, Lee R C, Burns L D. Motor fuel. USP:4321061, 1982.
    [47] 周正仁.几种提高汽油辛烷值的添加剂.化学工程师,1992,26(2):27—31.
    [48] 张耀庆.改善车用汽油杭爆性和排放性能用的添加剂.小型内燃机,1995,24(5):52—56.
    [49] 陆婉珍,龙义成,黎洁.碳酸二甲酯作为汽油添加剂的评价石油学报(石油加工).1997,13(3):40-44.
    [50] Babad H, Zeiler A G, Synthesis of DMC. Chemical Review, 1973(73):75.
    [51] Urano Y, Kirishiki M, Onda Yet al. Tsunek H, USP:5430170,1993.
    [52] Chong Shik Chin, Dongchan Shin, Gyongshik Won, The effects of catalyst composition on the catalytic productionof dimethyl carbonate. Journal of Molecular Catalysis A: Chemical 2000,160:315-321.
    [53] Ping Yang, Yong Cao, Jun-Cheng Hu, Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol. Applied Catalysis A:General, 2003(241):363-373.
    [54] Zaharova E L. Additives for Improvement and Ecological Properties of Motor Gasolines. Chemistry and Technology of Fuels and Oils. 1994, (2):35-38.
    [55] 蹇海鸥,周新锐,赵德丰.β-二酮铈的合成方法及其应用进展.化学试剂,2006,28(5):279—282
    [56] Hartle R J. Gasoline fuel compositions containing antiknock additive. USP:4211535,1980.
    [57] Deffer J F. Organic synergists for organo-cerium (Ⅳ) anti-knock additives in lead-free fuel compositions. USP:4133648,1979.
    [58] Wenzel T J, Williams E J, Haltiwanger R C et al. Studies of metal chelates with the novel ligand 2,2,7-trimethyl-3,5-octanedione.Polyhedron, 1985,4(3):372.
    [59] Behrsing T, Bond A M, Deacon G B et al. Cerium acetylacetonates new aspects, including the lamellarclathrate [Ce(acac)4]. 10H20. Inorganica Chimica Acta, 2003,352:230-231.
    [60] Becht M, Gerfin T, Dahmen K H. Some Cerium β-diketonate derivatives as MOCVD precursors.Chemistry of Materials,1993,5(1):138.
    [61] Becht M, Dahmen K H, Gramlich V. Crystal structure and thermal behavior of some cerium complexes with the fluorinated β-diketonate ligand 6,6,6-trifluoro-2,2-dimethyl-3,5-exanedione(fdb) .Inorganica Chimica Acta, 1996,248:28.
    [62] Cook S L, Rush M W,Richards P J et al. Fuel additives. USP:5593464,1997.
    [63] Baxter I, Darr J A, Hursthouse M Bet al. The synthesis and characterization of some stable Ce(Ⅲ) β-diketonate compounds. Polyhedron, 1998,17(8):1330-1331.
    [64] Pollard K D, Jenkis H A, Puddephatt R J. Chemical vapor deposition of Cerium oxide using the precursors [Ce(hfac)_3(glyme)].Chemistry of Materials, 2000,12(3):702.
    [65] Eisentraut K J, Fischer R L, Sievers R E. Rare earth β-ketoenolate antiknock additives in gasolines. USP: 3,794,473,1974.
    [66] Song H Z, Zhang W J, Peng D K et al. Properties characterization of Ce(DPH)_4 served as precursor of MOCVD. Materials Research Bulletin, 2002,37(8):1488.
    [67] Sievers R E, Wenzel T J. Liquid hydrocarbon-soluble rare earth chelates prepared from the novel ligand 2,2,7-trimethyl-3,5-octanedione and fuels containing same. USP:4251233,1981.
    [68] Wenzel T J, Williams E J, Haltiwanger R C et al. Studies of metal chelates with the novel ligand 2,2,7-trimethyl-3,5-octanedione. Polyhedron, 1985,4(3):372.
    [69] Thompson D A. Volatile cerium complexes. USP:4424165, 1984.
    [70] Kepert D L, Patrick J M, White A H. The [M(bidentate ligand)_4]system:crystal structures of tetrakis(dibenzoylmethanato)-Uranium(Ⅳ)and Cerium(Ⅳ) .Journal of Chemical Society Dalton Transletters, 1983:367.
    [71] 吴鼎铭,卢灿忠,庄鸿辉.含双齿酸性烯醇式β—双酮的十配位稀土金属配合物[Ce(NO_3)_2(phen)_2(CH_3COCHCOCH_3)].H_2O的合成与晶体结构.中国稀土学报,2002,20(5):470,
    [72] Baskin Y, Prasad N K. Investigations of some tetravalent complexes in the solid state. Journal Inorganic and Nuclear Chemistry, 1963,25:1014.
    [73] Thompson D A. Method for making a volatile cerium diketonate compound. USP:4511515,1983.
    [74] Yoshimura T, Miyake C, Imoto S. Some β-diketone chelate complexes with Uranium(Ⅳ),Zhorium(Ⅳ),and Cerium(Ⅳ).Preparation and IR Spectra. Bulletin of Chemical Society of Japan, 1973,46(7):2097.
    [75] 汪联辉,章文贡.稀土金属醇盐的合成、性质和应用.稀土,1997,18(2):33-34.
    [76] 吕敬慈,梁重山,陈军生等.La、Nd、Sm、Tb与HDBM配合物的固相反应合成与表征[J].无机化学学报,1998,14(3):341.
    [77] Howard G W, James J S, CHARLES R H. Acetoacetylation of Aromatic Compounds by Boron Fluoride to Form β-Diketones. Failure with Boron and Aluminum Chloride. Journal of the American Chemical Society. 1953,75(3):4109-4110.
    [78] 尤田耙,潘显道,贺蕴普等,几种空间位阻的新手性β—二酮的合成.有机化学,1997,17(1):82-86.
    [79] Yasushi K, ~oshifumi Y. Practical Synthesis of 3-Methylnonane-2,4-dione, an Intense Strawlike and Fruity Flavored Compound. Journal of Agriculture and Food Chemistry. 2001,49(8),3864-3866.
    [80] Suzuki M, Watanabe A, Noyori R. Palladium(0)-Catalyzed Reaction of a, β-Epoxy Ketones Leading to β-Diketones, Journal of the American Chemical Society. 1980,102(6):2095-2096.
    [81] Kyung-Ho P, Linda J.Cox Solid-Dhase synthesis of traceless 1,3-diketones. Tetrahedron Letters. 2003,44:1067-1069.
    [82] 阎鑫,张秋禹,田琴等.三氟乙酰丙酮的合成与表征.精细化工.2005,22(5):337-339.
    [83] 陈义朗,李新生,张华.四种新型β-二酮和钇的配合物的合成及性质研究.稀土 2004,25(6):87-90.
    [84] 唐文明.6,6-二甲基-2硝基环己酮的合成.化学试剂,1997,19(1),30-31.
    [85] 沈之芹.3-正丙基-5-羧基-1-甲基吡唑的合成研究.化学世界.2002,4:208-210.
    [86] 操来章.乙酰丙酮的合成及其反应机理.化工生产与技术.1994,2:14-17.
    [87] Albert L H, Elvins M N, Urencle A et al. The Alkaline Condensation of Fluorinated Esters with Esters and Ketones. Journal of the American Chemical Society. 1947,69(3):1819-1820.
    [88] James R B, Robert E S. Preparation and Utilization of a Macromolecular Analogue of N-tert-Butyl-N-ethylamine as a Reusable Amide Base. Journal of Organic Chemistry. 1989,54(3): 723-726.
    [89] 刘金玉,李东,李吉春等.C4馏分工业应用技术研究进展.石化技术与应用 2007,25(2):176-180.
    [90] 齐泮仑,西晓丽,顾爱萍等.高活性聚异丁烯的合成.石油炼制与化工.2006,37(3):19-23.
    [91] 马育红,程斌,杨万泰等.异丁烯正离子聚合的进展及应用.合成橡胶工业.2003,26(1):53-58.
    [92] 柯扬船,吴天斌,郭文莉等异丁烯聚合新催化体系研究.应用化学.2003,20(2):164-168.
    [93] 吴小蓓.丁烯二聚生产高辛烷值烷基化物.精细石油化工进展.2002,3(1):19-26.
    [94] 王寿璋.C4资源的综合利用.C4资源利用途径及技术开发学术交流会,北京,2002:38-45.
    [95] Brunelli M, Castelvetro W, Bellussi G. Catalyst and Process for Oligomerizing Olefins. USP:5510555,1996.
    [96] Girolamo M D, Marchionna M. Acidic and basic ion exchange resins for industrial applications. Journal of Molecular Catalysis A:Chemical. 2001(177):33-40.
    [97] Drake, Charles A. Catalyst systems for andolefin dimerization.USP:5064794,1991.
    [98] Sandip T, Mehul C, Preeti A et al. Kinetic Studies on the Dimerization of Isobutene with Ion-Exchange Resin in the Presence of Water as a Selectivity Enhancer. Industrial & Engineering Chemistry Research. 2006,45,1312-1323.
    [99] Tuomas O, Maija H, Aspi K et al. Isobutene dimerisation in a miniplant-scale reactor. Chemical Engineering and Processing. 2006,45:329-339.
    [100] Honkela M L, Krause A O. Influence of polar components in the dimerization of isobutene. Catalysis Letters. 2003,87(3-4):113-119.
    [101] Markku L, Reijo S, Lauri N et al. Structural and thermal studies of tetrakis (2,2,6,6-tetramethyl-3,5-hepatanedionato)cerium(Ⅳ).Acta Chemical Scan Scandinavica, 1991, 45:1006-1011.
    [102] 袁晓东.烃类爆震燃烧机理和抗爆剂作用机理的探讨.石油与天然气化工.2002,31(2):78-81.
    [103] Alessandro T, Carla L, Marta B et al. The utilization of ceria in industrial catalysis. Catalysis Today. 1999(50):353-367.
    [104] Charles T C, Charles H P. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science. 2005,309(29):713-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700