用户名: 密码: 验证码:
张拉索膜结构的膜褶皱与索系失效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
张拉索膜结构的膜褶皱分析与索系失效分析是该类结构荷载态分析中的两个重要方面。通过膜褶皱处理,可以在膜面出现受力褶皱后对结构的荷载响应进行正确的分析。通过索系的失效分析,可以定量分析各构件的重要性并找到结构的薄弱环节,得到结构体系的失效模式和可靠度指标。本文进行了以下研究工作并得到了一些有意义的结论:
     (1)基于实际的张拉索膜工程中精确的结构形态和索的预张力分布都是未知的这一情况,提出了适时考虑索找力的索膜结构形态分析方法。采用该方法对小型张拉索膜结构及大型张拉索膜工程进行了形态分析,发现该方法可以快速有效的得到合理的结构形态和合适的预张力分布,使索找力和结构找形成为了一个统一的过程。
     (2)提出了局部坐标系转置和刚度等效分析褶皱膜的方法,该方法通过局部坐标系转置,避免了褶皱单元主应力方向上复杂满秩矩阵的处理问题,给褶皱膜的分析提供了新的思路。采用该方法对马鞍形索膜结构和伞形索膜结构进行了褶皱分析,结果表明该方法可以有效地对褶皱膜进行处理,可得到褶皱单元出现后膜结构正确的荷载响应。
     (3)为解决膜褶皱分析时的计算发散、精度较低和工程应用等问题,提出了剪切模量归零和刚度等效来分析膜的褶皱的方法。该方法是局部坐标系转置和刚度等效分析法的改进方法,可以在不进行局部坐标系转置的情况下,实现局部坐标系和主应力方向的重合,大大提高了计算效率和计算精度,通过对两个大型膜结构的褶皱分析,发现该方法能快速有效地对大型膜结构进行褶皱处理,解决了膜褶皱分析的工程应用问题。
     (4)通过对索构件的失效进行研究,提出了采用环比评分法(DARE法)和敏感性分析法相结合的构件重要性分析方法。该方法基于体系刚度变化理论,可定量得到构件的相对重要性系数。根据构件重要性分析结果,提出了关键构件重要性弱化的概念和相关措施。对宝安体育场的分析结果表明,通过对关键索构件的分索处理,可有效降低关键构件的重要性系数,可增多结构的安全防线,提高结构体系的抗倒塌能力
     (5)提出了采用路径可靠数寻找索系主要失效模式的方法,该方法通过可靠数这一本文中新定义的概念来判断体系的主要失效构件和寻找主要失效模式。通过对大型索膜结构的失效分析发现,路径可靠数可以直观的反映失效路径在各失效序列上的位置和失效路径的长度,路径平均可靠数可初步判别主要失效模式的序位,可简化结构体系可靠度计算的复杂过程。
Wrinkling analysis of membranes and failure analysis of cable systems are two important aspects in load analysis of tensioned cable-membrane structures. By the former, correct load responses can be obtained after appearance of wrinkled elements. By the later, quantitative analysis of the importance of structure members can be achieved, weak structure parts can be identified, failure modes and reliability index can be obtained as well. This paper conducted the following researches and got some valuable conclusions.
     (1) Since the precise shape and cables’pretension forces of actual cable-membrane project are all unknown, this paper proposes a shape analysis method by which cable force-finding can be considered in appropriate moment through the process of shape-finding. A small cable-membrane structure and a large cable-membrane project are analyzed, it is found that stable shape and proper distribution of pretension forces can be obtained quickly and effectively by this method. It also makes the force-finding and shape-finding a unified process.
     (2) A method to analyze wrinkled membrane by using the local coordinate system transposition and equivalent stiffness analysis is proposed. The method avoids dealing with the complex problem of full rank matrix in principal stress axe, and provides a new way to process wrinkling analysis. The results of wrinkling analysis of a saddle-shaped cable-membrane structure and an umbrella-shaped cable-membrane structure show that, this method can deal with wrinkled membranes effectively, and can obtain the actual load responses of membranes after the emergence of wrinkles.
     (3) To solve the divergence, low accuracy problems in membrane wrinkling analysis, and be better applied in practical engineering projects, zero shear modulus plus equivalent stiffness analysis method is proposed. This method is an improvement to the method of local coordinate transposition and stiffness equivalence. The new method can make principal stresses directions coincide with local coordinates without transposing it. The computational efficiency and accuracy are improved significantly. Two large-scale membrane stadium structures are analyzed by this new method, it is found that the method can quickly deal with wrinkles of large membrane structure, and it solves the difficulties of wrinkling analysis application in practical engineering projects.
     (4) Through analyzing the failure of cables, an important analysis method by combining DARE and sensitivity methods is proposed. The new method, based on system stiffness changing theory, can obtain importance factors quantitatively. According to results of importance analyses, an importance-weaken concept of critical cables by cable-division method is proposed. The calculation results of Baoan stadium show that this method can decrease critical cables’importance factors by cable-division of key cables, it can also increase the safety protection and improve the collapse- resistance capacity of the structural system.
     (5) A main failure mode finding method using path reliability values is proposed. The method searches main failure members and finds main failure modes via the reliable value which is newly introduced in this paper. A large cable-membrane structure is analyzed by the new method, the results show that the failure arrays position and failure length path can be visually identified according to the reliable value, and the positions of main failure modes can be judged preliminarily. So it can simplify the complex process of reliability calculations.
引文
[1]杨庆山,姜忆南.张拉索-膜结构分析与设计[M].北京:科学出版社, 2004.
    [2]中国工程建设标准化协会.膜结构技术规程[S].北京,中国工程建设标准化协会, 2004.
    [3]莫特罗(著),薛素铎等(译).张拉整体—未来的结构体系[M].北京:中国建筑工业出版社, 2007.
    [4]钱若军,杨联萍.张力结构的分析.设计.施工[M].南京:东南大学出版社, 2003.
    [5]李波,杨庆山,谭锋.张力结构的施工计算[J].北京交通大学学报. 2007, 31(1): 93-96.
    [6]董石麟,罗尧治,赵阳.新型空间结构分析、设计与施工[M].北京:人民交通出版社, 2006.
    [7] Otto F, Trostel R, Schleyer F K. Tensile structures[M]. Massachusetts ,USA:MIT Press, 1971.
    [8]陈务军.膜结构工程设计[M].北京:中国建筑工业出版社, 2005.
    [9] Schek H J. Force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics and Engineering. 1974, 3(1): 115-134.
    [10] Maurin B, Motro R. Surface stress density method as a form-finding tool for tensile membranes[J]. Engineering Structures. 1998, 20(8): 712-719.
    [11] Cassell A C, Hobbs R E. An introduction to dynamic relaxation Numerical stability of dynamic relaxation analysis of non-linear structures[J]. International Journal for Numerical Methods in Engineering. 1976, 10(6): 1407-1410.
    [12] Barnes M R. Form finding and analysis of tension structures by dynamic relaxation[J]. International Journal of Space Structures. 1999, 14(2): 89-104.
    [13] Woo R D. A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes[J]. Computers & Structures. 2002, 80(27-30): 2115-2120.
    [14] Haug E, Powell G H. Finite element analysis of nonlinear membrane structures[C]. Tokyo and Kyoto: NISEE, 1971.
    [15] Bletzinger K U, Ramm E. General finite element approach to the form finding of tensile structures by the updated reference strategy[J]. International Journal of Space Structures. 1999, 14(2): 131-145.
    [16] Ortega N F, Robles S I. Form finding of revolution shells by analysing mechanical behaviour by means of the finite element method[J]. Journal of Strain Analysis for Engineering Design. 2005, 40(8): 775-784.
    [17] Pagitz M, Mirats Tur J. Finite element based form-finding algorithm for tensegrity structures[J]. International Journal of Solids and Structures. 2009, 46(17): 3235-3240.
    [18]聂世华,钱若军.膜结构的找形分析和剪裁分析评述[J].空间结构. 1999, 5(3): 12-18, 60.
    [19]王乐梅.膜结构分析中若干问题的有限元线法的研究[D].北京:清华大学, 2002.
    [20]王勇,魏德敏,高振宇.张拉膜结构力密度法混合找形分析[J].计算力学学报. 2005, 22(5): 629-632.
    [21]周树路,叶继红.膜结构找形方法—改进力密度法[J].应用力学学报. 2008, 25(3): 421-424.
    [22]向新岸,赵阳,董石麟.张拉结构找形的多坐标系力密度法[J].工程力学. 2010, 37(12): 109-116.
    [23] Panagiotoupoulos P D. Stress-unlateral analysis of discretized cable and membrane structure in the presence of large displacements[J]. Ingenieur-Archiv. 1975, 44(5): 291-300.
    [24] Tabarrok B, Qin Z. Nonlinear analysis of tension structures[J]. Computers & Structures. 1992, 45(4-6): 973-984.
    [25] Vo K K, Wang C M, Chai Y H. Membrane analysis and optimization of submerged domes with allowance for selfweight and skin cover load [J]. Archive of Applied Mechanics. 2006, 75(4-5): 235-247.
    [26] Zhang Y Y, Chen L, Zhang Q L. Experimental and theoretical analysis on the load capacity of the membrane structure[J]. Applied Mechanics and Materials. 2010, 44-47(10): 3092-3095.
    [27]陈波,武岳,沈世钊.鞍形索网的风振响应特性研究[J].振动和冲击. 2008, 27(7): 50-54.
    [28]张建胜,武岳,沈世钊.不同脉动风相干函数对高层建筑风振响应的影响[J].振动工程学报. 2009, 2009(2): 117-122.
    [29]陈波,武岳,沈世钊.风振响应中选择主导振型的主动预测法[J].土木工程学报. 2008, 41(5): 79-86.
    [30]武岳,杨庆山,沈世钊.索膜结构风振气弹效应的风洞实验研究[J].工程力学. 2008, 25(1): 8-15.
    [31]张立新.索穹顶结构成形关键问题和风致振动[D].上海:同济大学, 2001.
    [32]张志宏.大型索杆梁张拉空间结构体系的理论研究[D].杭州:浙江大学, 2003.
    [33]葛家琪,张国军.弦支穹顶预应力施工过程仿真分析[J].施工技术. 2006, 35(12): 10-13.
    [34]袁行飞,董石麟.索穹顶结构施工控制反分析[J].建筑结构学报. 2001, 22(2): 74-78.
    [35]郭佳民,袁行飞,董石麟, et al.弦支穹顶施工张拉全过程分析[J].工程力学. 2009, 26(1): 198-203.
    [36] Monerieff E, Topping B. Computer methods for the generation of membrane cutting Patterns[J]. Computer & Structure. 1990, 37(4): 441-450.
    [37] Tabarrok B, Qin Z. Form finding and cutting pattern generation for fabric tension structures[J]. Computer-aided Civil and Infrastructure Engineering. 1993, 8(5): 377-384.
    [38] Kim J, Lee J. A new technique for optimum cutting pattern generation of membrane structures [J]. Engineering Structures. 2002, 24(6): 745-756.
    [39]李中立,吴健生.膜结构裁剪分析[J].空间结构. 1997, 3(3): 17-33.
    [40]向阳,沈世钊.薄膜结构的实用裁剪设计方法[J].空间结构. 1998, 5(2): 29-33.
    [41]刘建忠,徐彦,关富玲.张力膜结构裁剪设计方法[J].空间结构. 2007, 13(2): 32-37.
    [42]刘凯,聂素萍,刘宗仁.膜结构裁剪分析中测地线生成的改进的非线性有限元法[J].四川建筑科学研究. 2008, 34(6): 19-21.
    [43] Ishii K. Form finding analysis in consideration of cutting patterns of membrane structures [J]. International Journal of Space Structures. 2009, 14(2): 105-119.
    [44]全亮.膜结构的褶皱分析理论与数值模拟[D].哈尔滨:哈尔滨工业大学, 2006.
    [45]杜星文,王长国,万志敏.空间薄膜结构的褶皱研究进展[J].力学进展. 2006, 36(2): 187-199.
    [46] Wagner H. Flat sheet metal girders with a very thin metal web[J]. Aeitschrift fur Flugtechnik und Motorluftschiffahrt. 1929, 20(4): 200-314.
    [47] Stein M, Hedgepeth J M. Analysis of partly wrinkled membranes[R]. Washington, D. C: NASA, 1961.
    [48] Miller R K, Hedgepeth J M. An algorithm for finite element analysis of partly wrinkled membranes[J]. AIAA Journal. 1982, 20(12): 1761-1763.
    [49] Pipkin A C. The relaxed energy density for isoropic elastic membranes[J]. IMA Journal of Applied Mathematics. 1986, 36(1): 85-99.
    [50] Steigmann D J, Pipkin A C. Wrinkling of pressurized membranes[J]. Journal of Applied Mechanics, Transactions ASME. 1989, 56(3): 624-628.
    [51] Pipkin A C. Relaxed energy densities for large deformations of membranes[J]. IMA Journal of Applied Mathematics. 1994, 52(3): 297-308.
    [52] Fujikake M, Kojima O, Fukushima S. Analysis of fabric tension structures[J]. Computers & Structures. 1989, 32(3-4): 537-547.
    [53] Jenkins C H, Leonard J W. Nonlinear dynamic response of membranes: state of the art[J]. Applied Mechanics Reviews. 1991, 44(7): 319-328.
    [54] Roddeman D G, Drukker J, Oomens C W J, et al. The wrinkling of thin membranes:PartⅠ-Theory[J]. Journal of Applied Mechanics. 1987, 54(4): 883-887.
    [55] Roddeman D G, Drukker J, Oomens C W J, et al. The wrinkling of thin membranes: Part II—Numerical analysis[J]. Journal of Applied Mechanics. 1987, 54(4): 888-892.
    [56] Roddeman D G, Van Hout M C, Oomens C W J, et al. The wrinkling of thin membranes-comparison between experiments and theory [J]. American Society of Mechanical Engineers, Applied Mechanics Division. 1987, 84(7): 267-270.
    [57] Liu X, Jenkins C H, Schur W W. Computational issues in the modeling of wrinkling during parachute deployment[C]. Cambridge,U.K.: Kluwer Academic Publishers, 1998.
    [58] Liu X, Jenkins C H, Schur W. Fine scale analysis of wrinkled membranes[J]. International Journal of Computational Engineering Science. 2000, 1(2): 1027-1038.
    [59] Adler A L. Finite element approaches for static and dynamic analysis of patiallywrinkled membrane structures[D]. Colorado: University of Colorado at Boulder , 2000.
    [60] Johnston J D. Finite element analysis of wrinkled membrane structures for sunshield applications[C]. Denver, CO, United states: American Inst. Aeronautics and Astronautics Inc., 2002.
    [61] Ding H, Yang B. The modeling and numerical analysis of wrinkled membranes[J]. International Journal for Numerical Methods. 2003, 58(12): 1785-1801.
    [62]谭锋,杨庆山,李作为.薄膜结构分析中的褶皱判别准则及其分析方法[J].北京交通大学学报. 2004, 30(1): 35-39.
    [63] Nakashino K, Natori M C. Efficient modification scheme of stress-strain tensor for wrinkled membranes[J]. AIAA Journal. 2005, 43(1): 206-215.
    [64] Woo K, Jenkins C H. Global/local analysis strategy for partly wrinkled membrane[J]. Journal of Spacecraft and Rockets. 2006, 43(5): 1101-1106.
    [65] Shaw A, Roy D. Analyses of wrinkled and slack membranes through an error reproducing mesh-free method[J]. International Journal of Solids and Structures. 2007, 44(11-12): 3939-3972.
    [66] Akita T, Natori M C. Sensitivity analysis method for membrane wrinkling based on the tension-field theory[J]. AIAA Journal. 2008, 46(6): 1516-1527.
    [67] Wang C G, Du X W, Tan H F, et al. A new computational method for wrinkling analysis of gossamer space structures[J]. International Journal of Solids and Structures. 2009, 46(6): 1516-1526.
    [68] Pimprikar A N, Banerjee B, Roy D, et al. New computational approaches for wrinkled and slack membranes[J]. International Journal of Solids and Structures. 2010, 47(18-19): 2476-2486.
    [69] Li Y, Lu M, Tan H, et al. Numerical analysis and experimental studies of membrane wrinkles[J]. Journal of Harbin Institute of Technology (New Series). 2010, 17(2): 229-233.
    [70] Wagner H, Ballerstedt W. Tension fields in originally curved thin sheets during shearing stresses[M]. Washington,D C: NACA Tech Memoranda, 1935.
    [71] Khun P, Peterson J P, Levin L R. A summary of diagonal tension[M]. Washington,D C: Scientific Commons, 1952.
    [72] Croll J G A. Tension field solution for nonlinear circular plates[J]. Aspects of the Analysis of Plate Structures. 1985, 11(5): 309-323.
    [73] Tomita Y, Shindo A. Onset and growth of wrinkles in thin square plates subjected to diagonal tension[J]. International Journal of Mechanical Sciences. 1988, 30(12): 921-931.
    [74] Adams G G. Elastic wrinkling of a tensioned circular plate using von Karman plate theory[J]. Journal of Applied Mechanics, Transactions ASME. 1993, 60(2): 520-525.
    [75] Wong Y W, Pelleqrino S, Park K C. Prediction of wrinkle amplitudes in square solar sails[C]. Norfolk, VA, United states: American Inst. Aeronautics and Astronautics Inc., 2003.
    [76] Leifer J, Belvin W K. Prediction of wrinkle amplitudes in thin film membranes using finite element modeling[C]. Norfolk, VA, United states: American Inst. Aeronautics and Astronautics Inc, 2003.
    [77] Tessler A, Sleight D W, Wang J T. Nonlinear shell modeling of thin membranes with emphasis on structural wrinkling[C]. Norfolk, VA, United states: American Inst. Aeronautics and Astronautics Inc, 2003.
    [78] Tessler A, Sleight D W. Toward effective shell modeling of wrinkled thin-film membranes exhibiting stress concentrations[C]. Palm Springs, CA, United states: American Inst. Aeronautics and Astronautics Inc, 2004.
    [79] Papa A, Pellegrino S. Mechanics of systematically creased thin-film membrane structures[C]. Austin, TX, United states: American Inst. Aeronautics and Astronautics Inc., 2005.
    [80] Tessle A, Sleight D W, Wang J T. Effective modeling and nonlinear shell analysis of thin membranes exhibiting structural wrinkling[J]. Journal of Spacecraft and Rockets. 2005, 42(2): 287-298.
    [81]张建,杨庆山,谭锋.基于薄壳单元的薄膜结果褶皱分析[J].工程力学. 2010, 27(8): 28-34, 39.
    [82]董聪.结构系统可靠性理论:进展与回顾[J].工程力学. 2001, 18(4): 79-88.
    [83]蒲德群.建筑结构安全水平的合理设置方法及策略研究[D].北京:清华大学, 2004.
    [84]中华人民共和国建设部.混凝土结构设计规范[S].北京,中华人民共和国国家标准, 2002.
    [85]王铁成.混凝土结构原理[M].天津:天津大学出版社, 2002.
    [86]严家敏.现代悬索桥[M].北京:人民交通出版社, 2002.
    [87] Freudenthal A M. Safety and the probability of structural failure[J]. ASCE Trans. 1956, 121(15): 1337-1397.
    [88] Freudenthal A M. The safety of structures[J]. ASCE Trans. 1947, 112(4): 125-129.
    [89] Cornell C A. Bounds on the reliability of structural systems[J]. Journal of Structural Division. 1967, 93(1): 171-200.
    [90] Hasofer A M, Lind N C. Exact and invariant second-moment format[J]. Journal of the Engineering Machanics Division. 1974, 100(1): 111-121.
    [91] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences[J]. Computers & Structures. 1978, 9(5): 489-494.
    [92] Abdo T, Rackwitz R. New beta-point algorithm for large time-invariant and time-variant reliability problems[C]. Berkeley, CA, USA: Springer-Verlag Berlin, Berlin 33, Germany, 1990.
    [93] Guan X L, Melchers R E. Multitangent-plane surface method for reliability calculation[J]. Journal of Engineering Mechanics. 1997, 123(10): 996-1002.
    [94] Faravelli L. Response-surface approach for reliability analysis[J]. Journal of Engineering Mechanics. 1989, 115(12): 1781-2763.
    [95] Kim S, Na S. Response surface method using vector projected sampling points[J]. Structural Safety. 1997, 19(1): 3-19.
    [96]秦权,林道锦.基于FORM的Monte Carlo精度修正可靠度算法[J].清华大学学报. 2004, 44(9): 1249-1251, 1255.
    [97] Kaymaz I, Mcmahon C A. A response surface method based on weighted regression for structural reliability analysis [J]. Probabilistic Engineering Mechanics. 2005, 20(1): 11-17.
    [98] Kahn H. Application of monte carlo[M]. Santa Monica, CA ,USA: RAND, 1956.
    [99] Ditlevsen O, Bjerager P, Olesen R. Directional simulation in Gaussian processes [J]. Probabilistic Engineering Mechanics. 1988, 3(4): 207-217.
    [100] Bjerager P. Probability integration by directional simulation[J]. Journal of Engineering Mechanics. 1988, 114(8): 1285-1302.
    [101] Mori Y, Ellingwood B R. Time-dependent system reliability analysis by adaptive importance sampling[J]. Structural Safety. 1993, 12(1): 59-73.
    [102] Wu Y -, Wirsching P H. Advanced reliability methods for probabilistic structural analysis[C]. San Francisco, CA, USA: ASCE, New York, NY, United States, 1989.
    [103] Zina K. Descriptive sampling in structural safety[J]. Structural Safety. 1995, 17(1): 33-41.
    [104]吕震宙,岳珠峰.结构可靠性计算中的描述性抽样法[J].力学与实践. 1998, 20(5): 513-520.
    [105]张小庆.结构体系可靠度方法分析[D].大连:大连理工大学, 2003.
    [106] Moses F. Structural system reliability and optimization[J]. Computers & Structures. 1977, 12(7): 283-290.
    [107] Moses F. System reliability developments in structural engineering[J]. Structural Safety. 1982, 1(1): 3-13.
    [108] Feng Y S, Moses F. Optimum design, redundancy and reliability[J]. Computers & Structures. 1986, 24(2): 239-251.
    [109] Feng Y S. The theory of structural redundancy and its effects on structural design[J]. Computers & Structures. 1988, 28(1): 15-24.
    [110] Melchers L K, Tang L K. Dominant failure modes in stochastic structural systems[J]. Structural Safety. 1984, 2(2): 127-143.
    [111] Tang L K, Melchers L K. Dominant mechanisms in stochastic plastic frames[J]. Reliability Engineering. 1987, 18(2): 101-115.
    [112]冯元生,董聪.枚举结构主要失效模式的一种方法[J].航空学报. 1991, 12(9): 537-541.
    [113]董聪,冯元生.枚举结构主要失效模式的一种新方法[J].西北工业大学学报. 1991, 9(3): 284-289.
    [114]姚卫星,顾怡.用自动矩阵力法枚举结构的主要失效模式[J].计算结构力学及其应用. 1996, 13(1): 62-66.
    [115] Reashedi M R. Application of linear programming to structural system reliability[J].Computers & Structures. 1986, 24(3): 375-384.
    [116] Thoft-Christensen P, Baker M J. Structural reliability thoery and its application[M]. Berlin,Heidelberg,New York: Springer-Verlag, 1982.
    [117] Thoft-Christensen P, Murotsu Y. Application of structural systems reliability theory[M]. Berlin,Heidelberg,New York: Springer-Verlag, 1986.
    [118] Thoft-Christensen P, Sorensen J D. Reliability of structural systems with correlated elements[J]. Appl. Math. Modeling. 1982, 6(3): 171-178.
    [119]董聪.现代结构系统可靠性理论与应用[M].北京:科学出版社, 2000.
    [120] Murotsu Y, Okada H, Yonezawa M, et al. Automatic generation of stochastically dominant modes of structural failure in frame structure[J]. Structural Safety. 1981, 30(2): 85-101.
    [121]赵鹏飞.对分支限界法的一种改进[J].四川建筑科学研究. 1997, 10(4): 40-45.
    [122]贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展和应用[J].建筑结构学报. 2002, 23(4): 2-9.
    [123] Kounias E G. Bounds for the probability of a union with applications[J]. Annuals of Mathematical Statistics. 1968, 39(6): 2154-2158.
    [124] Ditlevsen O. Narrow reliability bounds for structural systems[J]. Journal of Structural Mechanics. 1979, 7(4): 453-472.
    [125]董聪.结构系统可靠性分析与优化[D].西安:西北工业大学, 1990.
    [126] Ditlevsen O, Bjerager P. Methods of structural systems reliability[J]. Structural Safety. 1986, 3(3-4): 195-229.
    [127]赵国藩,金伟良.结构可靠度理论[M].北京:中国建筑工业出版社, 2000.
    [128]金伟良.结构可靠度数值模拟的新方法[J].建筑结构学报. 1996, 17(3): 63-72.
    [129] Ang A H S, Ma H. On the reliability of structural systems[C]. Trondheim, Norw: Elsevier Sci Publ Co (Dev in Civ Eng, 4), Amsterdam, Neth, 1981.
    [130] Ditlevsen O. Taylor expansion of series system reliability[J]. Journal of Engineering Mechanics. 1984, 110(2): 293-307.
    [131]贡金鑫,赵国藩.串联结构体系可靠度的二元泰勒级数展开[J].计算力学学报. 1997, 14(1): 78-84.
    [132] Hohenbichler M, Rackwitz R. First-order concepts in system reliability[J]. StructuralSafety. 1983, 1(3): 177-188.
    [133] Tang L K, Melchers R E. Improved approximation for multinormal integral[J]. Structural Safety. 1987, 4(2): 81-93.
    [134] Argyris J H, Balmer H, Kleiber M. Natural description of large inelastic deformations for shells of arbitrary shape-application of trump element[J]. Methods in Applied Mechanics and Engineering. 1980, 22(3): 361-389.
    [135] Tran H C, Lee J. Advanced form-finding of tensegrity structures[J]. Computers & Structures. 2010, 88(3-4): 237-246.
    [136]童丽萍,曹延波,司瑞娟.敞篷式体育场膜结构找形分析[J].建筑科学与工程学报. 2008, 25(1): 111-115.
    [137]田广宇,郭彦林,王昆.车辐式结构找形分析的逐点去约束法[J].西安建筑科技大学学报(自然科学版). 2010, 42(2): 153-158.
    [138] Computing G. Using Strand7 Manual[M]. Sydney: G+D Computing Pty Ltd, 2003.
    [139] Computing G. Strand7 API Manual R2.3[M]. Sydney: G+D Computing Pty Ltd, 2005.
    [140]向阳.薄膜结构的初始形态设计、风振响应分析及风洞实验研究[D].哈尔滨:哈尔滨建筑大学, 1998.
    [141]高柏峰,崔振山.基于非线性有限元法的膜结构找形研究[J].燕山大学学报. 2002, 10(4): 331-334.
    [142]唐喜.基于ANSYS参数化语言的索膜结构找形优化和荷载分析[D].南京:河海大学, 2005.
    [143]孙文波,杨叔庸.佛山体育中心新体育场屋盖索膜结构设计[J].建筑结构. 2006, 37(2): 99-101.
    [144] Horning J. Wrinkling analysis of membranes with elastic-plastic material behavior [J]. Journal of Applied Mechanics. 2003, 1(3): 153-160.
    [145] Rene M. Tensegrity: structural systems for the future[M]. London: Butterworth-Heinemann, 2006.
    [146] Aktan A E, Nam D H. Inelastic analysis for vulnerability assessment: building structures[C]. Orlando, FL, USA: ASCE, 1987.
    [147] Kanno Y, Takewaki I. Robustness analysis of trusses with separable load and structural uncertainties[J]. International Journal of Solids and Structures. 2006, 43(9):2646-2669.
    [148] Ziha K. Redundancy and robustness of systems of events[J]. Probabilistic Engineering Mechanics. 2000, 15(4): 347-357.
    [149]郑君华,袁行飞,董石麟.两种体系索穹顶结构的破坏形式及其受力性能研究[J].工程力学. 2007, 24(1): 44-50.
    [150]罗尧治.索杆张力体系的理论分析[D].杭州:浙江大学, 2000.
    [151]何键.索杆体系的可靠性研究与施工模拟分析[D].杭州:浙江大学, 2007.
    [152]孔丹丹.张弦空间结构的理论分析与工程应用[D].上海:同济大学, 2007.
    [153]高扬,刘西拉.结构鲁棒性评价中的构件重要性系数[J].岩石力学与工程学报. 2008, 27(12): 2575-2584.
    [154]李宁,杨博,姜绍飞.基于构件重要性系数的结构易损性分析[J].辽宁工程技术大学学报(自然科学版). 2010, 10(1): 83-86.
    [155]柳承茂,刘西拉.基于刚度的构件重要性评估及其与冗余度的关系[J].上海交通大学学报. 2005, 39(5): 746-750.
    [156] Rodriguez L C, Garcia R B, Campana A, et al. A new approach to a complete robustness test of experimental nominal conditions of chemical testing procedures for internal analytical quality assessment[J]. Chemometrics and Intelligent Laboratory Systems. 1998, 41(1): 57-68.
    [157] Rossetto T, Elnashai A. A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures[J]. Engineering Structures. 2005, 27(3): 397-409.
    [158]张雷明,刘西拉.框架结构能量流网络及其初步应用[J].土木工程学报. 2007, 40(3): 45-49.
    [159]邱德锋,周艳,刘西拉.突发事故中结构易损性的研究[J].四川建筑科学研究. 2005, 31(2): 55-59.
    [160]刘西拉.结构工程学科的现状与展望[M].人民交通出版社:北京, 1997.
    [161]高扬.结构鲁棒性定量计算中的构件重要性系数[D].上海:上海交通大学, 2008.
    [162] Dmckay M, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computercode[J]. Technometrics. 1979, 21(2): 55-61.
    [163] Agarwal J, Blockley D, Woodman N. Vulnerability of 3-dimensional trusses[J]. Structural Safety. 2001, 23(3): 203-220.
    [164]郑连庆,张原,叶作楷.建筑工程经济与管理[M].广州:华南理工大学出版社, 2006.
    [165] Glasgow H S, Fortney M D, Lee J J, et al. MODFLOW 2000 head uncertainty, a first-order second moment method[J]. Ground Water. 2003, 41(3): 342-350.
    [166]姚继涛,浦聿修.结构可靠度计算的改进二阶矩矩阵法[J].西安冶金建筑学院学报. 1991, 23(4): 389-395.
    [167]刘宁.可靠度随机有限元法及其工程应用[M].北京:北京水利水电出版社, 2001.
    [168] Stevenson J, Moses F. Reliability analysis of frame structures[J]. ASCE Journal of the Structural Division. 1970, 96(11): 2409-2427.
    [169]吴世伟.结构可靠度分析[M].北京:人民交通出版社, 1990.
    [170] Feng Y S. Enumerating significant failure modes of a structural system by using criterion methods[J]. Computers & Structures. 1988, 30(5): 1153-1157.
    [171]陶莉. JC法计算结构可靠度的电算程序[J].水利与建筑工程学报. 2008, 6(3): 32-33, 54.
    [172]杨会杰.预应力钢结构拉索的可靠度分析与设计指标研究[D].天津:天津大学, 2007.
    [173]季俊杰.平面索拱结构可靠度计算的大系统方法及参数分析[D].南京:东南大学, 2006.
    [174]赵维涛.结构系统多失效模式可靠性分析[D].哈尔滨:哈尔滨工程大学, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700