用户名: 密码: 验证码:
宽礁膜(Monostroma latissium)多糖的分离、结构和抗凝血活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽礁膜(Monostroma latissium)隶属于绿藻门,绿藻纲,礁膜科,礁膜属。多糖是宽礁膜的有效成分。本文以宽礁膜为原料,对宽礁膜多糖的提取分离、化学特征、结构和抗凝血活性进行了研究。
     论文第一部分,以宽礁膜为原料,依次采用冷水、热水和碱液提取,分别得到三个多糖组分CE、HE和AE,运用化学、气相色谱和高效液相色谱等方法分别对其化学组成进行了分析比较。结果表明:所得多糖总得率为40.41%,三种多糖都为含硫酸根的水溶性多糖,硫酸根含量分别为21.33%、24.92%和25.34%,所含单糖主要为鼠李糖,另外还含有少量的葡萄糖和木糖,糖醛酸种类为葡萄糖醛酸。
     论文第二部分,在对各多糖组分基本理化性质分析测定的基础上,以HE为研究对象,通过各种色谱分离纯化出3个纯品多糖HEA、HEB和HEC,并采用化学和现代波谱学技术对HEA、HEB和HEC的化学组成和结构进行了研究。结果表明,HEA分子量较大(725.4kD), HEB和HEC分子量相近(54.8 kD和68.8 kD),三种多糖的单糖组成相似,其中HEC硫酸含量最高;HEA和HEB主要含有1→3、1→2连接的鼠李糖,硫酸基位于1→2连接鼠李糖的C-4位或C-3位上。HEB主链是由1,2-Rha和少量的1,3-Rha连接组成的硫酸化鼠李聚糖,并带有少量分支;HEA是由各种键型交替相连的结构复杂的一种硫酸化鼠李聚糖。
     论文第三部分,探讨了氧化降解和酸降解方法制备低分子量宽礁膜多糖片段的工艺,在此基础上采用凝胶色谱等技术,制备获得了不同分子量的多糖片段,并通过活化部分凝血活酶时间、凝血酶原时间和凝血酶时间法分析测定不同分子量的多糖片段的抗凝血活性。结果表明,本文所采用的H2O2降解方法对多糖的基本结构没有影响和破坏,而H2SO4降解方法对多糖的基本结构的影响也很小。通过这两种方法可以有效地制备获得一系列不同分子量的多糖片段。抗凝血活性研究表明,宽礁膜多糖主要抑制内源性凝血途径和/或共有凝血途径以及抑制凝血酶活性或纤维蛋白原转化为纤维蛋白,而对外源性凝血途径没有影响。而且,具有较高分子量的多糖片段具有与母核宽礁膜多糖相似的抗凝血活性,但随着多糖片段分子量的进一步降低,其抗凝血活性下降。结果揭示,分子量大小对宽礁膜多糖的抗凝血活性有重要作用,宽礁膜多糖抑制凝血酶的作用要求其糖链具有一定的长度。
     论文第四部分,采用酸降解方法对宽礁膜多糖进行降解,通过凝胶色谱技术分离得到7个寡糖组分,并采用甲基化分析、红外光谱、电喷雾质谱和电喷雾电离-碰撞诱导解离二级质谱等技术对寡糖的结构进行研究。结果表明,所得寡糖组分主要由2-7糖组成,其主要结构单元为:由1→3连接鼠李糖组成的直链结构,硫酸根的位置位于非还原端,可能在C-2或C-4位上;葡萄糖醛酸与鼠李糖组成直链结构,且位于非还原端。
     本研究的创新点在于:采用各种色谱分离技术、化学和先进的仪器分析技术,首次对宽礁膜多糖进行了系统的研究,揭示了宽礁膜多糖的化学特征和结构。首次利用氧化降解、酸降解方法和凝胶色谱等技术,制备宽礁膜多糖的不同分子量的多糖片段,并初步揭示了宽礁膜多糖抗凝血活性的作用机制和构效关系。
     多糖是宽礁膜的有效成分,对其开展结构和活性的研究十分重要和必要。本研究为宽礁膜多糖的研究提供了理论数据,为开发利用宽礁膜奠定了基础,对促进“海洋糖库”的建设,发展具有我国特色的海洋新药都有重要意义。
Monostroma latissium is a solt of green algae plant in ocean. It grows widely in the brackish water area in the upper part of the intertidal zone. Monostroma latissium exhibits many biological activities such as anticoagulant, antiviral, antioxidant activities and radioprotective effect. It has been confirmed that the main active substance in Monostroma latissium is soluble sulfated polysaccharide.
     In this paper, the polysaccharide from Monostroma latissium was extracted by cool water, boiled water and alkali liquid successively. Three kinds of polysaccharides were obtained and named as CE, HE and AE, respectively. The chemical characteristics of the polysaccharides were analyzed by chemical method, GC and HPLC. The results showed that the total yield of the polysaccharides was 40.41% and the three polysaccharides were soluble sulfated polysaccharides with the different sulfate content. The sulfate contents of polysaccharides are 21.33%, 24.92% and 25.34%, respectively. Three sulfated polysaccharides were found to contain mainly rhamnose with small amounts of glucose and xylose and trace amounts of glactose and mannose. The uronic acid is consisted of glucuronic in the sulfated polysaccharide.
     Based on the physicochemical analysis, three pure fractions HEA, HEB and HEC were obtained from HE using ion-exchange chromatography and low-pressure gel permeation chromatography. The chemical characteristics and primary structures of the pure fractions were investigated. The result showed that HEA was a polysaccharide with high molecular size (725.4kD). The molecular weights of HEB and HEC (54.8 kD, 68.8 kD) are similar. The monosaccharide compositions of the three polysaccharides are similar. The backbone of HEA and HEB were consisted of 1,3-Rha, 1,2-Rha and the sulfate groups were substituted at C-4 or at C-3 in 1,2-Rha. While HEB was a kind of sulfated rhamnan consisting of 1,2-Rha with little branch, HEA was a complicated sulfated rhamnan consisting of 1,2-Rha, 1,3- Rha, 1,2,4-Rha and 1,2,3,4-Rha.
     The sulfated polysaccharide from Monostroma latissimum was hydrolyzed into smaller fragments with different molecular weights by H2O2 or H2SO4 degradation. The polysaccharide fragments with different molecular weights were further fractionated by gel permeation chromatography. Molecular weight of the polysaccharide fragments prepared by H2O2 were 216.4kDa, 123.7kDa, 61.9kDa, 26.0kDa and 10.6kDa, respectively; the molecular weight of polysaccharide fragments prepared by H2SO4 degradation were assayed as follows: 156.8 kDa, 61.7 kDa, 46.1 kDa, and 15.7 kDa. Moreover, chemical and instrumental analysis indicated that chemical components and structure of the sulfated polysaccharide fragments are similar to that of the parent sulfated polysaccharide. The results showed that the basic structures of polysaccharides had not been destroyed by H2O2. H2SO4 degradation had little effect on the basic structure of the sulfated polysaccharide. A series polysaccharide fragments with different molecular weights can be prepared effectively by the two ways.
     Anticoagulant activities of the parent sulfated polysaccharide and its fragments were investigated by studying the activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) using human plasma. The study on anticoagulant activity showed that the sulfated polysaccharide isolated from Monostroma latissimum inhibited both the intrinsic and or common pathways of coagulation and thrombin activity or conversion of fibrinogen to fibrin. The sulfated polysaccharide fragments with higher molecular weight had slightly higher anticoagulant activities than their parent sulfated polysaccharide at the same concentration. The sulfated polysaccharide fragment with a lower molecular weight had a lower anticoagulant activity. These results suggest that the molecular size has a profound effect on the anticoagulant activity of the sulfated polysaccharides from Monostroma latissimum, and plays an important role in anticoagulant action. The sulfated polysaccharides from Monostroma latissimum require longer chains to achieve complete thrombin inhibition.
     In the last part of the paper, the oligosaccharides from the parent sulfated polysaccharide were prepared by H2SO4 method. Seven oligosaccharide products were obtained by gel chromatography. The structures of the oligosaccharides were characterized by methylation analysis, IR, ESI-MS and ESI-CID-MS/MS. The results showed that the oligosaccharide products are mainly consist of disaccharide to heptasaccharide. The oligosaccharide was straight line consisting of 1,3-Rha and the sulfate groups were substituted at C-2 or C-4 in 1,3-Rha.
     The active substance in Monostroma latissimum is polysaccharide. It is important and neccssary to research the structure and activity of the polysaccharides. This research provided the theory information for the sulfated polysaccharide, settled the foundation for utilizing the sulfated polysaccharide from Monostroma latissimum and develop the establishing the“saccharide-bank”.
引文
[1]王艳梅,李智恩,徐祖洪.孔石莼化学组分和药用活性研究进展.海洋科学, 2000, 24(3):25-28.
    [2]纪明侯.海藻化学.北京:科学出版社,1997:356-366.
    [3] Ghosh P, Adhikari U, Ghosal P K,Pujol C A,Carlucci M J,Damonte E B,Ray B.In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry, 2004, 65(23): 3151–3157.
    [4]Ramana K S, Rao E V.Structural features of the sulphated polysaccharide from a green seaweed, Cladophora socialis. Phytochemistry, 1991, 30(4): 1183-1186.
    [5] Siddhanta A K, Shanmugam M, Mody K H,Goswami A M ,Ramavat B K.Sulphated polysaccharide of Codium dwarkense Boergs from the west coast of India: chemical composition and blood anticoagulant activity. International Journal of Biological Macromolecules, 1999, 26(2-3):151-154.
    [6] Rao E V, Ramana K S.Structural studies of a polysaccharide isolated from the green seaweed Chaetomorpha anteninna. Carbohydrate Research, 1991, 217:163-170.
    [7] Rao K V, Sri Ramana K. Structural features of the sulphated polysaccharide from a green seaweed, Spongomorpha indica.Phytochemistry, 1991, 30(4):1183-1186.
    [8] Lahaye M, Cimadevilla E A C, Kuhlenkamp R, Quemener B, Lognone V, Patrick D. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied Phycology, 1999, 11(1): 1–7.
    [9] Lahaye M, Inizan F, Vigouroux J. NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohydrate polymers, 1998, 36(2-3): 239-249.
    [10]Lee J B, Yamagaki T, Maeda M, Nakanishi H. Rhamnan sulfate from cell walls of Monostroma Latissimum. Phytochemistry, 1998, 48(6): 921-925.
    [11] Harada N, Maeda M. Chemical structure of antithrombin-active Rhamnan sulfate from Monostrom nitidum . Biosci.Biotechnol.Biochem, 1998, 62(9):1647-1652.
    [12] Ray B. Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydrate Polymers, 2006, 66(3): 408-416.
    [13] Matsubara K. Recent advances in marine algal anticoagulants. Current Medicinal Chemistry, 2004 2(1): 13-19(7).
    [14] Shanmugam M, Mody K H. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Science, 2000, 79(12): 1672-1683.
    [15] Wenjun Mao, Xiaoxue Zang, Yi Li,Huijuan Zhang. Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. Journal of Applied Phycology, 2006(1), 18: 9–14.
    [16] Hayakawa Y, Hayashi T, Lee J,Srisompo P, Maeda M,Ozawa T,Sakuragawa N. Inhibition of thrombin by sulfated polysaccharides isolated from green algae. Biochimica et biophysica acta, 2000, 1543(1): 86-94.
    [17] Shanmugam M, Mody K H, Ramavat B K. Screening of Codiacean algae (Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian Journal of Marine Sciences, 2002, 31(1): 33-38.
    [18] Kweon M H, Park M K, Ra K S. Screening of anticoagulant polysaccharides from edible plants. Agricultural Chemistry and Biotechnology, 1996, 39(2): 159-164.
    [19] Matsubara K, Matsuura Y ,Bacic A ,Liao M,Hori K,Miyazawa K. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. International Journal of Biological Macromolecules, 2001, 28(5): 395–399.
    [20] Matsubara K, Matsuura Y, Hori K,Miyazawa K. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis. Journal of Applied Phycology, 2000, 12(1): 9–14.
    [21] Shanmugam M,Mody K H, Siddhanta A K. Blood anticoagulant sulphated polysaccharides of the marine green algae Codium dwarkense (Boergs.) and C. tomentosum (Huds.)Stackh. Indian Journal of Experimental Biology, 2001, 39(4):365-370.
    [22] Athukorala Y,Lee K W, Kim S K, Jeon Y J.Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea, Bioresource Technology 2007,98(8):1711-1716.
    [23] Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. General Pharmacology,1997,29(4): 497-511.
    [24] Lee J B,Hayashi K, Hayashi T,Sankawa U,Maeda M. Antiviral activities against HSV-1, HCMV, and HIV-1 of rhamnan sulfate from Monostroma latissimum. Planta Medica, 1999, 65 (5): 439-441.
    [25] Lee J B, Hayashi K, Maeda M, Hayashi T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Medica, 2004, 70 (9): 813-817.
    [26] Ivanova V, Rouseva R,Kolarova M, Serkedjieva J, Rachev R, Manolova N. Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Preparative Biochemistry, 1994, 24(2): 83-97.
    [27] Pardee K I, Ellis P, Bouthillier M,Tower G H N, French C J. Plant virus inhibitors from marine algae. Canadian Journal of Botany, 2004,82(3): 304-309.
    [28] Romnos M, Andrada-Serpa M J, Dos S,Ribeiro A,Yoneshigue-Valentin Y,Costa SS,Wigg MD. Inhibitory effect of extracts of Brazilian marine algae on human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation in vitro. Cancer Invest, 2002,20(1):46-54.
    [29]徐大伦,黄晓春,欧昌荣,薛长湖,杨文鸽,王海洪.浒苔多糖对非特异性免疫功能的体外实验研究.食品科学, 2005,26(10): 232-235.
    [30] Pugh N, Ross S A, Elsohly H N, Elsohly M A,Pasco D S. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Medica.2001, 67(8): 737-742.
    [31] Suarez E R, Kralovec J A, Noseda M D, Ewart H S, Barrow CJ, Lumsden MD, Grindley TB. Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydrate Research 2005, 340(8): 1489-1498.
    [32] Nika K, Mulloy B, Carpenter B, Gibbs R. Specific recognition of immune cytokines by sulphated polysaccharides from marine algae. European Journal of Phycology. 2003, 38(3): 257-264.
    [33] Shan B E, Yoshida Y, Kuroda E, Yamashita U. Immunomodulating activity of seaweed extract on human lymphocytes in vitro. International Journal of Immunopharmacology, 1999, 21(1):59-70.
    [34]周慧萍,蒋巡天,王淑如,陈琼华.浒苔多糖的降血脂及其对SOD活力和LPO含量的影响.生物化学杂志.1995,11(2): 161-165.
    [35]王艳梅,李智恩,牛锡珍,张虹,张全斌.孔石莼多糖降血脂活性的初步研究.中国海洋药物,2003,2: 33-35.
    [36]徐娟华,马武翔,谢强敏,赵孟辉.石莼多糖的提取分离及其降血脂作用的初步研究.中国中医药科技,2002,9(3): 167-168.
    [37] Yu P Z, Zhang Q B ,Li N,Xu Z H,Wang Y M,Li Z. Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. Journal of Applied Phycology, 2003, 15(1): 21–27.
    [38] Yu P Z, Ning L, Liu X G, Zhou G F, Zhang Q B, Li P C. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacological Research, 2003, 48(6): 543–549.
    [39] Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja J M. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res. 2003, 17(6): 665-670.
    [40] Kaplan D, Christiaen D,Arad SM. Chelating Properties of Extracellular Polysaccharides from Chlorella spp.Applied and Environmental Microbiology,1987,53(12):2 953-2 956.
    [41] Wu S, Pan C. Preparation of algal-oligosaccharide mixtures by bacterial agarases and their antioxidative properties. Fisheries Science, 2004, 70 (6): 1164-1173.
    [42] Wu S, Wen T, Pan C. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fisheries Science, 2005, 71 (5): 1149-1159.
    [43] Qi H,Zhang Q,Zhao T,Chen R,Zhang H,Niu X,Li Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted form ulva pertusa (chlorophyta) in vitro.International Journal of Biological Macromolecules, 2005,37(4): 195–199.
    [44] Qi H,Zhang Q,Zhao T,Hu R,Zhang K,Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorganic & Medicinal Chemistry Letters, 2006, 16(9): 2441-2445.
    [45] Qi H M, Zhao T T,Zhang Q B,Hu R G, Zhang K,Li Z.Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa(Chlorophyta). Journal of Applied Phycology, 2005, 17(6): 527–534.
    [46] Vlachos V, Critchley A T, Von Holy. Antimicrobial activity of extracts from selected southern African marine macroalgae. South African Journal of science, 1997, 93(7):328-332.
    [47] Mao W J, Li Y, Wang H Q, Zhang Y, Zang X X,Zhang H J. Chemical characterization and radioprotective effect of polysaccharide from Monostroma angicava (Chlorophyta). Journal of Applied Phycology, 2005, 17(4): 349-354.
    [48] Tanaka K, Konishi F. Himeno K,Taniguchi K, Nomoto K. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris . Cancer immunology immunotherapy. 1984,17(2): 90-94.
    [49] Lahay M, Ray B.Cell-wall polysaccharides from the marine green alga Ulva“rigida”(Ulvales,Chlorophyta)-NMR anlysis of ulvan. Carbohydrate research, 1996 283:161-173.
    [50] lahay M,Brunel M,Bonnin E. Fine chemical structure analysis of oligosaccharides produced by an ulvan-lysase degradation of the water-soluble cell-wall polysaccharides from ulva sp.(Ulvales,Chlorophyta). Carbohydrate research, 1997, 304(3-4): 325-333.
    [51]来鲁华,杨昱婷.寡糖的构象分析.生物化学与生物物理进展,1995,22(4):290-294.
    [52] Peters T, Meyer B, Stuike-Prill R,Somorjai R,Brisson J R. A Monte Carlo method for conformational analysis of saccharides. Carbohydrate Research, 1993, 238: 49-73.
    [53] Cioci G, Rivet A, Koca J, Perez S. Conformational analysis of complex oligosaccharides: the CICADA approach to the uromodulin O-glycans. Carbohydrate Research, 2004, 339(5): 949-959.
    [54]张翼伸.多糖的结构与功能生物学通报,1992(1):3-4.
    [55]方积年.多糖的结构分析.国外医学-药学分册,1981,8(4):222-228.
    [56]张惟杰主编.糖复合物生化研究技术.第二版。杭州:浙江大学出版社,1999:128-149.
    [57]周鹏,谢明勇,傅博强.多糖的结构研究.南昌大学学报(理科版),2001,25(2):197-204.
    [58]孙群,牟世芬.单糖和寡糖的离子色谱法分析研究.化学通报,1991, 8:39-41.
    [59] Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry, 1964,55: 205-208.
    [60]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物研究与开发,1995,7(2):60-65.
    [61]于海妮,严自正.红曲霉葡萄糖淀粉酶N-连接糖链的初步研究.生物化学杂志, 1990, 6(2):147-152.
    [62]姜晓满,田卫,张海霞,刘满仓.糖类物质的色谱分析.药物分析杂志,2006,26(8): 1181-1186.
    [63]田媛,张尊建.糖类结构的核磁共振波谱及质谱分析.药学进展,2003, 27(2): 78-80.
    [64]张剑波,田庚元.寡糖分离和结构分析进展.生物化学与生物物理进展,1998,25(2):114-119.
    [65]马立田,王式箴.高效液相色谱法测定低热量食品中的葡萄糖、果糖、蔗糖、麦芽糖醇和山梨糖醇的研究.食品与发酵工业, 1998, 24(4):12-17.
    [66]诸葛健,赵振锋,方慧英.功能性多糖的构效关系.无锡轻工大学学报,2002,21(2):209-212.
    [67]王淼,丁萧霖.葡聚糖生物活性与结构的关系.无锡轻工大学学报,1997,16(2):90-94.
    [68] Kojima E. Molecular weight dependence of antitumor activity of Schizophyllan. Agricultural and Biological Chemistry, 1986, 5(1): 231-232.
    [69] Adachi Y, Ohno N, Ohsawa M,Oikawa S,Yadomate T. Change of biological activities of (1→3)-beta-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chemical & pharmaceutical bulletin, 1990, 38(2): 447-481.
    [70] Ohno N, Miura T, Miura N. Structure and biological activities of hypochlorite oxidized zymosan. Carbohydrate Polymers, 2001, 44(4): 339-349.
    [71] Masaki H, Kaluta M. Studies on interrelation of structure and antitumor effects of polysaccharide. Carbohydrate Research, 1981, 92(1): 115-129.
    [72] Nanba H, Kuroda H. The chemical structure of an antitumor polysaccharide in mycelia of Cochliobolus miyabeanus. Chemical & pharmaceutical bulletin, 1987, 35(3): 1285-1288.
    [73] Hamuro J, Maeda Y Y, Arai Y, Fukuoka F, Chihara G. The significance of the higher structure of the polysaccharides lentinan and pachymaran with regard to their antitumor activity. Chemico-biological interactions, 1971, 3(1): 69-71. [74 ] Makoto Hasegawa ,Akira Isogai ,Fumihiko Onabe. Preparation of low -molecular - weight chitosan using phosphoric acid. Carbohydrate Polymers, 1993, 20:279 - 283.
    [75] Defaye D. Chitin and Chitosan. London :Elsevier Applied Science ,1989. 415.
    [76] Barker S A, Foster A B, Stacey . Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin. Chem. Soc, 1958 :2218-2222.
    [77] Emmanuel Belamie, Alain Domard. Marie - madeleine Giraud - guille.Study of the solid - state hydrolysis of chitosan in presence of HCl. Polym Sci Part A :Polym Chem,1997,35 :3181 - 3191.
    [78]罗平,何波兵,蔺显俊,钟安永,周宗华,陈德本.水溶性低分子壳聚糖的制备.化学研究与应用,2000,12(6) :677 - 679.
    [79] Chen R H , Chang J R , Shyur J S. Effects of ultrasonic conditions and storage in acidicsolutions on changes in molecular weight and polydisperity of treated chitosan. Carbohydrate Research, 1997, 299(4):287 - 294.
    [80] Fan J Q, Kondo A, Kato I,Lee Y C. High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Anal Biochem, 1994, 219(2): 224-229.
    [81] Oefner PJ, Chiesa C. Capillary electrophoresis of carbohydrates.Glycobiology, 1994, 4(4): 397-412.
    [82]李雪驼,邱华.寡糖的种类及其生物活性功能.现代科技, 1998,(7): 42-44.
    [83]缪阵春,冯锐.柑中寡糖链结构测定的核磁共振研究.军事医学科学院院刊, 1999, 10: 26-28.
    [84] Bradrury J H, Jenkins G A. Determination of the structure of trisaccharides by C-NMR spectroscopy. Carbohydate Research, 1994, 22(3): 25-29.
    [85]缪阵春,冯锐.一维SEMEY和旋转坐标NOE差谱NMR新技术用于天然化合物中寡糖的结构研究.化学物理学报, 2000,13(13): 312-319.
    [86]吕秀华,娄维义,党永岩,柴魏君,许立春.电泳技术的发展和应用.农业与技术, 2001, 21(3): 43-45.
    [87] Edens R E, Al-Hakim A, Weiler J M. Gradient polyacrymide gel electrophoresis for determination of the molecular weight of heparin and low molecular weight heparin and low molecular weight hoparine derivatives. Journal of Pharmaceutical Sciences, 1992, 81: 823-830.
    [88] Shimokawa T, Yoshida S, Takeuchi T . Preparation of two series of oligoguluronic acid from sodium alginate by acid hydrolysis and enzymatic degradation. Biotechnology, 1996, 60: 1532-1538.
    [89]Jackson P. The analysis of fluorophore-labeled glycans by high-resolution polyacrylamide-gel electrophoresis. Anal Biochem, 1994, 216(2): 243-252.
    [90]Grimshaw J. Analysis of glycosaminoglycans and their oligosaccharide fragments by capillary electrophoresis. Electrophoresis, 1997, 18(12-13): 2408-2414.
    [91]张剑波,田庚元.糖类的高效毛细管电泳.有机化学, 1998 ,1: 88-96.
    [92]马强,何友昭,肖协忠,徐海涛,黄瑞,许庆平.糖的高效毛细管电泳分离及其在烟草分析中的应用.烟草科技?烟草化学, 2002, 6:24-26.
    [93]王静,王晴,向文胜.色谱法在糖类化合物分析中的应用.分析化学, 2001, 29(2):222-227.
    [94]党福全,陈义,郭晴.痕量糖-8-氨基芘-1, 3, 6-三璜酸衍生物的毛细管电泳-激光诱导荧光分析.分析化学, 2000, 1: 80-83.
    [95]段文录.商丘职业技术学院学报, 2003, (6): 35-37.
    [96]李曙光,白雪芳,杜昱光.壳寡糖的分离分析及其诱抗活性的研究.中国海洋药物, 2002, 21(6):1-3.
    [97] Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence, linkage, and branching date: ES-MS and CID. Analytical Chemistry, 1995, 67(11): 1772-1784.
    [98] Mock K K, Davey M, Cottrell J S. The analysis of underivatized oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochemical and Biophysical Research Communications, 1991, 177(2): 644-651.
    [99]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用.生命的化学, 2002, 22(2): 194-196.
    [100] M Maeda, T Uehara, N Harada, M Sekiguchi, A Hiraoka. Heparinoid-active sulphated polysaccharides from Monostroma nitidum and their distribution in the chlorophyta. Phytochemistry, 1991, 30(11): 3611-3614.
    [101]吴志军,徐祖洪,李智恩.孔石莼热水提取多糖的研究.海洋科学, 2003, 27 (2) : 5-7.
    [102]王艳梅,牛锡珍,张虹,李智恩,张全斌.孔石莼多糖的分离分析.中国海洋药物,2002,6:4-7, 19.
    [103]周慧萍,朱海燕,陈琼华.浒苔多糖的分离、纯化和分析.生物化学杂志, 1995,11(1):91-93.
    [104] Ray B, Lahaye M. Cell-wall polysaccharides from the marine green alga Ulva "rigida" ( Ulvales, Chlorophyta).Extraction and chemical composition. Carbohydrate Research, 1995, 274:251-261.
    [105] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350–366.
    [106] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 7: 248–254.
    [107] Therho T T, Hartiala K. Method for determination of the sulfate content of glycosaminoglycans. Analytical Biochemistry. 1971, 41: 471–476.
    [108] Bitter T, Muir H M. A modified uronic acid carbazole reaction. Analytical Biochemistry. 1962, 4: 330–334.
    [109]邓时锋,刘志礼,李兆兰.极大螺旋藻多糖的分离纯化及化学结构分析,南京大学学报(自然科学), 2000,36(5):579-584.
    [110]吴梧桐,陈琼华,徐碧如.银耳孢子单糖的分离与分析.真菌学报.1982,1(2):119-124.
    [111]吕燕,衬颢,汪水娟.坛紫菜多糖的分离纯化和化学结构分析.南京中医药大学学报(自然科学版). 2000,16(3):159-161.
    [112]齐慧玲,魏绍云,王继伦. Sevag法去除白及多糖中蛋白的研究.天津化工, 2000,3:20-21.
    [113]梁宗岩,张翼伸.斜顶菌中水溶性多糖的研究(1).高等学校化学学报. 1983,4(3):364-370.
    [114] Deng Chenghua, Yang Xiangliang, Gu Xiaoman. Aβ-D-glucan from the sclerotia of Pleurotus tuber-regium(Fr.) Sing. Carbohydrate. Research, 2000, 328(4): 629-633.
    [115]杜予民,孔振武,李海萍.生漆多糖的分离与结构研究.高分子学报, 1994(3):301-306.
    [116] Gutierrez A, Prieto A, Martinez A T. Structural characterization of extracellular polysaccharides produced by fungi from genus Pleurotus. Carbohydrate Research, 1996, 281(1): 143-154.
    [117]郑芸,刘柳,方积年.菊花中一个新的多糖的研究.植物学报2004,46(8):997-1001.
    [118] Falshaw R, Richard H. Furneaux.Structural analysis of carrageenans from the tetrasporic stages of the red algae, Gigartina lanceata and Gigartina chapmanii (Gigartinaceae, Rhodophyta).Carbohydrate Research, 1998, 307(3-4): 325-331.
    [119] Needs P W, Selvendran R R. Avoiding oxidative degradationduring sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydrate. Research, 1993, 245(1): 1-10.
    [120] R. Mukerjea, D. Kim, J. F. Robyt. Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydrate. Research, 1996, 292(1): 81-89.
    [121]鲍幸峰,方积年.赤芝孢子粉中一个葡聚糖得分离纯化与结构鉴定.植物学报, 2001, 43 (3):312-315.
    [122]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物与开发. 1995,(2):60-65.
    [123]王展,方积年.菟丝子多糖H3的研究.药学学报, 2001, 36(3):192-195.
    [124]王顺春,方积年.徐长卿多糖CPB54的结构及其活性的研究.药学学报,2000,35(9):675-678.
    [125] Durig J, Bruhn T, Zurborn k, Gutensohn K, Bruhn H D, Beress L . Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thrombosis Research, 1997, 85(6): 479-491.
    [126] Ferial H B, Mosstafa E, Corinne S, Catherine B V. Relationship between sulfate group and biological activities of fucans. Thrombosis Research, 2000,100: 453–459.
    [127] Yu P Z, L N, Liu XG, Zhou GF, Zhang QB, Li PC. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacological Research, 2003, 48(6): 543–549.
    [128] Zhao T T,Zhang Q B, Qi H M, Zhang H, Niu X Z, Xu Z H, Li Z . Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. International Journal of Biological Macromolecules. 2006(1), 38:45-50.
    [129] Zhou G F, Sun Y P, Xin H, Zhang Y N, Li Z E, Xu Z H . In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacological Research. 2004, 50(1): 47–53.
    [130] Zhou G F, Sheng W X, Yao W H, Wang C H. Effect of low molecular lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacological Research, 2006, 53(2):129-134.
    [131] Mourano PAS, Pereira M S, Pavao MSG, Mulloy B, Tollefsen DM, Mowinckel MC, Abildgaard U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. The Journal of Biological Chemistry, 1996, 271(39): 23973-23984.
    [132] Maraganore J M, Chao B, Joseph M L, Jablonski J, Ramachandran K L. Anticoagulant activity of synthetic hirudin peptides. The Journal of Biological Chemistry 1989, 264(12):8692-8698.
    [133] Rogers D J, Jurd K M, Bluendan G, Paoletti S,Zanetti F.Anticoagulant activity of a proteoglycan in extracts of Codium fragile ssp. Atlanticum. Journal of Applied Phycology, 1990,2(4): 357-361.
    [134] Jurd K M, Rogers D J, Blunden G, McLellan D S. Anticoagulant properties of sulfated polysaccharides and a proteoglycan from Codium fragile ssp. atlanticum. Journal of Applied Phycology. 1995, 7(4): 339–345
    [135] Nardella A, Chaubet F, Boisson-Vidal C, Blondin C, Durand P, Jozefonvicz J. Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from brown seaweed Ascophyllum nodosum. Carbohydrate Research, 1996, 289: 201-208.
    [136] Daniel R, Berteau O, Jozefonvicz J, Goasdoue N. Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus. Carbohydrate Research., 1999, 322(4): 291-297.
    [137] Takeshi S., Hitomi K., and Ikunoshin Kato. A marine strain of flavobacteriaceae utilizes brown seaweed fucoidan. Biotechnol. 2002, 4: 399-405.
    [138] Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher AM, Boisson-Vidal C. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydrate Research, 1999, 319(3): 154-165.
    [139] Chevolot L., Alain F., Sylvia C.J., et al. Improvement purification of sulfated oligofucan by ion-exchange displacement centrifugal partition chromatography. Journal of Chromatography. A , 2000, 869: 353-361.
    [140] Gage DA, Rathke E,Costello C E, Jone MZ.. Determination of sequence and linkage of tissue oligosaccharides in caprine beta-mannosidosis by fast atom bombardment, collisionally activated dissociation tandem mass spectrometry. Glycoconjugate Journal 1992, 9(3): 126-131.
    [141] Penn S G, Cancilla M T, Lebrilla C B. Collision-induced dissociation of branched oligosaccharide ions with analysis and calculation of relative dissociation thresholds. Analytical Chemistry, 1996, 68(14): 2331-2339.
    [142] Sheeley D M, Reinhold V N. Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole Ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. Analytical Chemistry, 1998, 70(14): 3053-3059.
    [143] Weiskopf A S, Vouros P. Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 1997,11(14): 1493-1504.
    [144] Chai W, Piskarev V, Lawson A M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Analytical Chemistry, 2001, 73(3): 651-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700