用户名: 密码: 验证码:
姜黄素对氧化损伤的小鼠脑神经瘤细胞的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性氧诱导的氧化应激已被证实与神经退行性疾病的发病机理密切相关。姜黄素是一种从姜科植物中提取的天然多酚类抗氧化物质。目前国内外关于姜黄素对氧化损伤神经元细胞的保护作用的报道比较少,其作用机理,尤其是细胞水平的机理也不是很清楚。在本研究中,利用H_2O_2诱导氧化损伤的小鼠脑神经瘤细胞Neuro-2A模型探讨姜黄素的神经保护作用及其机理。
     将Neuro-2A细胞接种到细胞培养板中,37℃培养过夜,不同浓度姜黄素预孵育1 h,继而30μmol/L H_2O_2作用24 h。细胞存活率的测定采用MTT法,结果显示25μg/ml姜黄素预孵育1 h可使30μmol/L H_2O_2处理24 h后的细胞存活率提高8.5%;细胞凋亡的检测使用核染色法,结果显示姜黄素可显著抑制H_2O_2诱导的Neuro-2A细胞凋亡,姜黄素预孵育1 h可使细胞凋亡率下降15.1%;细胞内总抗氧化能力的测定采用比色法,结果显示25μg/ml姜黄素能够使细胞内总抗氧化能力提高15.9%。应用流式细胞术研究细胞内ROS堆积、线粒体跨膜电位崩塌以及胞外钙离子内流情况,结果显示姜黄素能够抑制细胞内ROS过量生成和胞外钙离子内流,同时可使罗丹明123阴性细胞数比例降低11.81%,即有助于维持正常的线粒体跨膜电位;抗凋亡蛋白表达水平的检测采用Western blot法,结果显示预孵育25μg/ml姜黄素1 h可提高抗凋亡蛋白PARP和Bcl-2的表达量,与H_2O_2处理组相比,这两种蛋白在细胞内的含量分别提高了12.1%和12.0%;Western blot法与胞浆/胞核蛋白分离法结合用来检测细胞内与凋亡及炎症反应相关的NF-κB信号通路的激活情况,发现姜黄素能够抑制H_2O_2引起的IκBα降解,进而阻止NF-κB激活,因此抑制其下游目的基因COX-2的表达,与H_2O_2处理组相比,25μg/ml姜黄素预孵育1 h可使细胞内IκBα含量提高34.3%,抑制NF-κB活化及进入细胞核,进而使得炎症因子COX-2表达量降低31.0%。
     总而言之,本研究发现姜黄素对H_2O_2诱导氧化损伤的Neuro-2A细胞具有显著的保护效应。具体的作用机理包括增强细胞内源性总抗氧化能力、抑制ROS堆积、维持正常的线粒体跨膜电位和胞内外钙离子稳态、提高抗凋亡蛋白的表达量,以及阻止NF-κB信号通路的激活。本研究显示姜黄素在与氧化应激有关的神经退行性疾病的预防和治疗中具有潜在的应用前景。
Neurodegenerative disorders are strongly connected with oxidative stress, which is caused by reactive oxygen species (ROS). Curcumin is a natural polyphenol antioxidant extracted from Curcuma longa. Yet until now, there are still few researches focused on the neuroprotective effects of curcumin and its underlying mechanisms have not been fully defined, especially at cellular level. In current study, H_2O_2-induced oxidative stress model in mouse neuroblastoma Neuro-2A cells was employed to research the neuroprotective effects and its potential mechanisms of curcumin.
     Neuro-2A cells were seeded into culture plates, cultured overnight at 37℃, and pretreated with curcumin at different concentrations for 1 h before 30μmol/L H_2O_2 exposure for 24 h. Cell viability was measured by MTT assay, and result showed that pretreatment with 25μg/ml curcumin for 1 h enhanced the percentage of viable cells by 8.5%. Cell apoptosis was assessed by nuclear staining, and result showed that the proportion of apoptotic cells was decreased by 15.1%, which indicated that curcumin could inhibit H_2O_2-induced apoptosis in Neuro-2A cells. The level of intracellular total antioxidant capacity, which was determined by colorimetric method, was boosted by 15.9% in 25μg/ml curcumin-pretreated group. Intracellular ROS accumulation, mitochondrial membrane potential loss, and Ca2+ influx were tested by flow cytometry, and results displayed that curcumin could be effect to suppress the augmentation of ROS level and intracellular calcium induced by H_2O_2, furthermore, curcumin also reduced the percentage of the Rhodamine 123 negative cells by 11.81%, which suggested that curcumin is conducive to inhibit the loss of mitochondrial membrane potential. The levels of two antiapoptotic proteins, poly(ADP-ribose) polymerase (PARP) and B cell lymphoma/lewkmia-2 (Bcl-2), which were measured by western blot analysis, were enhanced by 12.1%, and 12.0%, respectively, through pretreating with 25μg/ml curcumin for 1 h. In addition, nuclear and cytoplasmic protein extraction method, combined with western blot analysis, was applied to examine the activation of Nuclear factor-κ-gene binding (NF-κB) signaling pathway which is related to apoptosis and inflammation, and curcumin was found to block H_2O_2-mediate degradation of IκBαwhich was increased by 34.3%, and subsequent activation and relocation of NF-κB, thus inhibit the expression of its target gene Cyclooxygenase-2 (COX-2) which was decreased by 31.0%.
     In a word, the results of our study suggested that curcumin could significantly protect Neuro-2A cells against oxidative damage induced by H_2O_2. The specific neuroprotective mechanisms of curcumin included reinforcing the endogenous total antioxidant capacity, suppressing intracellular ROS accumulation, maintaining normal mitochondrial membrane potential and calcium homeostasis, improving the expression of antiapoptotic proteins, as well as blocking the activation of NF-κB signaling pathway. Taken together, we speculated that curcumin has great potential for preventing and treating the neurodegenerative diseases associated with oxidative stress.
引文
1. Czapski G. Radiation Chemistry of Oxygenated Aqueous Solutions [J]. Annual Review of Physical Chemistry, 1971(22): 171-208.
    2. Fridovitch I.The chemistry and biology of superoxid: central cencepts and residualproblems. The Molecular Basis of Oxidative Damage by Leukocytes [M]. Boca Raton, F1: CRC perss, 1992. 329-332.
    3. Pryor W A. Free radicals in biology [M]. New York: Academic Press, 1973. 81-85
    4. Bland J S. Oxidants and antioxidants in clinical medicine: past, present and future potential [J]. Journal of Nutritional and Environmental Medicine, 1995, 5(3):255-280.
    5. Mark A. Trying to unlock the mysteries of free radicals and antioxidants [J]. The Scientist, 1996, (sept. 30):13.
    6. Slater T F. Free radicals and tissue injury: Facts and fiction [J]. British Journal of Cancer, 1987(55):5-10
    7. Rice-Evans C A, DiPlock A T. Current status of antioxidant therapy [J]. Free Radical Biology and Medicine, 1993(15): 77-96.
    8. Linnane A W, Lawen A, Martinus R D, et al. The universality of bioenergetic disease: The role of mitochondrial mutation and the putative inter-relationship between mitochondria and plasma membrane NADH oxidoreductase [J]. Molecular Aspects of Medicine, 1994(15): 13-27.
    9. PraticōD.Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal [J]. Trends in Pharmacological Sciences, 2008(29): 609-615.
    10.郑荣梁,黄中洋.自由基医学和农学基础[M].北京:高等教育出版社, 2001. 102-104.
    11. Ghosh J, Myers C E. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells [J]. Proceedings of the National Academy of Sciences, 1998(95): 13182-13187.
    12. Yin G Y, Yin Y F, He X F. Effect of zhuchun pill on immunity and endocrine function of elderly with kidney-yang deficiency [J]. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 1995(15): 601-603.
    13. Chung L Y, Cheung T C, Kong S K, et al. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells [J]. Life Science, 2001(68): 1207-1214.
    14. Lau F C, Shukitt H B, Joseph J A. The beneficial effects of fruit polyphenols on brain aging [J]. Neurobiology of Aging, 2005(26): 128-132.
    15. Chopra S, Wallace H M. Induction of spermidine /spermine N1-acetyltransferase in human cancer cells in response to increased production of reactive oxygen species [J]. Biochemical Pharmacology, 1998(55): 1119-1123.
    16. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection [J]. Biochemistry Journal, 1997(323): 681-692.
    17. Marnett L J. Oxyradicals and DNA damage [J]. Carcinogenesis, 2000, 21(3): 361-370.
    18. Witzsum J L. The oxidation hypothesis of atherosclerosis [J]. The Lancet, 1994(344): 793-795.
    19. Toyokuni S, Uchida K, Okamoto K, et al. Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate [J]. Proceedings of the National Academy of Sciences, 1994(91): 2616-2620.
    20. Pincemail J, Favier A E, Cadet J, et al. Free radicals and antioxidants in human disease [J]. Birkhauser Verlag Basel, 1995(21): 83-98.
    21. Mates J M, Perez-Gomez C, De Castro I N, et al. Antioxidant enzymes and human diseases [J]. Clinical Biochemistry, 1999, 32(8): 595-603.
    22. Loechie L, John H N, Meerman N M, et al. Biomarkers of free radical damage applications in experimental animals and in humans [J]. Free Radical Biology and Medicine, 1999(26): 202-226.
    23. Stait S E, Leake, D S. The effects of ascorbate and dehydroascorbate on the oxidation of low-density lipoprotein [J]. Biochemistry Journal, 1996(320): 373-381.
    24. Hall L, Williams K, Perry A C F, et al. The majority of human glutathione peroxidase type 5 (GPX5) transcripts are incorrectly spliced: implications for the role of GPX5 in the male reproductive tract [J]. Biochemistry Journal, 1998(333): 5-9.
    25. Patterson R A, Leake D S. Human serum, cysteine and histidine inhibit the oxidation of low density lipoprotein less at acidic pH [J]. FEBS Lett, 1998(434): 317-321.
    26. Zhang L, Yu H, Sun Y, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells [J]. European Journal of Pharmacology, 2007(564): 18-25.
    27. Bi J, Jiang B, Liu J H, et al. Protective effects of catalpol against H2O2-induced oxidative stress in astrocytes primary cultures [J]. Neuroscience Letters, 2008(442): 224-227.
    28. Maheshwari R K, Singh A K, Gaddipati J et al. Multiple biological activities of curcumin: A short review [J]. Life Sciences, 2006(78): 2081-2087.
    29. Akhilender N K, Thippeswamy N B. Inhibit on of human low density lipoprotein oxidation by active principles from spices [J]. Molecular and Cellular Biochemistry, 2002(229): 19-23.
    30. Hilchie A L, Furlong S J, Sutton K, et al. Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria [J]. Nutrition and Cancer, 2010(62): 379-389.
    31. Park S Y, Kim H S, Cho E K, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation [J]. Food and Chemical Toxicology, 2008(46): 2881-2887.
    32. Reddy A C, Lokesh, B R. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron [J]. Molecular and Cellular Biochemistry, 1994, 137(l): l-8.
    33. Cole G M, Teter B, Frautschy S A. Neuroprotective effects of curcumin [J]. Advances in Experimental Medicine and Biology, 2007(595): 197-212.
    34. Mandal M N A, Patlolla J M R, Zheng L et al. Curcumin protects retinal cells from light-and oxidant stress-induced cell death [J]. Free Radical Biology & Medicine, 2009(46), 672-679.
    35.王雪梅,张建胜,高云涛等.姜黄素体外清除活性氧自由基及抗氧化作用研究[J].食品工业科技, 2008(7): 94-98.
    36.石晶,陶沂,胡晋红等.姜黄素对缺血再灌注大鼠脑组织SOD, MDA和亚硝酸盐含量的影响[J].第二军医大学学报, 1999, 20(6): 386-387.
    37.胡春生,陈炜林,易传祝等.姜黄素抗氧化作用人体试食研究[J].湖南中医药大学学报, 2007, 27(5): 63-64.
    38. Hardy J. Amyloid, the presenilins and Alzheimer’s disease [J]. Trends in Neurosciences, 1997(20): 154–159.
    39. Selkoe D J. Alzheimer’s disease: Genotypes, phenotypes, and treatments [J]. Science, 1997(275): 630–631.
    40. Cole G M, Yang F, Lim G P, et al. A rationale for curcuminoids for the prevention or treatment of Alzheimer’s disease [J]. Current Medicinal Chemistry-Immunology, Endocrine & Metabolic Agents, 2003(3): 15–25.
    41. Minogue A M, Schmid A W, Fogarty M P, et al. Activation of the c-Jun N-terminal kinase signaling cascade mediates the effect of amyloid-beta on long term potentiation and cell death in hippocampus: A role for interleukin-1beta? [J]. The Journal of Biological Chemistry, 2003, 278(27): 971–980.
    42. Yang F, Lim G P, Begum A N, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo [J]. The Journal of Biological Chemistry, 2005(280): 5892–5901.
    43. Mehlhornand R J, Cole G M. The free radical theory of aging: A critical review [J]. Advances in Free Radical Biology & Medicine, 1985(1): 165–223.
    44. Kang S K, Cha S H, Jeon H G. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells [J]. Stem Cells and Development, 2006(15): 165–174.
    45. Hong J S. Role of inflammation in the pathogenesis of Parkinson’s disease: Models, mechanisms, and therapeutic interventions [J]. Annals of the New York Academy of Sciences, 2005(1053): 151–152.
    46. Uéda K, Fukushima H, Masliah E, et al. Molecular cloning of a novel amyloid component in Alzheimer’s disease [J]. Proceedings of the National Academy of Sciences, 1993, 90(11):282–286.
    47. Ono K, Yamada M. Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro [J]. Journal of Neurochemistry, 2006(97):105–115.
    48. Pandey N, Galvin J E. Curcumin prevents aggregation of alpha-synuclein [J]. Social Neuroscience, 2005(31abs): 1007-1009.
    49. Rajakrishnan V, Viswanathan P, Rajasekharan K, et al. Neuroprotective role of curcumin from Curcuma longa on ethanol-induced brain damage [J]. Phytotherapy Research, 1999(13): 571–574.
    50. Wang Q, Sun A Y, Simonyi A, et al. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits [J]. Journal of Neuroscience Research, 2005(82): 138–148.
    51.王晋慧.氧化应激与老年痴呆症[J].老年医学与保健, 2005, 11(12): 206-208.
    52.曾小耘,郑锦鸿.阿尔茨海默病的氧应激与阿魏酸的抗氧化作用[J].国际医药卫生导报, 2008, 14(06): 113-118.
    53. Smith M A, Nunomura A, Lee H G, et al. Chromological primacy of oxidative stress in Alzheimer’s disease [J]. Neurobiology of Aging, 2005(26): 587-595.
    54. Christen Y. Oxidative stress and Alzheimer disease [J]. American Journal of Clinical Nutrition, 2000(71): 621-629.
    55. Maiese K, Chong Z Z. Insights into oxidative stress and potential novel therapeutic targets for Alzheimer disease [J]. Restorative Neurology and Neuroscience, 2004(22): 87–104.
    56. Choi Y T, Jung C H, Lee S R, et al. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons [J]. Life Sciences, 2001(70): 603-614.
    57. Qin X S, Jin K H, Ding B K, et al. Effects of extract of Ginkgo biloba with venlafaxine on brain injury in a rat model of depression [J]. Chinese Medical Journal, 2005(118): 391-397.
    58.闫恩志,范莹,齐志敏等.阿魏酸钠对β-淀粉样肽所致大鼠学习记忆障碍的改善作用及其机制[J].锦州医学院学报, 26(5): 1-4.
    59.韩婷,宓鹤鸣.姜黄的化学成分及药理活性研究进展[J].解放军药学学报, 2001, 11(2): 95-97.
    60. Zhao D L, Zou L B, Lin S, et al. Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line [J]. Neuropharmacology, 2007(53), 724-732.
    61. Lieberthal W, Menza S A, Levine J S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells [J]. American Journal of Physiology-Renal Physiology, 1998(274): F315-327.
    62. Takumi S, Yasushi E, Hitoshi A, et al. Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC12 cells [J]. Journal of Neuroscience Research, 1997(50): 413-420.
    63. Wang X J, Xu J X. Possible involvement of Ca2+ signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells [J]. Neuroscience Letters, 2005(376): 127-132.
    64. Ansari M A, Joshi G, Huang Q, et al. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloidβ-peptide and other oxidative stressors: relevance to Alzheimer's disease and other oxidative stress-related neurodegenerative disorders [J]. Free Radical Biology & Medicine, 2006(41): 1694-1703.
    65. Sultana R, et al. Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity [J]. Journal of Neurochemistry, 2005, 92(4): 749-758.
    66. Gilgun S Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier [J]. Neuropharmacology, 2001(40): 959-975.
    67. Halliwell B, Gutteridge J M, Cross C E. Free radicals, antioxidants, and human disease: where are we now? [J] Journal of Laboratory and Clinical Medicine, 1992, 119: 598-620.
    68. Crispo J A, Piche M, Ansell D R, et al. Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells [J]. Biochemical and Biophysical Research Communications, 2010(393): 773-778.
    69. Joshi G, Perluigi M, Sultana R, et al. In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe2+/H2O2: insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders [J]. Neurochemistry International, 2006(48): 318-327.
    70. Tang L L, Wang R, Tang X C. Huperzine A protects SHSY5Y neuroblastoma cells against oxidative stress damage via nerve growth factor production [J]. European Journal of Pharmacology, 2005(519): 9-15.
    71. Whittemore E R, Loo D T, Cotman C W. Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons [J]. Neuroreport, 1994(5): 1485-1488.
    72. Cao J, Jiang L P, Liu Y, et al. Curcumin-induced genotoxicity and antigenotoxicity in HepG2 cells [J]. Toxicon, 2007(49): 1219-1222.
    73. Mahakunakorn P, Tohda M, Murakami Y, et al. Cytoprotective and cytotoxic effects of curcumin: dual action on H2O2-induced oxidative cell damage in NG108-15 cells [J]. Biological & Pharmaceutical Bulletin, 2003(26): 725-728.
    74. Sala A, Recio M D, Giner R M, et al. Anti-inflammatory and antioxidant properties of Helichrysum italicum [J]. Journal of Pharmacy and Pharmacology, 2002, 54 (3): 365-371.
    75. Jang J H, Surh Y J. Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells [J]. Mutation Research, 2001(496): 181-190.
    76. Yu Y, Du J R, Wang C Y, et al. Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC12 cells [J]. Experimental Brain Research. 2008, 184(3): 307-312.
    77. Bala K, Tripathy B C, Sharma D. Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions [J]. Biogerontology, 2006(7): 81-89.
    78. Becatti M, Prignano F, Fiorillo C, et al. The involvement of Smac/DIABLO, p53, NF-kB and MAPK pathways in apoptosis of keratinocytes from perilesional vitiligo skin: protective effects of curcumin and capsaicin [J]. Antioxidants & Redox Signaling, 2010.
    79. Kowluru R A, Kanwar M. Effects of curcumin on retinal oxidative stress and inflammation in diabetes [J]. Nutrition & Metabolism, 2007(4): 8.
    80. Gorman A M, McGowan A, O'Neill C, et al. Oxidative stress and apoptosis in neurodegeneration [J]. Journal of the Neurological Sciences, 1996(139)Suppl: 45-52.
    81.周艺群,谷志远.线粒体与细胞凋亡[J].解剖科学进展, 2006, 12(1): 60-62.
    82.杨秀丽.线粒体与神经细胞凋亡研究的进展[J].上海第二医科大学学报, 1999, 19(6): 568-571.
    83. Petit P X, Lecoeur H, Zorn E, et al. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis[J]. Cell Biology, 1995, 130: 157-164.
    84. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress [J]. Free Radical Biology & Medicine. 2000(29): 323-333.
    85. Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death [J]. The Journal of Experimental Medicine, 1995(182): 367-377.
    86. Wang J, Du X X, Jiang H, et al. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells [J]. Biochemical Pharmacology, 2009(78): 178-183.
    87. Raza H, John A, Brown E M, et al. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells [J]. Toxicology and Applied Pharmacology, 2008(226): 161-168.
    88.郭荣球,李亚林.钙稳态失衡与细胞凋亡的研究现状[J].邵阳学院学报(自然科学版), 2005(2): 124-125.
    89. Durke E C, Witter R C, Nash P B, et al. Cytolysis mediated by inophores and pore-forming agents: role of intracellular calcium in apoptosis [J]. The Federation of American Societies for Experimental Biology, 1994(2): 237-246.
    90. Orrenius S, Burkitt M J, Kass G E, et al. Calcium ions and oxidative cell injury [J]. Annals of Neurology, 1992(32): S33–S42.
    91. Trump B F, Berezesky I K. Calcium-mediated cell injury and cell death [J]. FASEB J, 1995(9): 219-228.
    92. Choi S E, Min S H, Shin H C, et al. Involvement of calcium-mediated apoptotic signals in H2O2-induced MIN6N8a cell death [J]. European Journal of Pharmacology, 2006(547): 1-9.
    93. Adams J M, Cory S. The Bcl-2 protein family: arbiters of cell survival [J]. Science, 1998(281): 1322-1326.
    94. Akao Y, Otsuki Y, Kataoka S, et al. Multiple subcellular localization of Bcl-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes [J]. Cancer Research, 1994, 54(9): 2468-2471.
    95. Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions [J]. Molecular Immunology, 2003, 39(11): 615-647.
    96. Cory S, Huang D C, Adams J M. The Bcl-2 family: roles in cell survival and oncogenesis [J]. Oncogene, 2003, 22(53): 8590-8607.
    97.迟万好,曹明富,朱睦元.细胞凋亡的基因调控研究进展[J].杭州师范学院学报(自然科学版), 2001, 18(5): 46-47
    98. Jang J H, Surh Y J. Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function [J]. Biochemical Pharmacology, 2003(66): 1371-1379.
    99. Labedzka K, Grzanka A, Izdebska M. Mitochondria and cell death [J]. Postepy Hig Med Dosw (Online), 2006(60): 439-446.
    100. Raza H, John A. 4-hydroxynonenal induces mitochondrial oxidative stress, apoptosis and expression of glutathione S-transferase A4-4 and cytochrome P450 2E1 in PC12 cells [J]. Toxicology and Applied Pharmacology, 2006(216): 309-318.
    101. Ghosh S, May M J, Kopp E B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses [J]. Annual Review of Immunology, 1998(16): 225-260.
    102. Huxford T, Malek S, Ghosh G. Structure and mechanism in NF-kappa B/I kappa B signaling [J]. Cold Spring Harbor Symposia on Quantitative Biology, 1999(64): 533-540.
    103. Hatada E N, Nieters A, Wulczyn F G, et al. The ankyrin repeat domains of the NF-kappa B precursor p105 and the protooncogene bcl-3 act as specifc inhibitors of NF-kappa B DNA binding [J]. Proceedings of the National Academy of Sciences, 1992(89): 2489-2493.
    104. Malek S, Huang D B, Huxford T, et al. X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex [J]. The Journal of Biological Chemistry, 2003(278): 23094-23100.
    105. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle [J]. Cell, 2002(109) Suppl: S81-96.
    106. Rothwarf D M, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus [J]. Science's STKE, 1999(1999): 201-210.
    107. Beg A A, Ruben S M, Scheinman R I, et al. I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention [J]. Genes & Development, 1992(6): 1899-1913.
    108. Chen F, Castranova V, Shi X, et al. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases [J]. Clinical Chemistry, 1999(45): 7-17.
    109. Kucharczak J, Simmons M J, Fan Y,et al. To be, or not to be: NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis [J]. Oncogene,, 2003(22): 8961-8982.
    110. Wang S, Kotamraju S, Konorev E, et al. Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide [J]. Biochemical Journal, 2002(367): 729-740.
    111. Singh S, Aggarwal B B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected] [J]. The Journal of Biological Chemistry, 1995(270): 24995-25000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700