用户名: 密码: 验证码:
框架—密肋复合墙结构抗震性能与设计计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
框架-密肋复合墙结构是由框架与外框密肋复合墙组成的一种新型双重抗侧力结构体系,适应了当前阶段框架结构抗震性能的发展趋势,拓展了密肋复合墙结构的应用领域。框架-密肋复合墙结构中,以密肋复合墙取代或部分取代砌体填充墙、围护墙或隔墙,与外框架形成外框密肋复合墙体,在不大幅增加土建造价的前提下有效地提高了框架结构整体抗震性能和抵御强震的能力,在我国中高地震烈度区具有广阔的应用前景和发展空间。为此,对框架-密肋复合墙结构新体系抗震性能与设计计算方法开展研究有着十分重要的理论意义与工程应用价值。
     本文在总结相关成果的基础上,以框架-密肋复合墙结构为主要研究对象,利用试验研究、数值模拟与理论分析相结合的方法,对外框密肋复合墙抗震性能与竖向承载力性能、承载力计算方法、框架-密肋复合墙结构体系协同工作性能、设计方法及构造措施等进行了较为详细的研究,为框架-密肋复合墙结构的进一步研究及实际工程应用提供基础。本文完成的主要研究工作如下:
     (1)外框密肋复合墙抗震性能及竖向承载力试验研究。进行了外框密肋复合墙试件和空框格框架试件的低周反复荷载试验,分析了外框密肋复合墙的破坏形态、承载能力、刚度、延性以及耗能等。试验研究表明,外框密肋复合墙具有良好的抗震性能,其抗剪承载力、弹塑性刚度均优于同等条件下的空框格框架,墙体后期的延性、耗能和抗倒塌能力较好,能够最大限度发挥墙体各组成部分的抗剪耗能作用。外框密肋复合墙试件和空框格框架试件的竖向极限承载力试验表明,外框密肋复合墙具有可靠的竖向承载能力,使得普通框架结构向中高层建筑方向发展成为可能。
     (2)外框密肋复合墙极限承载力计算方法研究。首先利用通用有限元程序对外框密肋复合墙试件进行非线性有限元分析,有限元模拟结果与试验结果吻合较好;在试验研究和有限元分析的基础上,分析了外框密肋复合墙的抗剪机理,依据极限平衡理论,采用理论与经验相结合的方法建立了外框密肋复合墙抗剪承载力计算公式,并利用试验数据和有限元模拟结果对公式的适用性进行了验证。
     对外框密肋复合墙正截面压弯承载力进行了研究,针对密肋复合墙的特殊构造形式提出合理的简化模型,以平截面假定为依据,建立了外框密肋复合墙正截面压弯承载力实用计算公式;结合课题组前期对密肋复合墙轴压承载力的研究成果,提出了外框密肋复合墙轴压承载力的计算方法,并利用有限元程序对计算公式的适用性进行了验证。
     (3)框架-密肋复合墙结构协同工作性能研究。基于Timoshenko梁理论,将框架-密肋复合墙结构视为由剪切型悬臂框架和弯剪型悬臂梁组成的双重抗侧力体系,分别考虑了外框密肋复合墙的弯曲变形和剪切型,采用连续化方法建立了框架-密肋复合墙结构的基本位移微分方程,结合边界条件得出了结构体系弯曲变形、剪切变形及总水平位移的解析表达式,并给出了构件内力计算公式。
     在概念上将任意双重结构视为由同时考虑弯曲变形、剪切变形的两种子结构组成的密肋复合墙双重抗侧力结构(广义双重抗侧力结构),从而将具有不同变形特征的双重结构进行了统一;建立了密肋复合墙双重抗侧力结构体系的统一位移微分方程,推导出了两个子结构的弯曲变形、剪切变形及总位移的统一计算公式。对框架-密肋复合墙结构、框架-剪力墙结构、密肋复合墙双重抗侧力结构三者之间位移计算公式的相容性关系进行了探讨。
     (4)框架-密肋复合墙结构设计计算方法及构造措施研究。以框支剪力墙-落地剪力墙共同工作体系为依据,建立了框架-密肋复合墙结构的频率方程及自振周期计算公式,并给出了基本周期的近似计算方法;在结构位移及周期计算的基础上,考虑构件刚度退化规律,提出弹塑性阶段框架-密肋复合墙结构剪力分担率及外框密肋复合墙剪力分配率的实用计算方法;根据外框密肋复合墙的试验结果并考虑建筑功能需求、规范的可执行性等综合因素,分析了弹性阶段和弹塑性阶段框架-密肋复合墙结构层间位移角的控制目标及限值问题。
     结合已建成使用的密肋结构实践经验,对框架-密肋复合墙结构的材料性能、布置原则和适用高度做出了一般规定;探讨了框架-密肋复合墙结构的施工方法和抗震构造措施,针对密肋复合墙中肋梁肋柱的截面形式和受力特点,对肋梁肋柱钢筋笼的构造形式进行了改进,以期为框架-密肋复合墙结构的工程应用提供参考。
ABSTRACT:The frame-multi-grid composite wall structure (FCWS) is a new type dual structure consisting of frame and multi-grid composite wall with outer frame. The dual structure is suitable well for the development trend of the frame structure at present, and expands the application scope for the multi-grid composite wall structure. Substituting the infill walls and the partitions of frame structure by RC multi-grid composite walls makes FCWS. Compared with frame structure, the construction cost of FCWS is not increased greatly, and the whole seismic performance of FCWS is improved effectively. There is an extensive application outlook and development space for FCWS in our country. Research on the seismic performance and design calculation method of FCWS is meaningful both in theory and in practice.
     Through model tests, numerical simulation and theoretical analysis of FCWS, and based on the prior related study results, follows aspects were investigated:seismic performance and vertical bearing capacity of the composite wall with outer frame, ultimate strength calculation method of the wall, cooperative work mechanism, design calculation methods of the structural system and the seismic construction measures. The results of this study provide a basis for more theoretical research and application of FCWS in practice. The main parts of work in the thesis are as follows:
     (1) Research on seismic performance and vertical load bearing capacity of the composite wall with outer frame through experiments.
     Cyclic reversed loading tests were conducted on composite wall with outer frame specimens and frame specimen without infill blocks of half scale. Failure process and the seismic performance including bearing capacity, stiffness, ductility and energy-dissipation capability were investigated. The tests results indicated that the composite wall with outer frame possessed good cooperative work performance and double anti-lateral force features, and the shear capacity and energy consumption of the composite wall with outer frame were better than those of common frame or frame with infill blocks significantly. The inner composite wall can share external load effectively in the whole process. It also possessed good ductility and bearing capacity, and can play an important role to dissipate energy at large displacement cyclic stage. Vertical load bearing capacity tests were conducted on composite wall with outer frame specimens and frame specimen without infill blocks of half scale. The test results indicated that the vertical load bearing capacity of the frame-composite wall was enough, and it was possible to construct middle-high building with the frame-composite wall structure system.
     (2) Research on calculation method of the ultimate bearing capacity of the composite wall with outer frame.
     Nonlinear finite element analysis of composite walls with outer frame was made using ANSYS program, and the results of FEA agreed well with those of experiments. Based on the experiments and FEA analysis, the general shear resistance mechanism of the wall was investigated. Through experiences and theoretical analysis, formula for calculating the shear load-bearing capacity of the frame-composite wall was proposed according to the ultimate balance theory. And its accuracy was verified by the test and FEA results.
     Research on the calculation method of normal section compression-bending capacity for the frame-composite wall was made. The simplified calculation model for the wall was proposed according to the special form of the wall. Based on assumption of section in plane, the ultimate strength calculation formulas of normal section of the composite wall with outer frame were proposed. In addition, the practical calculation formula of the axial load-bearing capacity of the wall was also proposed, and the accuracy of the formula was verified by FEA program.
     (3) Research on cooperative work mechanism of the frame-composite wall structure.
     Based on the fundamental theory of Timoshenko beam, the frame-composite wall structure is regarded as double anti-seismic system consisting of shear type frames and shear-flexural type cantilever beams. The fundamental differential equation of the displacement was established by the continuous approach, and its analytical solution of displacement and internal force were derived respectively.
     The arbitrary dual structure could be regarded as a dual structure consisting of two substructures in concept. Horizontal deformation of the substructure consists of bending deformation and shear deformation. The unified displacement differential equation of generalized structure with double resistance to lateral force was established by deformation continuation approach, and the unified displacement analytical solutions of the dual structure were derived which include bending deformation solution, shear deformation solution and the total deformation solution. Relation of the displacement calculation method among the frame-composite wall structure, the frame-shear wall structure and the dual structure with the multi-grid walls was discussed.
     (4) Research on seismic design calculation methods and construction measures of the frame-composite wall structure system.
     The frequency equation and the calculation formula of natural vibration period of the frame-composite wall structure were proposed. And the approximate calculation method of natural vibration period of FCWS was also proposed. Based on calculation of structural displacement and natural vibration period, calculation method of shear-sharing ratio for the frame-composite wall structure during elastic-plastic stage was proposed. Limits and control goals of storey drifts of FCWS at elastic and elastic-plastic stages were discussed based on the test results, architectural demanding, and the related codes.
     Based on the existing multi-grid structures in practice, the general regulations of the frame-composite wall structure, concerning with material performance, arrangement principle of the members, the appropriate maximum height of buildings, were presented. The construction technology and seismic measure details for the structure were discussed. According to the section forms and mechanism characters of grid beams and
引文
[1]清华大学土木结构组,西南交通大学土木结构组,北京交通大学土木结构组.汶川地震建筑震害分析.建筑结构学报,2008,29(4):1-9.
    [2]徐有林.汶川地震震害调查及对建筑结构安全的反思.北京:中国建筑工业出版社,2009.
    [3]Wang Y.Y.. Lessons learned from the "5.12" Wenchuan Earthquake:evaluation of earthquake performance objectives and the importance of seismic conceptual design principles. Earthquake Engineering and Engineering Vibration,2008,7(3):255-262.
    [4]清华大学,西南交通大学,等.汶川地震建筑震害分析及设计对策.北京:中国建筑工业出版社,2009.
    [5]李英民.汶川地震建筑震害与思考.重庆:重庆大学出版社,2008.
    [6]Li X.J., Zhou Zh.H., Yu H.Y., et al. Strong motion observations and recordings from the great Wenchuan Earthquake. Earthquake Engineering and Engineering Vibration,2008,7(3): 235-246.
    [7]姚谦峰,庞乃勇,夏雷,郭猛.基于抗震概念设计的密肋复合墙新型抗震结构体系.北京交通大学学报,2010,34(4):50-55.
    [8]温增平,徐超,陆鸣,等.汶川地震重灾区典型钢筋混凝土框架结构震害现象.北京工业大学学报,2009,35(6):753-760.
    [9]叶耀先,韩毓芬.1995年日本兵库县南部地震钢筋混凝土建筑物震害.建筑结构,1996,26(12):41-45.
    [10]Atorod A., Ghosh S. K.. Steel reinforced concrete structures in 1995 Hyogoken-Nanbu earthquake. Journal of Structural Engineering,1997,123(8):986-992
    [11]王亚勇,白雪霜.台湾921地震中钢筋混凝土结构震害特征.工程抗震,2001,(1):3-7.
    [12]李宏男,赵衍刚.日本新潟县中越大地震震害调查及分析.自然灾害学报,2005,14(1):165-174.
    [13]李小军,曲国胜,张晓东.2005年巴基斯坦北部7.8级地震灾害调查与分析.震灾防御技术,2007,2(4):354-362.
    [14]霍林生,李宏男,肖诗云,等.汶川地震钢筋混凝土框架结构震害调查与启示.大连理工大学学报,2009,49(5):718-723
    [15]Bertero V. V, Brokken S.. Infills in seismic resistant building. Journal of Structural Engineering, 1983,109(6):1337-1361.
    [16]Schmidt T.. Experiments on the nonlinear behavior of masonry infilled reinforced concrete frames. Darmstadt Concrete, Annual Journal on Concrete and Concrete Structures,1989(4): 185-194.
    [17]Mehrabi A. B., Shing P. B., Schuller M. P., et al. Experimental evaluation of masonry-infilled RC frames. Journal of Structural Engineering,1996,122(3):228-237.
    [18]Ghassan A. C, Mohsen I., Steve S.. Behavior of masonry-onfilled nonductile reinforced concrete frames. Journal of Structural Engineering,2002,128(8):1055-1063.
    [19]童岳生,钱国芳.砖填充墙钢筋混凝土框架在水平荷载作用下结构性能的试验研究.西安冶金建筑学院学报,1982(2):1-13.
    [20]叶列平,陆新征,赵世春,等.框架结构抗地震倒塌能力的研究.建筑结构学报,2009,30(6):67-76.
    [21]叶列平,曲哲,陆新征,等.提高建筑结构抗地震倒塌能力的设计思想与方法.建筑结构学报,2008,29(4):42-50.
    [22]密肋壁板轻型框架结构课题组.密肋壁板轻型框架结构理论与应用研究.西安:西安建筑科技大学,2000.
    [23]Xia L., Yao Q.F., Chang P., et al. Seismic Safety Evaluation Analysis of A New Building Structure with Multi-ribbed Composite Wall Structure. International Conference on Earthquake Engineering----the 1st Anniversary of Wenchuan Earthquake,2009,5.
    [24]Sun J., Yao Q.F.. The Study of an equivalent elastic composite slab model in the multi-ribbed slab wall. The Second International Conference on Structural Condition Assessment, Monitoring and Improvement,2007.
    [25]北京交通大学,西安建筑科技大学.具有多道抗震防线的耗能复合墙结构设计理论与关键技术研究.北京:北京交通大学,2009.
    [26]王奇,钱稼茹,马宝民,等.保温砌模混凝土网格墙抗震性能试验研究.建筑结构学报,2004,25(4):15-25.
    [27]宋美洁,李升才,罗烨钶.节能砌块隐形密框墙板偏心受压承载力试验.华侨大学学报,2009,30(4):436-442.
    [28]施楚贤.砌体结构理论与设计.北京:中国建筑工业出版社,2003.
    [29]Narendra T.著,周克荣等译.现代配筋砌体结构.上海:同济大学出版社,2004
    [30]Priestley M.J.N.. Seismic design of reinforced masonry shear walls. ACI Structural Journal, 1986,83(1):58-68.
    [31]Shing P., Schuller M., Hoskere V.. In-plane resistance of reinforced masonry walls. Journal of the Structural Division,1990,116(3):619-640.
    [32]曾凡生,王红群,杨永哲.钢筋混凝土框-撑结构在多层建筑设计中的探讨.建筑结构,2007,37(10):24-26.
    [33]崔鸿超.日本兵库县南部地震震害综述.建筑结构学报,1996,17(1):2-13.
    [34]周晓夫,程绍革,肖伟,等.中国地质博物馆抗震鉴定与加固设计.工程抗震与加固改造,2006,28(2):56-60.
    [35]姚谦峰,郭猛,夏雷.密肋耗能墙在高层框架抗震加固中的应用研究.汶川地震一周年地震工程与减轻地震灾害研讨会论文集,2009:682-686.
    [36]郭猛,姚谦峰.底部外框密肋复合墙房屋结构抗震设计方法.武汉大学学报(工学版),2010,43(2):213-217.
    [37]田洁.框支密肋壁板结构非线性地震反应分析及基于损伤性能的抗震能力评估方法研究[博士学位论文].西安:西安建筑科技大学,2007.
    [38]黄炜,王国铨,姚谦峰,等.框支密肋壁板结构托梁内力计算.土木建筑与环境工程,2010,32(1):66-71.
    [39]喻磊.密肋复合墙板框格单元在地震作用下的受力机理及弹塑性损伤模型研究[博士学位论文].西安:西安建筑科技大学,2006.
    [40]喻磊,张荫,岳亚锋,等.钢筋混凝十框格单元结构力学性能试验研究.西安建筑科技大学学报,2007,39(3):314-319.
    [41]黄炜.密肋复合墙体抗震性能及设计理论研究[博十学位论文].西安:西安建筑科技大学, 2004.
    [42]姚谦峰,黄炜,田洁,等.密肋复合墙体受力机理及抗震性能试验研究.建筑结构学报,2004,25(6):67-74.
    [43]Yao Q.F., He M.S., Huang W., et al. Mechanics analysis of multi-bibbed composite wall structure under transverse loads. Proceedings of the Innovation and Sustainability of Structures, 2007.
    [44]袁泉.密肋壁板轻框结构非线性地震反应分析[博士学位论文].西安:西安建筑科技大学,2003.
    [45]Yuan Q.,Yao Q. F., Jia Y. J.. Study on Hysteretic Model and Damage Model of Multi-ribbed Composite Wall. EETC-2005.2005:644-650.
    [46]Yuan Q.,Yao Q. F., Xia L.. Nonlinear seismic response calculation model of muti-ribbed composite slab structures. ISSEYE-9:1088-1093.
    [47]姚谦峰,袁泉.小高层密肋壁板轻框结构模型振动台试验研究.建筑结构学报,2003,24(1):59-63.
    [48]姚谦峰,贾英杰.密肋壁板结构十二层13比例房屋模型抗震性能试验研究.土木工程学报,2004,37(6):1-10.
    [49]Jia Y. J., Shi Y. H., Yao Q. F.. Studies on seismic behavior and static pushover analysis of multi-ribbed slab structures. ISSEYE-9:1250-1255.
    [50]贾英杰.中高层密肋壁板结构计算理论及设计方法研究[博士学位论文].西安:西安建筑科技大学,2004.
    [51]王爱民,姚谦峰,吴敏哲,等.密肋复合墙体压弯剪复合受力性能非线性数值分析.土木工程学报,2007,40(7):25-29,67.
    [52]王爱民,姚谦峰,吴敏哲,等.密肋复合墙体压弯剪复合受力性能试验研究.建筑结构学报,2008,29(2):79-84.
    [53]王爱民.中高层密肋壁板结构密肋复合墙体受力性能及设计方法研究[博士学位论文].西安:西安建筑科技大学,2006.
    [54]袁泉,姚谦峰.密肋壁板轻框结构计算模型及数值分析.工程力学,2001(A03):262-266.
    [55]常鹏,姚谦峰.密肋复合墙体受剪性能试验研究及弹塑性数值分析.建筑结构学报,2010,31(4):116-123.
    [56]Chang P., Yao Q. F., Xiong Y. Q.. Computation Models of MCS in Nonlinear Numerical Simulation of Moderate High-rise MRSS. ISSEYE-9:1168-1173.
    [57]常鹏.基于性能(位移)的密肋壁板结构数值计算分析与抗震设计方法研究[博士学位论文].北京:北京交通大学,2006.
    [58]Liu P., Yao Q. F,. Dynamic reliability of structures:the example of multi-grid composite walls [J]. Structural Engineering and Mechanics,2010,36(4):463-479.
    [59]熊耀清.密肋复合墙体损伤演化规律及损伤模型研究[博士学位论文].北京:北京交通大学,2008.
    [60]姚谦峰,周铁钢,黄炜,等.密肋壁板轻框结构节能住宅小区施工技术.施工技术,2002,31(8):16-18.
    [61]Xia L., Yao Q.F., Zhang J.. Construction Technology of Multi-ribbed Composite Wall Structure. International Conference on Construction and Real Estate Management,2008,10.
    [62]周铁钢,张荫,姚谦峰.密肋壁板轻框结构体系施工技术.工业建筑,2003,33(1):23-25.
    [63]张荫,刘扬,姚谦峰.密肋复合墙结构施工仿真技术研究.建设科技,2008(121):99-101.
    [64]P. B. Shing, J. L. Noland, H. Spaeh. Inelastic behavior of concrete masonry shear walls. Journal of Structural Engineering,1989,115(9):2204-2225.
    [65]Voon K. C., Lngham J. M.. Experimental in-plane shear strength investigation of reinforced concrete masonry walls. Journal of Structural Engineering,2006,132(3):400-408.
    [66]Vladimir G. H., Graca V., Paulo B. L.. Experimental analysis of reinforced concrete block masonry walls subjected to in-plane cyclic loading. Journal of Structural Engineering,2010, 136(4):452-462.
    [67]Martin R. B., Ronald L. M.. Out-of-plane seismic response of reinforced masonry walls. Journal of Structural Engineering,1992,118(9):2495-2513.
    [68]Zhang X. D., Shivas S, Desmond K. B., et al. Out-of-plane performance of reinforced masonry walls with openings. Journal of Structural Engineering,2001,127(1):51-57.
    [69]李峰.带构造柱圈梁水平配筋砖墙的抗震性能研究[硕士学位论文].西安:西安建筑科技大学,2004.
    [70]梁建国,张望喜,郑勇强.钢筋混凝土-砖砌体组合墙抗震性能.建筑结构学报,2003,24(3):61-69.
    [71]杨德健,高永孚,孙锦镖,等.构造柱-芯柱体系混凝土砌块墙体抗震性能试验研究.建筑结构学报,2000,21(4):22-27.
    [72]傅秀岱,马峰,杨永哲.新型钢筋混凝土复合剪力墙抗震性能试验研究.天津大学学报,2000,33(3):336-340.
    [73]傅秀岱,冯颖慧,叶建平.加十字形支撑的框架填充墙抗剪性能研究.河北建筑科技学院学报,2003,17(1):8-12.
    [74]傅秀岱,严宁川.框架格构复合剪力墙双重抗震结构体系.烟台大学学报(自然科学与工程版),2001,14(2):152-156.
    [75]冯颖慧.一种新型复合剪力墙抗震试验研究[硕士学位论文].天津:天津大学,1999.
    [76]严宁川.格构复合剪力墙在单向水平荷载作用下结构抗剪承载力试验研究与工程应用[硕士学位论文].天津:天津大学,2001.
    [77]Klingner, R. E. & Bertero, V. V.. Infilled frames in earthquake-resistant construction. Report EERC/76-32, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA,1976.
    [78]Koing, G.. The State of the Art in Earthquake Engineering Research. Experimental and Numerical Methods in Earthquake Engineering, Edited by J. Donea and P. M. Jones,1991, (2): 1-22.
    [79]Stafford-Smith, B.. Lateral stiffness of infilled frames. Journal of the Structural Division (ASCE),1962,88(6):183-199.
    [80]H. K. Baruaa, S. K. Mallick. Behavior of mortar infilled steel frames under lateral load. Building and Environment,1977,12(4):263-272.
    [81]Kwok-Hung Kwan, Te-Chang Liauw. Nonlinear analysis of integral infilled frames. Engineering Structures,1984,6(3):223-231.
    [82]Mehribi A. B., Shing P. B.. Finite element modeling of masonry-infilled reinforced concrete frame [J]. Journal of Structural Engineering,1997,123(5):604-613.
    [83]高层建筑混凝土结构技术规程(JGJ3-2002).北京:中国建筑工业出版社,2002.
    [84]建筑结构抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2008.
    [85]Timoshenko S., J. N. Goodier. Theory of elasticity. McGraw-Hill, New York,1970.
    [86]Timoshenko S. Advanced strength of materials. D.Van Nostrand Co., Princeton, New Jersey, 1962.
    [87]包世华,张铜生.高层建筑结构设计和计算.北京:清华大学出版社,2005.
    [88]方鄂华,钱稼茹,叶列平.高层建筑结构设计.北京:中国建筑工业出版社,2006.
    [89]何若全,卞若宁.框架-支撑钢结构在水平地震作用下的层间变形.苏州城建环保学院学报,2000,13(3):48-53.
    [90]陆铁坚,余志武.带支撑多层钢框架结构的内力和位移计算.长沙铁道学院学报,2002,20(3):7-11.
    [91]童根树,金阳,米旭峰.双重弯剪型抗侧力结构的屈曲及其二阶效应.工程力学,2008,25(10):92-98.
    [92]Tong G. S., Pi Y. L.. Buckling and second-order effects in dual shear-flexural systems. Journal of Structural Engineering,2008,134(11):1726-1732.
    [93]Sieczkowski J. Simplified method of analysis of frame-wall systems. Advances in Tall Buildings, Council on Tall Buildings and Urban Habitat, New York,1985
    [94]郭猛,姚谦峰.地震区多层异形框架柱-框架结构体系应用研究.世界地震工程,2009,25(1):70-76.
    [95]张杰.密肋复合墙板受力性能及斜截面承载力实用设计计算方法研究[硕士学位论文].西安:西安建筑科技大学,2004.
    [96]胡志远.采用端部约束的配筋砌块砌体剪力墙抗震性能试验研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [97]建筑结构抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2008.
    [98]童岳生,钱国芳.砖填充墙钢筋混凝土框架在水平荷载作用下结构性能的试验研究.西安建筑科技大学学报,1982,14(2):1-13.
    [99]王新敏.ANSYS工程结构数值分析.北京:人民交通出版社,2007.
    [100]尚晓江,邱峰,赵海峰,等.ANSYS结构有限元高级分析方法与范例应用.北京:中国水利水电出版社,2008.
    [101]江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社,2005.
    [102]陈惠发著,余天庆,刘再华等编译.弹性与塑性力学.北京:中国建筑工业出版社,2004.
    [103]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003.
    [104]李挺.密肋轻钢龙骨复合墙体抗剪承载力试验研究[硕士学位论文].北京:北京交通大学,2010.
    [105]周炳章,夏敬谦.水平配筋砖砌体抗震性能的试验研究.建筑结构学报,1991,12(4):31-43.
    [106]关国雄,夏敬谦.钢筋混凝土框架砖填充墙结构抗震性能的研究.地震工程与工程振动,1996,16(1):87-98.
    [107]夏敬谦,丁世文,崔际枫,等.水平配筋墙片抗震性能的试验研究.建筑结构,1999,(6).
    [108]施楚贤,周海兵.配筋砌体剪力墙的抗震性能.建筑结构学报,1997,18(6):32-40.
    [109]熊立红,张敏政.设置芯柱-构造柱混凝土砌块墙体抗震剪切承载力计算.地震工程与工程振动,2004,24(2):82-87.
    [110]黄炜,姚谦峰,章宇明,等.内填砌体的密肋复合墙体极限承载力计算.土木工程学报, 2006,39(3):68-75.
    [111]陈国新,黄炜,姚谦峰.植物纤维复合墙体抗震性能研究.新疆农业大学学报,2010,33(5):431-435.
    [112]唐强.秸秆泥坯生态复合墙体抗震性能及抗震设计方法研究[硕士学位论文].西安建筑科技大学,2009.
    [113]路振锋,姚谦峰,陈国新,等.内填再生EPS轻骨料混凝土砌块生态复合墙体抗震性能试验研究.第二届结构工程新进展国际论坛论文集,2008.
    [114]何明胜.型钢混凝土边框柱密肋复合墙体抗震性能及设计理论研究[博士学位论文].西安:西安建筑科技大学,2008.
    [115]杨庆生.复合材料细观结构力学与设计.北京:中国铁道出版社,2000.
    [116]Chaker A.A, Cherifati A. Influence of masonry infill panels on the vibration and stiffness characteristics of RC frame buildings. Earthquake Engineering and Structural Dynamics,1999, 28(10):1061-1065.
    [117]Asteris P.G. Lateral stiffness of brick masonry infilled plane frames. Journal of Structural Engineering,2003,129(8):1071-1079.
    [118]Ghassan A.C, Mohsen L., Steve S.. Behavior of masonry infilled nonductile reinforced concrete frames. ACI Structure Journal,2002,136(4):347-356.
    [119]刘玉姝,李国强.带填充墙钢框架结构抗侧力性能试验及理论研究.建筑结构学报,2005,26(3):78-84.
    [120]Timoshenko S.P.高等材料力学.北京:科学出版社,1990.
    [121]Timoshenko S.P., Goodier J.N.. Theory of elasticity. McGraw-Hill, New York,1970.
    [122]Timoshenko S.P.. Advanced strength of materials. D.Van Nostrand Co., Princeton, New Jersey, 1962.
    [123]Dewey H., Hodges. Asymptotic derivation of shear beam theory from Timoshenko theory. Journal of Engineering Mechanics,2007,133(8):957-961.
    [124]C. M. Wang, S. Kitipornchai, C. W. Lim, et al. Beam bending solutions based on nonlocal Timoshenko beam theory [J]. Journal of Engineering Mechanics,2008,134(6):475-481.
    [125]张燕,卢华勇.Timoshenko梁理论应用于结构损伤的动力分析.力学季刊,2005,26(2):322-328.
    [126]胡安峰,谢康和,应宏伟,等.粘弹性地基中考虑桩体剪切变形的单桩水平振动解析理论.岩石力学与工程学报,2004,23(9):1515-1520.
    [127]David G.Z., Luis G.A., Dario J.A.. Static stability formulas of a weakened Timoshenko column: effects of shear deformations. J. Engrg. Mech.,2010,136(12):1528-1536
    [128]刘维宁,张昀青,孙晓静.移动荷载作用下周期支承Timoshenko梁动力响应.中国铁道科学,2006,27(1):38-42.
    [129]TIMOSHENKO S. P.. History of strength of materials. Dover Publications, Inc, New York, 1953.
    [130]范钦珊,殷雅俊.材料力学.北京:清华大学出版社,2004.
    [131]赵西安,徐培福.高层建筑建筑结构的选型构造及简化计算.北京:中国建筑工业出版社,2000.
    [132]Linda P, Bachmann H. Dynamic modeling and design of earthquake-resistant walls. Earthquake Engineering and Structure Dynamic,1994,23 (12):1331-1350.
    [133]Tsutom U. Plastic analysis of steel members and frames subjected to cyclic loading. Engineering Structures,1997,18:135-145.
    [134]Lee S L, Basu P K. Bracing requirements of plane flames. Journal of Structural Engineering, 1992,118(6):1527-1546.
    [135]Raid D C. Seismic evaluation and upgrading of chevron braced frames. Journal of Constructional Steel Research,2003,59:971-994.
    [136]周福霖.工程结构减震控制.北京:地震出版社,1997.
    [137]周云.金属耗能减振结构设计.武汉:武汉理工大学出版社,2006.
    [138]R. Sabelli., S. Mahin., C.Chang. Seismic Demands on Steel Braced Frame Buildings with Buckling-Restrained Braces. Engineering Structures,2003,25(5):655-666.
    [139]Tremblay R. Inelastic seismic response of steel bracing members. Journal of Constructional Steel Research,2002,58(5):665-701.
    [140]Takeuchi T, Yamada S, Kitagawa M, et al. Stability of buckling-restrained braces affected by the out-of-plane stiffness of the joint element. Journal of Structural and Construction Engineering,2004,575:121-128.
    [141]经杰,叶列平,钱稼茹.双重抗震结构体系在高层建筑中的应用.建筑科学,2007,17(1):43-45.
    [142]经杰.双重结构基于位移抗震设计方法的研究[博士学位论文].北京:清华大学,2002.
    [143]张旭峰.密肋复合墙-剪力墙混合结构协同工作计算分析与实用设计方法研究[博士学位论文].西安:西安建筑科技大学,2008.
    [144]邬瑞锋,奚肖凤,蔡贤辉,等.弯曲对组合墙体抗侧力的影响.建筑结构,1997,27(2):14-18.
    [145]袁泉.密肋壁板结构设计理论与实用设计方法研究[博士后研究报告].北京:北京交通大学,2005.
    [146]刘建新.高层框-剪结构中框架地震内力的确定.建筑结构学报,1999,20(3):15-22.
    [147]郭子雄,吕西林,王亚勇.建筑结构抗震变形验算中层间弹性位移角限值的研讨.工程抗震,1998,(2):1-6.
    [148]混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002.
    [149]混凝土结构工程施工质量验收规范(GB50204-2002).北京:中国建筑工业出版社,2002.
    [150]密肋壁板结构技术规程(DB13(J)64-2006).河北省建设厅,2006.
    [151]Kataa. Effect of fiber modulus of elasticity on the long term properties of micro fiber reinforced cement actions composite. Cement and Concrete Composite,1996,18(6):389-399.
    [152]郭猛,涂远军.框架结构梁柱节点区优化施工设计.施工技术,2007,36(6):95-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700