用户名: 密码: 验证码:
密肋壁板轻框结构受力性能分析及计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减轻建筑物自重,提高对地震的防彻能力,增强保温节能效果,简化施工方法是
    当今建筑结构的发展趋势。本文就密肋壁板轻框结构这一新型结构形式的受力机理、
    抗震性能及设计计算方法进行了研究,主要完成以下工作:
     首先以密肋复合墙板的试验为基础,分析了框格区划、截面配筋,填充块体强度、
    开洞等对墙板承载力、刚度、变形、破坏形态影响,探讨墙板框格与砌块协同工作与
    受力机理,提出了密肋复合墙板刚度及承载力实用计算公式。
     对与密肋复合墙板,考虑砌块的开裂、屈服变化过程及砌块开裂后的应力释放,
    根据钢筋混凝土杆件在轴向力和弯矩共同作用下的开裂、屈服和弹塑性区域的变化过
    程,建立弹塑性有限元分析模型,提出了密肋复合墙板框格与砌块的优化配比设计的
    概念以及计算分析方法。
     对10层密肋壁板轻框结构的l/3比例房屋模型进行拟动力试验研究,对结构的动
    力特性、地震反应及结构破坏特征进行了分析研究,给出了该结构体系的骨架曲线及
    恢复力模型,并对结构体系变形特性、耗能能力及抗倒塌能力进行探讨,试验表明,
    该结构受力性能介于框架与剪力墙结构之间。
     在试验研究的基础上,对隐型轻框与密肋复合墙板的协同工作进行了探讨,提出
    了等效轴向刚度的概念并建立了便于实用计算分析的刚架-斜压杆简化计算模型。在
    此基础上对试验模型进行了计算分析;根据密肋壁板轻框结构构造及受力特点建立了
    适合该结构体系的框架-平面复合子结构有限元计算模型,并编制了结构空间有限元
    分析程序,计算分析表明,与试验结果吻合较好。
     最后采用该方法对工程实例进行了大量分析计算,对结构在竖向荷载及水平地震
    作用下的受力性能及变形特性进行分析,给出了结构各主要构件(外框架、墙板框格
    梁柱及填充砌块)的内力分布规律,提出了结构设计计算方法及建议。
It has been a trend for developmen of modern structure to diminish sole weight of a
    building, promote its antiseismic capacity, enhance its heat preservation and energy-saving
    effect, and simplify the construction method. In this paper, load carrying mechanism,
    antiseisimic capacity, and design and calculation procedure of a new type of structure, light
    weight frame structure of multi-ribbed wall panel, are studied with chief achievements as
    follows:
    Firstly, effect of frame grids division, intersection reinforcement, strength of infill blocks,
    and portals on bearing capacity, stiffness, deformation, and failure characteristic is analyzed,
    and the cooperative behavior and load carrying mechanism of the wall panel's frame grids
    and infill masonry blocks are studied with a practical mathematical formulation of stiffness
    and bearing capacity of the multi-ribbed composite wall panel proposed on the basis of a
    serial of tests of multi-ribbed composite wall panel.
    In accordance with opening, yielding, and changing process of elast-plastic area under the
    effect of both axial force and bending moment, the reinforced concrete member is divided
    into five areas along the length of it; the member's flexural stiffness in each area is
    considered to change linearly, and the element's stiffness matrix is formed by means of
    subsectional integration. Fiuite element model of infill masonry blocks is formed according
    to homogeneous plane structure, allowing for openings in the blocks, yielding process and
    release of stress after the block opens. And finite e1ement analysis of the wall panel is
    carried out in terms of cooperation between the frame grids and the infill masonry blocks.
    A ten-story building model of light weight frame structure of multi-ribbed wail panel with
    ratio 1:3 is studied through the pseudo-dynamic test. Dynamic behavior, earthquake response
    and failure characteristic of the structure are analyed with the strength envelop and
    hysteretic mode proposed, and deformation characteristic, energy-consuming, and
    collapse-resisting capacity are also studied. As what is shown in the test results, this
    structure's load carrying characteristic is between that of frame structure and shear wall
    structure.
    Based on tests and research, cooperation of the hidden light weight frame and the
    multi-ribbed wall panel is studied with the concept of equal axial stiffness proposed and a
    simplified equivalent rigid frame-compressive diagonal strut model formed for practical
    analysis and calculation. On the basis of the above study, test models are calcuated and
    analyzed; Frame-plane compound substructure computational finite element model that fits
    the structure system is proposed in terms of load carrying characteristic and texture of light
    weight frame structure of multi-ribbed wall panel, and a space finite element program is
    worted out with -- rewt be tri out to coincme weu wt the test ~.
    Me. by utiltw ds W a gred ded Of ~is and talculedon Of the ealsting
    boons is ed Out and bo tw behavior and defOnnallon charWedc of
    StrUAn under tw load and hOriZOthe wtc M are StUded. Ruls of inwt
    W MH Of M wt, boe pe of the tal Panat and the am maSOny
    bfock are gim DeSbo and COInwt method of the struan are ProPosed togtw
    with som SUggestions.
引文
[1] 曹万民、王光远等,异形柱框架柱单元的非线性变形计算方法,计算力学学报, 1997. 11
    [2] T. L. Anderson, Seismic isolation design and construction practice, Proceeding of Fourth U.S. National conference on Earthquake Engineering , Vol. 3,1990
    [3] Buckle I G, Mayes R L, Seismic Isolation History and Performance-A World View Earthquake Spectra, 1990
    [4] Matsumura-Gumi T. R. I, Seismic Acceleration observed at Matsumura-Gumi T. R. I-thehyogoken-nanbu Earthquake-17 jan. 1995
    [5] R.W.克拉夫,J.彭津著,王光远等译,结构动力学,科学出版社,1981
    [6] 胡聿贤,地震工程学,地震出版社,1988
    [7] Lin cu and GoodDarz. Ahmadi and Iradjg. Todjbakhsh, A comparative study of performance of various base isolation systems,Part1: shear beam structure ,Earthquake engineering and structural dynamics,Vol. 18,1989
    [8] 李杰,李国强,地震工程学导论,地震出版社,1992
    [9] B.S.Smith,Lateral stiffness of infilled frames,Pro.ASCE,vol.88
    [10] 吕西林,周德源,砌体结构墙体模型振动台试验及其动力相似关系,工程抗震, 1993,NO.3
    [11] B.S.Smilh, Behavior of square infilled frames, Proc. ASCE,Vol.92,381-401
    [12] M.Holmes, Combined loading on infilled frames, Proc.Instn Civ.Engrs,Vol.25
    [13] T.C.Lianw S.W.Lee, On the behaviour and the analysis of multistory infilled frames subject to lateral loading, Proc.Instn Civ.Engrs,Vol.63,641-656
    [14] 《密肋壁板轻型框架结构理论与应用研究》成果鉴定资料汇编,西安建筑科技大 学,2000. 12
    [15] 小康型住宅建筑结构体系成套技术指南成果选编(送审稿),建设部,2000. 11
    [16] 住宅产业现代化促进工程科技专项,建设部,2000. 7
    [17] 小城镇建设科技专项,建设部,2000. 7
    [18] 西安建筑科技大学绿色建筑研究中心,《绿色建筑》,中国计划出版社,1996. 6
    [19] 姚谦峰等,复合板轻型节能建筑施工技术,建筑工业出版社,1998
    [20] 曹万林等,钢筋混凝土十字型柱的非线性分析,世界地震工程,1995,11(3) , 17-22
    [21] 曹万林等,钢筋混凝土L形柱的非线性分析,世界地震工程;1995,11(4) ,20-25
    [22] 曹万林等,轻质填充墙异形柱框架结构及其衰减过程,建筑结构学报,1995(5)
    [23] 周明杰等,异形柱框架地震反应分析,世界地震工程,1996,12(4) ,31-35
    [24] 陈云霞等,钢筋混凝土T形及L形截面双向偏心受压柱的设计方法,第二届中日 建筑结构技术交流会,469-477
    [25] 罗永坤,异形柱框架剪力墙结构抗震分析,工程力学增刊,1997,276-281
    [26] 容柏生等,高层住宅结构中短肢剪力墙结构体系,建筑结构学报,1997,18(6) , 14-17
    [27] 康谷贻等,单调及低周反复荷载作用异形截面框架柱的受剪性能,建筑结构学报, 1997,18(5) ,22-31
    [28] 童岳生等。填充墙框架的工作性能及设计计算,西安冶金建筑工程学院学报,1983 (3)
    [29] 童岳生等,砖填充墙钢筋混凝土框架的变形性能及承载能力,西安冶金建筑工程 学院学报,1985(2)
    [30] 童岳生等,砖填充墙钢筋混凝土框架房屋实用抗震计算方法,建筑结构学报,1987 (3) ,43-52
    [31] 童岳生等,砖填充墙钢筋混凝土框架房屋实用抗震计算方法,冶金工业部第四次 抗震技术交流会论文集
    [32] 楼文鹃等,多种开洞剪力墙壁式框架分析法及其刚域的确定,土木工程学报,1989 (3)
    [33] 郭弘等,高层异形柱框架-剪力墙结构体系探讨,中州建筑,1998(1)
    [34] 腾尚东等,异形柱框架在高层住宅中的应用,住宅科技,1998(9)
    [35] 陈风岩等,带异形截面柱的高层建筑结构,四川建筑,1997(1)
    [36] 蔡长赓,高层住宅中异形柱框架设计,广州建筑,1998(1)
    [37] 王得有,一种新型高层结构-薄壁异形柱框架结构设计探索,江西建筑,1990(2)
    [38] 董振祥等,用有限元法研究钢筋混凝土梁抗剪的非线性性能,同济大学学报,1981 (4) ,43-51
    [39] 吴秀水,考虑剪切变形的薄壁杆件分析,工程力学,1993,10(1) ,76-83
    [40] 梁书亭等,反复荷载作用下RC框架柱的非线性分析,南京建筑工程学院学报, 1994(3) ,32-38
    [41] 钱稼茹等,基于位移延性的剪力墙抗震设计,建筑结构学报,1999,20(3) ,42-48
    [42] 施炳华,常用载面剪应力分布不均匀系数计算公式,建筑结构,1984. (2) ,66-
     70
    [43] 叶英华,任意形状钢筋混凝土弯压构件截面非线性全过程分析,哈尔滨建筑大学 学报,1995,28(5) ,13-18
    [44] 吴家平等,钢筋混凝土构件在使用荷载下应变的有限元分析,东南大学学报,1992, 22(6) 128-131
    [45] 夏晓东等,钢筋混凝土带边框低剪力墙抗震性能分析,东南大学学报,1992,22, (2) ,85-89
    [46] 戴航等,一种新型延性低剪力墙的试验研究,建筑结构,1994,(10) ,3-8
    [47] 叶英华等,钢筋混凝土非线性分析中的本构关系,哈尔滨建筑大学学报,1995, 28(3) ,7-13
    [48] 王建平,钢筋混凝土框架一剪力墙结构在强震作用下的非线性分析,工程力学, 1993,10(1) ,30-44
    [49] 肖建庄等,钢筋混凝土异形柱结构体系,工程力学增刊,1998,268-272
    [50] 宋玉普,钢筋混凝土构件非线性有限单元法分析,大连工学院学报,1984,23(4) , 95-102
    [51] 冯泳,高层住宅墙体的合理等效惯性矩,建筑结构,1998,(6) ,36-38
    [52] 贺明玄等,钢筋混凝土L型剪力墙抗震性能的试验研究,工程力学增刊,1997, 50-54
    [53] 潘士颉等,框架结构的非线性地震分析,同济大学学报,1980(2) 43-62
    [54] 申冬建等,钢筋混凝土结构件的计算机模拟系统,工程力学增刊,1997,221-226
    [55] 高永昌译编,填充框架的动力特性,四川建筑科学研究,1995,(3) (4)
    [56] 叶英华等,任意载面钢筋混凝土双向偏压构件非线性稳定性分析,哈尔滨建筑大 学学报,1997,30(2) ,22-24
    [57] 朱伯龙等,钢筋混凝土受弯构件延性系数的研究,同济大学学报,1984,(3) ,108-112
    [58] 戴航等,反复荷载下钢筋混凝土剪力墙的的非线性有限元分析,工程力学,1993, 10(1) ,105-111
    [59] 刘伯权等,钢筋混凝土柱的皮坏和能量吸收,地震工程和工程振动,1998,18(3) , 14-18
    [60] 刘伯权等,钢筋混凝土柱的柱低周疲劳试验中的强度退化与刚度退化,工程力学 增刊1997,189-192
    [61] 李爱群等,新型低剪力墙的非线性有限元与耗能分析,工程力学培刊,1996,24-28
    [62] 陈乾等,钢筋混凝土框架的非线性全过程分析新法,东西大学学报,1992,22(5) ,
     66-75
    [63] 丁大钧等,钢筋混凝土构件刚度和裂缝的试验研究和对计算的建议,土木工程学 院,1985,18(4) ,1-12
    [64] 姜斌等,钢筋混凝土结构构件试验的计算机模拟,建筑结构,1996(2) ,45-48
    [65] 曹祖国等,陶粒混凝土棱柱体和配筋棱柱体应力-应变全曲线的研究,天津大学 学报,1984(3) ,97-106
    [66] 曹万林等,较小剪跨比带暗柱十字形柱抗震性能试验研究,地震工程与工程振动, 1999,19(3) ,54-58
    [67] 童岳生等,砖填充墙钢筋混凝土框架的刚度及其应用,西安冶金建筑学院,1985 (4) ,21-31
    [68] 郑建岚等,钢筋混凝土梁与柱的抗剪强度理论解,工程力学增刊,1997,113-118
    [69] 蒋人骅,钢筋混凝土梁抗剪强度的塑性解,同济大学学报,1979,(5) 29-43
    [70] 赵光仪等,集中荷载作用下钢筋混凝土连续梁抗剪强度的研究建筑结构,1985, (4) ,2-10
    [71] 王清湘等,高强混凝土柱延性的试验研究,建筑结构学报,1995,(8) ,22-32
    [72] 曹万林,钢筋混凝土异形框框架结构试验及两阶段抗震设计理论研究,博士论文, 哈尔滨建筑大学,1995
    [73] 混凝土结构设计规范(GBJIO-89) .北京:中国建筑工业出版社,1989
    [74] 建筑抗震设计规范(GBJ11-89) .北京:中国建筑工业出版社,1989
    [75] 钢筋混凝土高层建筑结构设计与施工规程(JGJ3-91) .北京:中国建筑工业出版 计,1991
    [76] 童岳生梁兴文等钢筋混凝土构件设计。北京:科技文献出版社,1995
    [77] 高层建筑混凝土结构技术规程(征求意见稿),北京,2000
    [78] 中高层壁式框架钢筋混凝十结构设计与指南解说,日本,1987
    [79] 王传志,滕智明,钢筋混凝土结构理论。北京:中国建筑工业出版社,1985
    [80] 车宏亚等,钢筋混凝土结构原理,天津:大洋大学出版社,1990
    [81] 朱伯芳,有限单元法原理与应用,北京,中国水利水电出版礼,1998
    [82] 中因建筑科学研究院结构研究所,高层建筑结构设计,北京:科学出版社1983
    [83] 江见鲸,钢筋混凝上结构非线性有限元分析,陕西科学技术出版社,1993
    [84] W.E.Chen等,梁柱分析均设计,北京:人民交通出版社,1997
    [85] 国家建委建筑科学研究院,钢筋混凝土结构研究报告选集,北京:中国建筑工业出 版社,1976
    [86] 林同炎等,结构概念和体系,北京:中国建筑工业出版社,1999
    [87] Robert W.Hornbeck,数值方法,北京:中国铁通出版社,1982
    [88] 过镇海.钢筋混凝土原理,北京:清华人学出版社,1999
    [89] 朱伯龙等,钢筋混凝土非线性分析,上海:同济大学出版计,1985
    [90] 孙焕纯等,高等计算结构功力学,大连理工人学山版社,1992
    [91] 江见鲸等,混凝土力学,北京:申国铁道出版社,1991
    [92] 沈聚敏等·钢筋混凝十有限元与板壳极限分析,北京:清华大学出版社,1993
    [93] 铁摩辛柯,材料力学,北京:科学出版社,1978
    [94] 姚谦峰,复合板轻型建筑研究与发晨--结构工程学的研究现状和趋势,同济大 学出版社,1995
    [95] 姚谦峰,格构板新型结构体系,施工技术,1996. No.4
    [96] 姚谦峰,格构板新型节能建筑施工技术,中国建筑工业出版社,1997
    [97] 姚谦峰,格构板性能实验研究,国际第四届亚太会议论文集,1993. 8
    [98] 姚谦峰、陈平等,密肋轻型框架节能结构体系研究与应用,施工技术,1999. No.4
    [99] 赵冬、陈平、姚谦峰,密肋复合墙板有限元分析,应用力学学报,2001. No.1
    [100] Hsu,C.T.T., Reinforced Concrete Members Subject to Combined Biaxial Bending and Tension, ACI Journal, V.83,No.l6,Jun-Feb,1986,137-144
    [101] Davister,M.D., Analysis of Reinforced Concrete Columns of Arbitrary Geometry Subjected to Axial Load and Biaxial Bending-A Computer Program for Exactanalysis, concrete International:Design & Construction, V.8, No.7, July 1986,56-61
    [102] Gary Gang Wang ,Cheng-Tzu Thomas Hsu,Nonlinear Analysis If Reinforced Concrete Columns by Cubic-Spline Function, Journal of Engineering Mechanics, July, 1998,803-810
    [103] David Darwin,David A.Pecknold,Analysis of RC Shear Panels under CyclicLoading,Journal of Structural Dvision,ASCE,V.113,No.3,1987,429-444
    [104] Ching-Tzu Thomas Hsu, Analysis and Design of Square and Rectangular Columns Equation of Failure Surface ,ACI Strural Jourmal March-April, 1988,167-179
    [105] Mubbads Suidan,A.M.,Finite Element Amalysis of Reinforced Concrete, journal of Reinforced Concrete,Journal of the Structural Division, October, 1973,2109-2121
    [106] Yoshhiaki Goto, Qingyuan Wang, FEM Analysis for Hysteretic Behavior of Thin-Walled Columns, Journal of Structural Engineering, November, 1998,1290-1300
    [107] F.A. Zahn, R.Park,and M.J.N.Priestley, Strength and Ductility of SquareReinforced Concrete Column Section Subjected to Biaxial Bengding, ACI Structural Jouranal, March-April 1989,123-131
    [108] Cheng-Tzu Thomas Hsu, Biaxially Loading L-Shaped Reinforced Concrete Columns, Journalof Engineering, Vol.111,No.l2,December, 1985,2576-2595
    [109] R.Park and T.Paulay, Reinforced concrete Stuctures, John Wiley & Sons, New York, 1975
    [110] Furlong, Richard W., Concrete Columns Under Biaxial Eccentric Thrust, ACI Journal, V. 60,No.10,Oct.1979-1118
    [111] Ang, Beng Ghee, and Pauly, t,Seismic Shear Strength of Circular Reinforced Concrete Columns, ACI Structural Journal, V. 8, No.1, Jan-Feb 1988,45-59
    [112] Mander, J.B., Pristley, and Park,R, Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, Asce V.114, No.8,Aug.l988,1804-1826
    [113] Sheikh, Shami A.and Uzumeri, S.M.,Analytical Model for Concrete concrete confinement in Tied Columns, Asce, V.108. ST12, Dec. 1982,2703-2722
    [114] Carreira, DJ.,and Chu, K.H.,Stress-strain Relationship for plain concrete in Compression, ACIJ., V.82. No.6,1985,797-804
    [115] Dundar C,Sahin B., Arbitrarily Shaped Reinforced Concret Members Subjecte to Biaxial Bending and Axial Load, Computer and Structures, 1993,49,(4)
    [116] Vecchio F, Collins M.P., The Modified Compression-field Theory for Reinforced Concrete Element Subjected to Shear, ACI,Mar.-Apr., 1986
    [117] J. Robinson: Four-node quadrilateral stress membrane element with rot
    [118] ational stiffness, Int. J. Numer. Meth. Engng., 16,1567-1569(1980)
    [119] G.A.Mohr: Finite element formulation by nested interpolations: application to the drilling freedom problem, Comput. Struct, 15,185-190(1982)
    [120] DJ.Allman: A compatible triangular element including vertex rotationsfor plane elesticity analysis, Comput Struct, 19,1-8(1984)
    [121] P.G.Bergan and CA.Felippa: A triangular membrane element with rotational degrees of freedom, Comput. Meth. Appl. Mech. Engng., 50,25-69(1985)
    [122] R.D.Cook: On the Altaian triangle and a related quadrilateral element, Comput. Struct, 22,1065-1067(1986)
    [123] R.D.Cook: A plane hybrid element with rotational D.O.F. and adjustable stiffness, Int J. Numer. Meth. Engng., 24,1499-1508(1987)
    [124] D. J. Allaian: A quadrilateral finite element including vertex rotations for plane elasticity analysis, Int J. Numer. Mem. Engng., 26,717-730(1988)
    [125] R.H.Macneal and R.L. Harden A refined four-noded membrane element with rotational degrees of freedom, Comput Struct, 28,75-84(1988)
    [126] S.M.Yunus: A study of different hybrid elements with and without rotational D.O.F. for plane stress/plane strain problems, Copmut. Struct, 30,1127-1133(1988)
    [127] R.D.Cook: Modified formulations for nine-D.O.F. plane triangles that include vertex rotations, Int J. Numer. Meth. Engng., 31, 825-835(1991)
    [128] M. A. Aminpour: An assumed-stress hybrid 4-node shell element with drilling
     degrees of freedom,Int.J.Numer.Meth.Engng.,33,19-38(1991)
    [129] R. D. Cook: Further development of a three-node triangular shell element, Int J. Numer. Meth. Engng., 36,1414-1425(1993)
    [130] R.D.Cook: Four-node "flat" shell element: drilling degrees of freedom,membrane-bending coupling, warped geometry, and behavior, Comput Struct, 50,549-555(1994)
    [131] J. A. Aladuaij and H. Al-khaiat: A comparison between Allman quadrilateral and Yunus mixed quadrilateral in analysis of reticulated structure, Comput Struct, 51, 655-660(1994)
    [132] Meyer: M.S.L.Ronfaiel and S.G.Arzoumanidis: Analysis of damaged concrete frames for cyclic loads, Earthquake Eng. Struct. Dyn., 11,207-228(1983)
    [133] M.S.L.Roufeiel and C.Meger: Analytical modeling of hysteretic behavior of R/C frames,J. Struct Engrg. ASCE, 113(3) , 429-444(1987)
    [134] S.K.kunnath,A.M.Reinhorn and J.F.Abel: A computational tool for evaluation of seismic performance of reinforced concrete buildings, Comput Struct, 41(1) , 157-173(1991)
    [135] K.J.Mork: Stochastic analgsis of reinforced concrete frames under Seismic excitation, Soil Dgn. Earthquake Eng., 11,145-161(1992)
    [136] K.J.Mork: Response analgsis of reinforced concrete structure under seismic excitation, Earthquake Eng. Struct Dyn., 23,33-48(1994)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700