用户名: 密码: 验证码:
降糖益肾方干预氧化应激反应改善MKR转基因2型糖尿病鼠肾损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过研究高脂喂饲的MKR转基因2型糖尿病小鼠肾损伤模型(简称高脂MKR鼠),观察降糖益肾方对其肾脏功能和病理损伤及肾脏MDA含量、SOD和GSH-Px活性的影响,初步探讨降糖益肾方对高脂MKR鼠血糖、胰岛素水平、肾脏结构和功能及氧化应激损伤的影响。
     方法
     1.高脂MKR鼠肾损伤模型的实验研究:选取7周龄MKR鼠20只,雌雄各半,根据血糖和体重随机分为基础饲料喂饲的MKR鼠组和高脂喂饲的MKR鼠组,每组10只。另设野生C57BL/6鼠(C57鼠)10只同期对照。其中MKR高脂组以高脂饲料喂养,其它以基础饲料喂养,连续8周。于15周末观察其肾脏病理改变,测定其空腹血糖、糖耐量、血脂、血清胰岛素水平、BUN、Cr及UmA1b、尿β2-MG含量。
     2.降糖益肾方对高脂喂饲的MKR鼠肾脏功能及氧化应激损伤影响的实验研究:将40只7周龄MKR鼠根据血糖和体重分层,随机分为MKR鼠组,高脂模型组,中药治疗组,西药阳性对照组。MKR鼠组用基础饲料喂养,其余各组均以高脂饲料喂养,连续喂养8周,将各组小鼠喂养至15周龄开始灌胃。中药治疗组给予降糖益肾方、西药阳性对照组给予糖适平加贝那普利,灌胃治疗30天。同时MKR鼠组和高脂模型组分别予蒸馏水灌胃30天。每日灌胃一次。30天后收集标本,检测空腹血糖、血清胰岛素、BUN、Cr、RBP-4和PAI含量,UmA1b和尿β2-MG含量、肾脏MDA含量、SOD和GSH-Px活性等。所有实验数据均用SPSS15.0软件进行统计学处理。
     结果
     1.高脂组MKR鼠于15周时出现明显肾脏病理形态学改变,空腹血糖、血脂、血清胰岛素水平、BUN、Cr及UmAlb、尿β2-MG含量均较野生C57BL/6鼠明显升高,糖耐量异常。与基础饲料喂饲组MKR鼠相比进一步升高,差异具有统计学意义(P<0.01或P<0.05)。
     2.降糖益肾方组MKR鼠血糖、血胰岛素水平,血清BUN、Cr、RBP-4和PAI含量,UmAlb和尿β2-MG及肾脏皮质MDA含量均显著低于高脂模型组(P<0.01或P<0.05);SOD和GSH-Px活性与高脂模型组比较明显增高,差异具有统计学意义(P<0.01)。
     结论
     1.MKR鼠与野生鼠对照实验表明,MKR转基因2型糖尿病鼠存在明显肾脏损伤,而高脂喂饲可以进一步加重其肾脏损伤。
     2.降糖益肾方具有降低血糖、改善糖耐量、改善高胰岛素血症、调节蛋白代谢、改善肾功能及肾脏病理结构等的作用。
     3.降糖益肾方改善2型糖尿病肾损伤的作用机制可能与干预氧化应激反应,改善肾脏功能及病理损伤有关。降糖益肾方可能通过抑制氧化应激反应,增强抗氧化酶活性,提高肾组织总抗氧化能力,减少脂质过氧化产物产生,降低氧化应激水平,从而减轻糖尿病时肾脏的氧化应激损伤,改善肾脏功能及病理损伤,调节蛋白代谢,从而起到减轻肾脏损伤和延缓糖尿病肾损伤发生、发展的作用。
Objective:
     Studying on MKR transgenic Mice with kidney damage of type 2 diabetes (Be short for high-fat MKR mice)that fed with high fat diet, to observe the changes of JiangTang YiShen decoction on the structure and function of the renal pathology, the renal MDA content, SOD and GSH-Px activity. And preliminarily investigate the effects of JiangTang YiShen decoction on the levels of blood glucose, serum insulin, structure and function of the renal pathology, and the damages of oxidative stress in the kidney of MKR mice.
     Methods:
     1. The experimental model study on MKR mice of the type 2 diabetic kidney damage:Twenty 7-week-old MKR mice were randomly divided into two groups after stratifying by the FBG and body weight.i.e,10 mice fed by normal diet, and the others fed by high fat diet. At the same time,10 C57BL/6 wild mice were selected as the control group. The three groups were fed for eight weeks. At the end of 15th week, all mice were killed to investigate the renal pathological changes, and the contents of blood glucose, glucose tolerance, blood-fat, serum insulin, blood urea nitrogen (BUN), creatinine (Cr), urine MAlb andβ2-MG were determined, respectively.
     2. The effects of JiangTang YiShen decoction on the renal functions and oxidative stress damages of MKR mice fed by high fat diet:Fourty 7-week-old MKR mice were randomly divided into four groups after stratifying by FBG and body weight.i.e, MKR group, model group, JiangTang YiShen decoction group(JYD), and control group. MKR group were fed by normal diet for eight weeks, and others were fed by high fat diet for eight weeks. At the 15th week, the JYD group was treated with JiangTang YiShen decoction, the control group was treated with Gliquidone Benazepril, and other two groups were treated with distilled water. All the groups were administered intragastrically once a day for thirty days. All mice were killed at the end of thirty days, and then, the content of blood glucose, serum insulin, blood urea nitrogen (BUN), creatinine (Cr), serum RBP-4 and PAI, urine UmAlb andβ2-MG, renal MDA, SOD and GSH-Px activity of each group were tested. All the data were analyzed with SPSS (America, SPSS Inc., v15.0).
     Results:
     1. The renal pathological morphology of MKR mice significantly changed on 15th week. The contents of blood glucose, glucose tolerance, blood-fat, serum insulin, blood urea nitrogen (BUN), creatinine (Cr), urine MAlb andβ2-MG in the mice fed by high fat diet were significantly higher than those in C57BL/6 wild mice and the MKR mice fed by normal diet (P <0.01).
     2. The changes of renal pathology in the MKR mice treated with JiangTang YiShen decoction (JYD group) were significantly improved compared with the model group. The contents of fasting blood glucose, serum insulin, blood urea nitrogen (BUN), creatinine (Cr), serum RBP-4 and PAI, urine MAlb,β2-MG, renal MDA in JYD group were significantly lower than those in model group(P<0.01), while the activity of renal SOD and GSH-Px in JYD group mice were significantly higher than model group (P<0.01).
     Conclusion:
     1. The results of MKR and wild mice showed that there were renal damages in MKR mice, and the damages were worse in MKR mice fed by high fat diet.
     2. JiangTang YiShen decoction might reduce the level of blood glucose and serum insulin, improve the glucose tolerance, make the renal function and kidney pathological structure better and adjust protein metabolism, etc.
     3. The mechanism of JiangTang YiShen decoction to improve the kidney damage of type 2 diabetes may be about interfering with the activities of oxidative stress and improving the function and pathological structure of kidney. Through inhibiting the activities of oxidative stress, increasing the activity of antioxidase and the total antioxidant capacity of renal tissue, and reducing peroxidize substances and oxidative stress level, JiangTang YiShen decoction could abate oxidative damage of renal with diabetes, improve the structure and function of renal pathology, and adjust protein metabolism, all of which could relieve renal damage and reduce the occurrence and development of diabetes.
引文
[1]张海燕,姜宗培,余学清.NADPH氧化酶在糖尿病肾损伤中作用的研究进展.国外医学内科学分册,2006,33(5):191-194.
    [2]李明霞,李明,骆国平.中西医结合治疗糖尿病肾病的疗效研究[J].河北医学,2008,14(11):1296-1298.
    [3]胡伟,喻嵘,成细华,等.左归复方对MKR小鼠血糖血脂及炎症因子CRP、 IL-6、TNF-α的影响[J].湖南中医药大学学报,2009;29(2):14-16.
    [4]喻嵘,成细华,胡伟,魏开春,Yubin Guo, Jun-Li Liu. MKR转基因小鼠糖尿病发病特点的初步探讨[J].中国实验动物学报,2007;15(5):333-337.
    [5]喻嵘,成细华,胡伟,等.骨骼肌特异性胰岛素样生长因子1及胰岛素双受体功能缺失所致小鼠2型糖尿病[J].中国糖尿病杂志,2008;16(7):438-440.
    [6]贺石林,王健,王净净.中医科研设计与统计学[M].长沙:湖南科技出版社.2001:48.
    [7]成细华,喻嵘,李萍,吴勇军等.左归复方对MKR转基因2型糖尿病鼠胰岛素表达与分泌的影响[J].中国中医急症,2008,17(11):1573-1575.
    [8]吴勇军,喻嵘,胡伟,成细华等.滋阴益气活血解毒组方对MKR转基因2型糖尿病小鼠糖代谢的影响[J].湖南中医药大学学报,2007,27(2):20-23.
    [9]司凤霞,杨殿生,王柏欣.黄连素对2型糖尿病大鼠肾脏的保护作用[J].黑龙江医药科学,2005,28(4):10-12.
    [10]黄敬泽,王健.2型糖尿病肾病氧化应激与血管内皮损伤的关系[J].中国老年学杂志,2009,29(18):2377-2378.
    [11]李学军.糖尿病微血管病变发病机制研究新进展[J].临床医药实践,2008,17(4):245-247.
    [12]M Brownlee. The Pathobiology of diabetic complications:a unifying mechanism, Diabetes.2005 Jun; 54(6):1615-1625.
    [13]袁芳,刘伏友,段绍斌,刘虹.胰岛素对大鼠肾系膜细胞增殖及损伤和PAI-1合成的影响[J].中国中西医结合肾损伤杂志,2007;8(9):225-226.
    [14]赵进喜,邓德强,李靖.糖尿病肾病相关中医病名考辨[J].南京中医药大学学报,2005,21(5):288-289.
    [15]朴春丽,王秀阁,杨世忠.龙胆泻肝汤加减治疗Ⅳ期糖尿病肾损伤30例临床研究[J].山东中医杂志,2004,23(12):714.
    [16]张建伟.中西医对临床期糖尿病肾损伤难点的认识及治疗[J].辽宁中医杂志,2005,32(6):526-527.
    [17]李军.中西医结合治疗对早期糖尿病肾损伤尿微量白蛋白影响的临床观察[J].中华中医药药学刊,2007,25(6):1302-1304.
    [18]陈文娟,杨劲松.中西医结合治疗糖尿病肾损伤32例总结[J].湖南中医杂志,2006,22(3):25—26.
    [19]任爱华,阐方旭.糖尿病肾损伤三焦辨治[J].山东中医杂志.2000,19(6):328.
    [20]喻嵘,陈大舜,易法银.左归降糖方治非胰岛素依赖型糖尿病临床研究[J].辽宁中医杂志,1999,26(8):349.
    [21]杨林,叶任高.血管紧张索转换酶抑制药在肾脏病的应用[J].新医学,2008,30(7):420-421.
    [22]田雪飞,易法银,周青.降糖益肾方对2型糖尿病肾损伤大鼠影响的实验研究[J].湖南中医学院学报,2002,6(22):15-18.
    [23]李步满,吴深涛,吴丽丽.2型糖尿病血管并发症与“阴火”病机的相关性探讨[J].辽宁中医杂志.2007;34(9):1229-1230.
    [24]关崧,彭继升.痰瘀与糖尿病肾损伤关系探讨[J].山东中医杂志.2007;26(9)587-588.
    [25]潘善余.从毒辨治糖尿病探析[J].中华中医药学刊.2007;25(1):38-39.
    [26]许龙泉.消渴病当以调补藏象之脾为本[J].辽宁中医杂志.2007;34(9):1231-1232.
    [27]黄雯晖,衡先培.中医对糖尿病炎症状态的理论与实践研究[J].辽宁中医药大学学报.2008;10(2):38-39.
    [28]陈大舜,葛金文,周德生等.2型糖尿病及并发症23139例调研分析研究.中医药学刊,2003,21(8):1225-1273
    [29]曲晓璐,陈大舜,姚欣艳,等.1718例2型糖尿病患者糖尿病肾病发病率及其中医证型分布特点[J].中国中西医结合肾病杂志,2003,4(12):713-715.
    [30]艾碧琛,肖漫江,喻嵘,等.降糖益肾方对MKR鼠2型糖尿病肾病早期的保护作用[J].中国中医药信息杂志,2010,17(3):29-33.
    [31]吕秀芳,孟庆宇,郭新民.地黄水提液对2型糖尿病大鼠胰岛素抵抗及resistin基因mRNA和蛋白表达的影响[J].中国中药杂志,2007,32(20):2182-2184.
    [32]刘卫欣,卢兖伟,杜海涛,吴祖泽.地黄及其活性成分药理作用研究进展[J].国际药学研究杂志,2009,36(4):277-280.
    [33]李从悠.黄芪注射液并用贝那普利治疗早期糖尿病肾病的疗效观察[J].中国民康医学,2008,20(10):973-974.
    [34]李春亮,张明柱.从“淤”论治2型糖尿病肾病机理及疗效观察[J].时珍国医国药,2007,18(7):1629-1630.
    [35]赵娜,郭治昕,赵雪,赵利斌.丹参的化学成分与药理作用[J].国外医药·植物药分册,2007,22(4):155-160.
    [36]胡波,李锋,王燕午,等.丹参对糖尿病肾病大鼠MMP-2,TIMP-1, TGF-β1和IV-C表达的影响[J].时珍国医国药,2008,19(12):3020-3022.
    [37]刘慰华,黄河清,邓艳辉,等.黄连素对糖尿病肾损伤大鼠肾功能、氧化应激、肾脏醛糖还原酶的影响[J].中国药理学通报,2008,24(7):955-959.
    [38]向志雄,黄诚,彭新君,秦莹.中药治疗糖尿病及其并发症研究进展[J].中西医结合学报,2006,4(3):321-325.
    [39]吴刚强,喻嵘.滋阴益气活血解毒法与2型糖尿病及其血管并发症[J].中医药导报,2007,13(5):111-112.
    [40]Fueger P T, Bracy D P, Malabanan c M, et al. Hexokinase Ⅱ over-expression improves exercise-stimulated but not insulin-stimu-lated muscle glucose uptake in high-fat-fed C57BL/6J mice[J]. Diabetes, 2004,53:306-14.
    [41]卜石,杨文英,王昕,等.胰岛长期高脂饲养对大鼠葡萄糖刺激的胰岛素分泌的影响[J].中华内分泌代谢杂志,2003,19:25-8.
    [42]喻嵘,成细华,吴勇军,等.左归复方对MKR转基因糖尿病小鼠糖代谢及相关炎症因子的影响[J].中国中医基础医学杂志,2008,14(8):602-604.
    [43]成细华,喻嵘,吴勇军,胡伟等.左归复方对MKR转基因2型糖尿病鼠PPAR y表达的影响[J].中药新药与临床药理,2009,20(2):111-115.
    [44]李萍,李晖,宋光耀,叶蔚.PAI-1在2型糖尿病发生中的作用[J].医学综述,2005(1):35-36.
    [45]李新胜.炎症相关因子与糖尿病肾病[J].河北医药,2008,36(2):214-216.
    [46]Liu C,Yao J,de Bellel,et al.The transcription factor EGR-1 suppress transformation of human fibrosarcoma HT1080 cells by coordinated induction of TGF-β1, FN and PAI-1. J Biol Chem,1999,274:4400-4411.
    [47]李长贵,董砚虎,王海燕,等.PAI-1基因4G/5G多态性与2型糖尿病合并肾病的相关性研究[J].中国糖尿病杂志,2001,9(6):333-340.
    [48]郝金成,穆振国,郭见光.晚期糖基化终末产物与糖尿病慢性并发症的关系[J].中国民康医学,2006,18(7):594-595.
    [49]林沁,顾勇,马骥,等.罗格列酮对肾间质损伤的防护作用及其机制[J].中华医学杂志,2005(23):1618-1624.
    [50]田雪飞,陈颂,成细华,等.降糖益肾方对2型糖尿病并发肾损伤大鼠肾小球内细胞转化生长因子及Ⅳ型胶原的影响[J].湖南中医学院学报,2001,9(3):14-17.
    [51]傅强,王志宏,姚迪.胱抑素C对于糖尿病早期肾损伤的检测意义[J].吉林医学,2009,30(3):230-231.
    [52]卢晓峰,黄海燕.黄芪治疗肾脏疾病的药理研究进展[J].现代中西医结合杂志,2008,17(27):4369-4370.
    [53]PJ Beisswenger, KS Drummond, RG Nelson, SK,et al.SuscePtibility to diabetic nephropathy is related to dicarbonyl and oxidative stress[J]. Diabetes,2005,54(11):3274-3281.
    [54]HB Lee, MR Yu, Y Yang, Z Jiang,et al. Reactive oxygen species-regulate d signaling pathways in diabetic nephropathy[J].J Am Soc Nephrol, 2003,14(8 SuPPl 3):s241-s245.
    [55]McCord JM, EdeasMA. SOD, oxidative stress and human pathologi-es a brief history and a future vision[J]. Biomed Pharmacother,2005,59(4): 139-142.
    [56]李明,白晓春,刘俊,等.去卵巢骨质疏松大鼠血清中活性氧及抗氧化体系的变化[J].中国老年学杂志,2007,27(22):2164-2166.
    [57]杜文涛,李凤铭.黄芪在糖尿病早期肾损害中保护作用的临床研究[J].时珍国医国药,2007,18(7):1743-1744.
    [58]侯峰,梁海英,张温麂,黄晓晖,刘颖.黄芪对妊娠期糖尿病抗氧化活性及胰岛素抵抗的临床研究[J].中医药信息,2009,26(5):72-74.
    [59]程晖,贾汝汉,刘红燕.黄芪对糖尿病大鼠肾脏的保护作用[J].中国医师杂志,2006,8(10):1349-1351.
    [60]阮耀,岳兴如,徐持华,等.黄芪对早期糖尿病大鼠心肌非酶糖基化及氧化应激反应的影响[J].中药药理与临床,2008,24(1):47-49.
    [61]沈健,许惠琴,刘洪,等.黄芪注射液对AGEs培养肾小球系膜细胞的影响[J].中成药,2006,28(8):1170-1174.
    [62]杨亚安,唐丽华,蒋小岗,吴开云.丹参醇提取物对培养内皮细胞T— AOC、LPO、NO、SOD变化的影响[J].苏州大学学报(医学版),2005,25(6):963-965.
    [63]徐建国,田呈瑞,胡青平,杨俊丽.醇提山茱萸皂甙的体外抗氧化活性研究[J].中国食品学报,2008,8(5):33-36.
    [1]Skyler Js. Micmvascular complications. Retinopathy and nephropathy [J]. Endorerinol Metab Clin North Am,2001,30:833.
    [2]Ziegler D, Schr CGH, Zadeh JN. Oxidative stress and antioxidant defense in relation to the severity of diabetic pyneuropathy and cardio-vascular autonimoc neuropathy[J]. Diabetes Care,2004, 7:2178.
    [3]舒毅,钟历勇.氧化应激与糖尿病[J].东南大学学报,2005,24(1):64-67.
    [4]朱斌,沈汉超.糖尿病氧化应激的研究进展及其与糖尿病肾病的关系[J].国外医学泌尿系统分册,2004,24(6):818-821.
    [5]Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature,2000,404 (6779):787-790-
    [6]Kang D, Hamasaki N. Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med, 2003,41(10):1281-1288.
    [7]Bhor VM, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol,2004, 36(1):89-97.
    [8]Wu LL, Chiou CC, Chang PY, et al. Urinary8-OHdG:a marker of oxidafives tress to DNA and a risk factor for cancer, at heroselerosis and diabetics. Clin Chim Acta,2004,339:1-9.
    [9]Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three different pathways of hyperglycemic damage. Nature,2000,404:787-790.
    [10]Li NM, Shah AM. Intracelular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem.2002,27(7):19952-19960.
    [11]BrownleeM.Biochemistry and molecular cell biology of diabetic complications. Nature, 2001,414:813-820.
    [12]Lal MA, Korner A, Matsuo Y, et al. Combined antioxidant and COMT inhibitor treatment reverses renal abnormalities in diabetic rats. Diabetes,2000,49(8):1381
    [13]Ha H, Kim KH. Pathogenesis of diabetic nephropathy:the role of oxidative stress and protein kinase C. Diabetes Res Clin Pract,1999,45(2-3):147
    [14]Suzuki D, Miyata T, Saotome N, et al. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular rats. J Am Soc Nephrol, 1999,10(4):822
    [15]Xu Y, Osbome BW, Stanton RC Diabetes Causes Inhibition of Glucose-6-Phosphate Dehydrogenase via Activation of Protein Kinase A which Co-ntributes to Oxidative Stress in Rat Kidney Cortex Am JPhysiol Renal-Physio,l 2005,289(5):1040-1047.
    [16]陈玲,贾汝汉,丁国华,等.缬草油对2型糖尿病大鼠肾脏的保护作用及其机制探讨[J].中华肾脏病杂志,2003,19(3):168-172.
    [17]Ha H, Lee HB. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int,2000,58 Suppl 77:S19-S25.
    [18]Ha H, Lee HB, Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose[J]. Kidney Int,2000,77(Suppl):19-25.
    [19]Aksun AS, Ozmen B, Ozmen D, et al Serum and urinary nitric oxide in Type 2 diabetes with or without microalbum in uria relation to glomerular hyperfiltration. J Diabetes Complications, 2003,17(6):343-348.
    [20]Banda N, Nakamura T, Matsumura M, et al Possible relationship of monocyte chemoattratant protein-1 with diabetic nephropathy. Kinney Int,2000,58(2):684-686.
    [21]Scivittaro V, GanzMB, WeissMF. AGEs induce oxidative stress and activate protein kinaseC-beta(II) in neotal mesangial cells.Am JPhysiol RenalPhysiol,2000,278(4):676-678.
    [22]Susztak K, Raff AC, SchifferM, et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes,2006,55(1): 225-233.
    [23]Ha H, Yu MR, Choi YJ, et al Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol,2002,13 (4):894-902.
    [24]Morii T, Fujita H,Narita T, et al Association of monocyte chemoat-Tractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complications,2003,17(1):11-15.
    [25]Fukami K, Ueda S, YamaNshi S, et al. AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction. Kidney Int,2004,66(6):2137-2147.
    [26]Mksun AS, OzlTlen B, OzlTlen D, et al.Serum and urinary nitric oxide in type 2 diabetes with or without microalbuminuria:relation to glomerular hyperfiltration. J Diabetes Complications,2003, 17(6):343-348-
    [27]Schnackenberg CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol,2002,282(2):R335.
    [28]Chabrashvili T, Tojo A, Onozato ML, et al.Expression and cellular localization of classic NADPH oxidase subunits in the spont aneously hypertensive rat kidney. Hypertension,2002,39 (2):269-274.
    [29]Rueckschloss U, Galle J, Holtz J, et al. Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells:antioxidative potential of hydroxymethy lgl-utaryl coenzyme a reductase in hibitortherapy. Circulation,2001,104(15):1767-1772.
    [30]Vega-Warner V, Ransom RF, Vincent AM, et al.Induction of antioxidant enzymes in murine podocytes precedes injury by puromycin aminonucleoside. Kidney Int,2004,66 (5):1881-1889.
    [31]Lee EY, Chung CH, Kim JH, et al. Antioxidants ameliorate the expression of vascular endothelial growth factor mediated by protein kinase C in diabetic podocytes. Nephrol Dial Transplant,2006, 21(16):1496-1503.
    [32]Susztak K, Raft AC, Schiffer M, et al.Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes,2006,55(1): 225-233.
    [33]Tuttle KR, Anderson PW. A novel potential therapy for diabetic nephropathy and vascular complications:protein kinse C beta inhibition. Am J Kidney Dis,2003,42(3):456-465.
    [34]Ha H. Lee HB. Reactive oxygen species as glucose signaling molecules in mesangial cell cultured under high glucose. Kidney lnt Suppl,2000,77:S19-S25.
    [35]Kitada M, Koya D, Sugimoto T, et al. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes, 2003,52(10):2603-2614.
    [36]Lee GT, Ha H. Jung M, et al. Delayed treatment with lithospemmte B attenuates experimental diabetic renal injury. J Am Soc Nephrol,2003,14(3):709-720.
    [37]Lal MA, Brismar H, Eldof AC, et al. Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int,2002,61(6):2006-2014.
    [38]Gorin Y, Rimvo JM, WagnerB, et at. Angiotensin Ⅱ-induced ERK 1/2 activation and protein synthesis are redoxdependent in glomerular mesangial cells. Biochemical Journal Papers in Press. Biochem J,2004,381(Pt 1):231-239.
    [39]Wang X, Shaw S, Amiri F, et al. Inhibition of the Jak/STAT signaling pathway prevents the high glucose-induced increase in TGF-beta and fibronectin synthesis in mesangial cells. Diabetes,2002, 51(12):3505-3509.
    [40]Lee EA,Seo JY,Jiang Z,et al.Reactive oxygen species mediate high glucose induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney.Kidney Int,2005,67(5):1762-1771.
    [41]Ha H, Lee HB.Reactive oxygen species and matrix remodeling in diabetic kidney.J Am Soc Nephrol,2003,14(8 Suppl 3):S246-S249.
    [42]Morii T, Fujita H, Narita T, et al. Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy.J Diabetes Complications,2003,17(1):11-15.
    [43]Robertson R P, Harmon J, Tran P O,et al.βCell glucose toxicity, lipotoxicity and chronic oxidative stress in type 2 diabets [J]. Diabetes,2004,53(Suppll):s119-124.
    [44]Anderson MJ, Viars CS, Czeka YS, et al.Cloning and charaeterization of three human forkhead genes that comp rise an FKHR2 like gene subfamily. Genomies 1998;47(2):187-199.
    [45]Valenti L, Rametta R, Dongiovanni P,et al. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis[J]. Diabetes,2008,57(5):1355-1362.
    [46]Liu P, Kao T P,Huang H. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor[J]. Oncogene,2008,27(34):4733-4744.
    [47]甘立霞.FoxO转录因子在代谢调节及肿瘤抑制中的作用[J].第三军医大学学报(Gan Li-Xia. FoxO proteins in metabolism regulation and tumor suppression[J].Acta Acad Med Mil Tert),2006, 28(12):1347-1350.
    [48]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regnlation of FoxO transcription fartors by the SIRT1 deacetylase.Science.2004; 545 (5666):2011-2015.
    [49]Motta MC, Divecha N, Lemieux M, et al.Mammalian SIRT1 rePresses Forkhead transcription factors. Cell 2004; 228(4):551-563.
    [50]Vander Horst A, Tertoolen LG, VriesSmits LM, et al. Fox04 is acetylated upon Peroxide stress and deacetylated by the longevity Protein hsir2(SIRT1). Biol Chem 2004; 176(28):28873-28879.
    [51]Howitz KT, Bittennan KJ, Cohen HY, et al. Smallm olecule activators of Sirtuins extend Sacehammyces cerevisiae lifespan.Nature 2003; 319(6954):191-196.
    [52]Cojocel C, Al-Maghrebi M, Thomson MS,et al. Modulation of the transforming growth factor betal by vitamin E in early nephropathy. Med Princ Pract,2005,14(6):422-429.
    [53]Iino K, lwase M. Sonoki K, et al. Combination treatment of vitamin C and desferrioxamine suppresses glomerular superoxide and prostaglandin E production in diabetic rats. Diabetes Obes Metab,2005,7(1):106-109.
    [54]Kedziora-Kornatowska K, Szram S, Kom atowski T, et al. Effect of vitamin E and vitamin C supplementation on antioxidative state and renal glomerular basement membrane thickness in diabetic kidney. Nephron Exp Nephrol,2003,95(4):134-143.
    [55]Ueno Y, Kizaki M, Nakagiri R, et al. Dietary glutathione protects rats from diabetic nephropathy and neuropathy. J Nutr,2002,132(5):897-900.
    [56]Reddi AS. Bollineni JS. Selenium-deficient diet induces renal oxidative stress and injury via TGF-betal in normal and diabetic rats. Kidney Int,2001,59(4):1342-1353.
    [57]Sonta T, Inoguchi T, Matsumoto S et al. In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker. Biochem Biophys Res Commun,2005,330:425-422.
    [58]Yavuz DG, Tuglular S, Kocak H, et al. Angiotension converting enzyme inhibition and calcium channel blockage improves cyclosporine induced glucose intolerance in rats. Transplant Proc, 2004,36(1):171-174.
    [59]Onozato ML, Tojo A, Goto A, et al. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy:effects of ACEI and ARB. Kidney Int,2002,61 (1):186-194.
    [60]Agarwal R. Proinflammatory effects of oxidative stress in chronic kidney disease:role of additional angiotensin Ⅱ blockade. Am J Physiol Renal Physiol,2003,284(4):863-869.
    [61]Jones SP, Teshima Y, Akao M, et al. Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res,2003,93(8)1697-699.
    [62]Zhu B, Shen H, Zhou J, et al. Effects of Simvastatin on Oxidative Stress in Streptozotocin-Induced Diabetic Rats:A Role for Glomeruli Protection. Nephron Exp Nephrol, 2005,101(1):el-e8.
    [63]Endo K, Miyashita Y, Sasaki H, et al. Probucol and atorvastatin de-crease urinary 8-hydroxy-2'-deoxyguanosine in patients with diabetes and hypercholesterolemia. J Atheroscler Thromb,2006,13(1):68-75.
    [64]Ouslimani N, Peynet J. Bonnefont-Rousselot D et al. Metfromin decreases intracellular Production of reactive oxygen species naortic endothelial cells. Metabolism,2005,54:829-834.
    [65]Da Ros R, Assaloni R, Ceriello A. The preventive anti-oxidant action of thiazolidinediones:a new therapeutic prospect in diabetes and insulin resistance. Diabet Med,2004,21(11):1249-1252.
    [66]Dobrian AD, Davies MJ, Schriver SD, et al. Oxidative stress in a rat model of obesity-induced hypertension. Hypertension,2001,37(2 Part 2):554-560.
    [67]Bagi Z, Koller A, Kaley G. PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. Am J Physiol Heart Circ Physiol,2004,286(2):H742-748.
    [68]Brzezinski A. Melatonin in humans. N Engl J Med,1997,336(3):186-195.
    [69]Oktem F, Ozguner F, Yilmaz HR, et al. Melatonin reduces urinary excretion of N-acetyl-beta-D-glucosaminidase, albumin and renal oxidative markers in diabetic rats. Clin Exp Pharmacol Physiol,2006,33(1-2):95-101.
    [70]Osa, cga T, Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann NY Acad Sci,2005,1043:440-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700