用户名: 密码: 验证码:
方钢管混凝土框架—支撑结构的抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上的第一产钢大国,然而与之不适应的是建筑用钢量低,在量大面广的住宅领域,钢结构的应用更是极其有限。因此当前在住宅建筑中推广应用钢结构迫在眉睫,并已得到国家的高度重视。钢结构住宅具有自重轻、抗震性能好、建设周期短、有利于环保等诸多优点,因此,大力发展钢结构住宅,符合国家的产业政策和可持续发展战略,有利于推动住宅产业现代化。
     目前国内已有一些低层、多层和高层钢结构住宅示范工程;相对来说,中高层钢结构住宅技术还不成熟。在大量调查、研究的基础上,本课题组提出了一种新型结构体系,即方钢管砼框架—支撑结构体系;该结构型式主要具有以下特点:1、柱采用方钢管砼,截面尺寸小,不突出墙面,建筑适应性好;2、主要依靠钢支撑抵抗水平力,避免了因采用钢筋砼或钢骨砼剪力墙作为抗侧力体系而带来的一系列问题。
     为了探讨该新型结构的抗震性能,本文设计并制作了三榀框架,进行了水平低周反复荷载试验,重点研究了方钢管砼框架以及方钢管砼支撑框架的强度、刚度、延性、耗能能力及破坏机制。研究结果表明:与方钢管框架相比,方钢管砼框架具有更高的刚度、延性和承载力;方钢管砼支撑框架刚度大、承载力高,在支撑压曲后,承载能力没有大幅度的降低,具有良好的延性。
     本文还对方钢管砼框架和方钢管砼支撑框架进行了非线性有限元全过程分析,提出了方钢管砼框架—支撑结构的设计方法,给出了方钢管砼框架—支撑结构弹性及弹塑性层间位移角的建议限值。此外,本文提出方钢管砼框架—支撑结构设计的关键在于节点与支撑,并对支撑的设计做了较为深入的研究。
     消能减震技术是近年来迅速发展起来的一种更加合理、有效、安全、经济的结构抗震方法,中高层钢结构建筑是采用消能减震技术理想的结构体系;为此,本文设计了一榀耗能支撑框架,采用粘滞阻尼器作为消能装置,通过不同频率、不同位移下的水平低周反复荷载试验,验证了消能支撑框架优异的耗能能力,证明相关构造措施是行之有效的。本文在该方面的研究为中高层钢结构住宅提供了全新的抗震设计思路。
China is the biggest country in steel product, but steel cost of buildings is limited. Furthermore, steel structure is seldom adopted in residences field, which is a vast area. So we should put great effort to develop steel structural residences, and the government pays much attention to it now. Steel structure have many advantages, such as lighter weight, better seismic behavior, quicker to build and more beneficial for environment protection. Therefore, developing steel structural residences is in accordance with the industrial policy of our country and strategy of sustainable development, and will put forward residences industrialization.
    Several demonstration projects of steel structural residences have been built, which are low-rise, multi-story, and high-rise residences. Base on a great deal of investigation, a new structure system is put forward, which is concrete-filled rectangular steel tubular(CRFT) braced frame structure system. This new system has two remarkable points: the first, CRFT column is introduced, it is small in size and can be hidden in walls, is more suitable for residences; the second, steel brace is used to resist lateral load, and it can avoid the problems caused by using steel-reinforced concrete shear wall to resist lateral load.
    In order to study the seismic behavior of this structure system, three frames are designed and they are subjected under cyclic reversed lateral load. We mainly study the strength, stiffness, ductility, energy absorption capacity and failure causation in the test. The results show that, compared with rectangular steel tubular frame, CRFT frame have higher lateral stiffness, bearing capacity and better behavior of ductility; CRFT braced frame has high lateral stiffness and bearing capacity, it's load bearing capacity doesn't have remarkable drop after bucking of brace, which indicates its good behavior of ductility.
    Besides, this paper makes nonlinear finite element analysis on concrete-filled CRFT frame and CRFT braced frame, then design methods on CRFT braced frame structure are introduced, proposed values of elastic and elastic-plastic story drift in CRFT braced frame structure are presented. This paper also finds out that the critical points in CRFT braced frame structure are joint and brace design, and detailed investigations on brace design are carried on.
    Energy-dissipation technology is a much more rational, effective, safe, economic earthquake resistant method, which develops quickly in recent years, and it is more suitable for high rise steel structure. A energy-dissipation braced frame is designed with viscous damper as energy-dissipation device. Test on the frame under cyclic reversed lateral load of various frequency and displacement is carried out to check its energy-dissipation capacity and structural measures. The results show that viscous damper possesses excellent energy-dissipation capacity, and the structural measures is adequate. Investigations in this paper provide a fully new way for the design of high-rise steel residences.
引文
[1] 高光虎.多高层轻钢结构住宅设计.建筑结构,2001(8).
    [2] 舒赣平,孟宪德,王培.轻钢住宅结构体系及其应用.工业建筑,2001(8).
    [3] 张跃峰.轻钢结构与住宅.新型建筑材料,2000(2).
    [4] 陈富生,邱国桦,范重.《高层建筑钢结构设计》.中国建筑工业出版社,2000,4.
    [5] 张跃峰.低层居住建筑中的轻钢龙骨体系.钢结构,2001(2).
    [6] 弓晓芸,严虹.国外工业化钢结构住宅探讨.工业建筑,2001(8).
    [7] 赵欣,李国强.境外钢结构住宅建筑体系介绍.上海国际钢结构成果展览会暨技术交流会论文集,2002,6.
    [8] 王元清,石永久,陈宏等.现代轻钢结构建筑及其在我国的应用.建筑结构学报,2002(1).
    [9] 谢振清,李立强.顺应新世纪的潮流构筑“绿色住宅”工程—山东省钢结构节能住宅示范试点工程简介.钢结构,2001(4).
    [10] Furlong,R.W. Strength of Steel-Encased Bean-Columns Journal of Structural Division. ASCE, V. 93, No. 5, May 1967: pp113-124.
    [11] [日]富井政英,崎野健治.苗若愚译.钢管砼梁—柱的非弹性性质.哈尔滨建筑工程学院工程结构研究室,1981,10.
    [12] Usami,T.,and Ge,H. Ductility of Concrete-Filled Steel Box Columns Under Cyclic Loading. Journal of Structural Engineering. ASCE,V.120,No.7,July 1994: pp2021-2040.
    [13] Ge,H.,and Usami,T. Cyclic Test of Concrete-Filled Steel Box Columns. Journal of Structural Engineering. ASCE,V.122,No.10,October 1996: pp1169-1177.
    [14] 张正国.方钢管砼偏压短柱基本性能研究.建筑结构学报,1989(6).
    [15] 张正国.方钢管砼中长轴压柱稳定分析和实用设计方法.建筑结构学报,1993(4).
    [16] 左明生,李四平,王菁.方钢管砼偏压柱的试验研究.郑州工学院学报,1992(3).
    [17] 李四平,霍达,王菁等:偏心受压方钢管砼柱极限承载力的计算.建筑结构学报,1998(2).
    [18] 王菁,关罡,李四平等:方钢管砼轴压柱承载力的计算.建筑结构,1997,5.
    [19] 韩林海.钢管砼结构.科学出版社,2000.
    [20] 余勇,吕西林,陈以一等.轴心受压方钢管砼短柱的性能研究:Ⅰ试验.建筑结构,1999(10).
    [21] 吕西林,余勇,Tanaka Kiyoshi等.轴心受压方钢管砼短柱的性能研究:Ⅱ分析.建筑结构,2000(2).
    [22] 吕西林,陆伟东.反复荷载作用下方钢管砼柱的抗震性能试验研究.建筑结构学报,2000(2).
    [23] 陆伟东,吕西林.方钢管砼柱截面承载力的计算.南京建筑工程学院学报,2000(4).
    
    
    [24]Koji Morita et al. Experimental study on connections between concrete filled square tubular high strength(780N/mm~2) steel column and b-eam. Proceedings of 3nd Pacific Structural Steel Conference, 1992:591~598.
    [25]Satoshi Sasakietal. Structural behavior of concrete filled square tubular column with partial penetration weld comer seam to steel H beam connection. Proceedings of 4nd Pacific Structural Steel Conference, 1995:33~40
    [26]余勇,吕西林,田中清等.方钢管砼柱与钢梁连接的拉伸试验研究.结构工程师,1999(1).
    [27]吕西林,李学平,余勇.方钢管砼柱与钢梁连接的设计方法.同济大学学报,2002(1).
    [28]李学平,吕西林.方钢管砼柱外置式环梁节点的联结面抗剪研究.同济大学学报,2002(1).
    [29]上海市钢协钢结构建筑设计研究有限公司,多层建筑矩形钢管砼结构研究小组.《上海市多层建筑矩形钢管砼结构技术规程》(征求意见稿),2002,3.
    [30]中国工程建设标准化协会标准.《矩形钢管砼技术规程》(报批稿).2001,5.
    [31]中华人民共和国国家标准.《钢结构设计规范》,1989,7.
    [32]N.E.Shanmugam,BE,MSc. et al. Static Behavior of I-Beam to Box Columns With External Stiffeners. The Structural Engineer. V.71,No.15,August 1993: pp269-275.
    [33]L.C.Ting, N.E.Shanmugam & S.L.Lee. Box Columns to I-Beam Connections With External Stiffeners. Journal of Constr.Steel Research, 18,1991: pp209-226.
    [34]肖建庄,朱伯龙.钢筋混凝土轴压比试验研究.建筑结构学报,1998(5).
    [35]中华人民共和国行业标准.《高层民用建筑钢结构设计规程》,1998,12.
    [36]朱伯龙.《结构抗震试验》.地震出版社.1989,2.
    [37]谭建国.《使用ANSYS 6.0进行有限元分析》.北京大学出版社.2002,5.
    [38]ANSYS 5.7 online help, SAS IP, Inc.
    [39]龙驭球,包世华.《结构力学》.高等教育出版社,1981,3.
    [40]吕西林,金国芳,吴晓涵.《钢筋砼非线性有限元理论与应用》.同济大学出版社,1997,5.
    [41]中华人民共和国国家标准.《建筑抗震设计规范》(GB50011-2001),2001,10.
    [42]陈绍蕃.钢结构设计原理.科学出版社,1998,8,第二版.
    [43]沈祖炎,沈勤斋.高层有支撑钢刚架二阶弹塑性分析的改进P-△法,同济大学学报,1995(1).
    [44]沈祖炎,沈勤斋.高层有支撑钢刚架抗侧力性能分析.同济大学学报,1995(2).
    [45]邓雪松,张耀春,程晓杰.钢支撑性能对高层钢结构动力反应的影响.世界地震工程,1997(3).
    [46]A.M.Remennikov,W.R.Walpole.分析预测同心支撑钢结构系统的地震性能.世界地震工
    
    程,1998(3).
    [47]于旭.新型方钢管混凝土柱—钢梁节点的试验.南京工业大学硕士学位论文.2003,4.
    [48]周云,周福霖.消能减震体系的能量设计方法.世界地震工程,1997(12).
    [49]吴波,李惠.《建筑结构被动控制的理论与应用》.哈尔滨工业大学出版社,1997.
    [50]周福霖.《工程结构减震控制》.地震出版社,1997
    [51]赵鸿铁,徐赵东,张兴虎.耗能减震控制的研究、应用与发展.西安建筑科技大学学报,2001(1).
    [52]Douglas P. Taylor. History, design, and applications of fluid dampers in structural engineering. http://www.taylordevices.com/papers/history/desi-gn.htm.
    [53]刘伟庆,魏琏等.低周反复荷载作用下摩擦阻尼支撑框架的试验研究.土木工程学报,1996(5)
    [54]刘伟庆,魏琏,丁大钧.摩擦耗能支撑钢筋砼框架结构的振动台试验研究.建筑结构学报,1997(3)
    [55]王曙光,刘伟庆,蓝宗建.框架结构消能减震的试验研究.东南大学学报,2001年第4期,Vol.31,No.4
    [56]赵斌.粘滞型阻尼器安装误差对消能减震效率的影响研究.中国建筑科学研究院硕士学位论文.2003,3.
    [57]龙旭,吴斌,欧进萍.抗震结构的阻尼减震效果分析.世界地震工程,2001(1).
    [58]陈瑜.粘滞阻尼消能支撑结构的抗震设计参数研究.南京工业大学硕士学位论文,2003,4.
    [59]Alfonso Vulcano, Fabio Mazza. Comparative study of the seismic performance of frames using different dissipative barces. 12WCEE2000, 1982.
    [60]欧进萍,吴斌,龙旭.结构被动耗能减振效果的参数影响.地震工程与工程振动,1998(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700