用户名: 密码: 验证码:
几个生物/化学催化体系的压电电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物/化学催化剂修饰电极已广泛用于传感检测、能源和电合成等领域。与化学催化剂相比,生物催化剂通常选择性更好、催化效率更高、反应条件更温和。生物电催化是生物传感和生物燃料电池的重要学科基础,创新和优化酶等生物催化材料在电极上的高效固定方法对实现高效生物电催化至关重要。此外,电化学技术集合成、分离与分析功能于一体,若以电极作为工作平台,建立生物/化学催化体系的表征新方法,对于研究催化反应过程与机理颇具意义。本学位论文中,我们综述了压电传感技术、酶生物传感器、酶生物燃料电池和酶催化聚合的近期进展,采用压电电化学等方法对几个生物/化学催化体系进行了较详细的研究,主要内容如下:
     1.首次采用电化学噪声(ECN)装置测试了无隔膜葡萄糖/空气生物燃料电池(BFC)和单极葡萄糖BFC的性能。无隔膜葡萄糖/空气BFC的阳极采用明胶-多壁碳纳米管(MWCNTs)固定葡萄糖氧化酶(GOx)和二茂铁,阴极采用聚吡咯-MWCNTs固定漆酶和2,2’-连氮-双(3-乙基苯并噻唑-6-磺酸)二胺盐(ABTS)。在含有40 mM葡萄糖的醋酸缓冲溶液(pH 5.0)中,磁力搅拌下,无隔膜葡萄糖/空气BFC的短路电流为85μA cm-2,开路电压为0.29 V,最大输出功率密度为8μW cm-2。该BFC在100 kΩ外阻负载下,在上述溶液中连续放电15小时,电池输出电流降至初始值的78.9%。经双通道压电石英晶体微天平(QCM)监测,发现电池性能下降主要是因为阴极所固定的电子媒介体ABTS的泄漏所致。单极葡萄糖BFC中,阴极液为酸性KMnO4溶液,阳极液为含40 mM葡萄糖的磷酸缓冲溶液(pH 7.0),阴极室和阳极室间以Nafion 117质子交换膜隔开。以ECN装置测得此电池短路电路为202μAcm-2,开路电压为1.24 V,最大输出功率密度为115μW cm-2,与无隔膜葡萄糖/空气BFC相比,电池输出功率有显著提高。此外,还比较了阳极有无MWCNTs修饰时单极葡萄糖BFC的性能,发现修饰MWCNTs后输出功率提高到未修饰时的1.8倍。ECN装置有望成为研究BFC的一种实时、灵敏而简便的手段。
     2.通过简便的材料改性,使生物高分子壳聚糖(CS)用于酸性介质中BFC和生物传感研究成为可能。先通过CS和戊二醛(GA)反应制得GA功能化的CS (GAfCS),再与漆酶(Lac)反应形成Lac-GAfCS复合膜。QCM研究表明,该膜在弱酸性溶液中有较好的稳定性。ABTS存在下,Lac-GAfCS-MWCNTs/玻碳电极(GCE)能很好地催化氧气的还原,并研究了催化活性对溶液pH的依赖性。以Lac-GAfCS-MWCNTs/GCE为阴极、GOx-GAfCS-MWCNTs/GCE为阳极、Nafion膜为隔膜,构建了葡萄糖/空气BFC。采用ECN装置测得该BFC最大输出功率为9.6μW cm-2,开路电压为0.19 V,短路电流为114μA cm-2。此外,基于Lac-GAfCS-MWCNTs/GCE在pH 3.0的B-R缓冲溶液中检测了邻苯二酚,线性范围为0.1~50μM,检测限为20 nM。与直接采用GA一锅法交联固定Lac所制(?)Lac-GA-CS和Lac-GA相比,采用大分子交联剂GAfCS(即两步法)对酶活性的影响更小,因而更适合固定酶用于研制BFC和生物传感器。
     3.在少量交联剂存在下,使酶先键合到壳聚糖,再进行一锅法电沉积,可明显提高酶负载量和所制生物传感器的检测灵敏度(与无预交联的常规CS电沉积固定酶技术相比)。基本的实验流程如下(以模型酶GOx为例):以低浓度GA(0.08 wt%)将GOx键合到CS链上,再通过电还原过氧化氢以增加电极表面的pH,可电沉积得到CS-GA-GOx复合膜。基于酸碱滴定模型对CS-GA-GOx的电沉积行为进行了理论探讨,采用电化学压电石英晶体微天平(EQCM)技术对电沉积过程进行了实验监测。在0.7 V vs SCE检测电位下,所制第一代酶电极(CS-GA-GOx/Ptnano/Au)的灵敏度高达102μA mM-1 cm-2,是传统电沉积方法(未将GOx连接到CS上)所制CS-GOx/Ptnano/Au电极的13倍。以紫外可见分光光度法测定了有/无GA时、加碱沉淀CS复合物后的上清液中GOx的含量,结果表明GA处理可明显增加沉积复合物中的酶负载量。以电化学方法研究了GA处理对GOx活性的影响,发现该低浓度GA处理GOx几乎不影响酶活性。此外,通过一系列实验,可靠地证明了所提出的预交联方法具有较高的普适性,包括改变预交联方式(1-乙基-3-(3-二甲基氨基丙基)-碳二亚胺(EDC/N-羟基琥珀酰亚胺(NHS)激活)、电沉积方式(水还原)、传感模式(第二代)、电极面积(5μm半径Pt微电极)及固定酶的种类(碱性磷酸酶)。因电沉积法已广泛用于固定生物大分子,而提高生物大分子的负载量和生物活性一直是重要的科学问题,这里提出的将生物大分子预先连接到电沉积前躯物上并实现高负载量、高活性固定生物大分子的方法有望在生物技术研发方面得到广泛应用。
     4.通过酶(漆酶Lac)催化聚合途径,合成了新型聚合物-酶-MWCNTs复合物膜并将之用于生物传感和BFC研究。采用紫外光谱、循环伏安法(CV)、QCM和扫描电镜等手段,考察了Lac对多巴胺(DA)的催化氧化和聚合。将DA、Lac和MWCNTs混合溶液滴加在GCE上制备了聚多巴胺(PDA)-Lac-MWCNTs/GCE,该电极检测氢醌的灵敏度达643μA mM-1cm-2,检测限为20nM(S/N=3)。与以苯胺、邻苯二胺和邻氨基酚为聚合底物相比,以DA为聚合底物所制的电极性能更好。将DA、GOx、Lac和MWCNTs混合溶液滴加在Pt电极上制备了PDA-GOx-Lac-MWCNTs/Pt电极,该电极检测葡萄糖的灵敏度达68.6μA mM-1 cm-2。此外,主要通过MWCNTs的吸附效应制备了PDA-Lac-MWCNTs-ABTS/GCE,该电极能有效催化氧气的还原,用作无隔膜葡萄糖/氧气BFC的阴极得满意结果。这种基于酶催化聚合的“绿色”生物固定平台有望用于制备多种多功能纳米聚合物膜,在生物技术和应用领域发挥作用。
     5.在含有GOx的水溶液中,以Lac催化氧化和聚合去甲肾上腺素(NA)制得复合物,再通过金电极上的电聚合制备了酶膜和葡萄糖生物传感器。采用紫外可见分光光度法和电化学方法研究了Lac对NA的催化氧化行为。0.7V vs SCET下,检测葡萄糖的灵敏度为38μAmM-1 cm-2,检测限为0.4μM。该葡萄糖传感器的性能明显优于传统电聚合法(无预氧化步骤)所制葡萄糖传感器。采用EQCM和紫外光谱法测定了固定化GOx的质量比活性,发现预氧化-电聚合所固定的GOx保持着很高的活性。
     6.采用双通道EQCM研究了水溶液中普鲁士蓝(PB)薄膜修饰的两金电极上的两电极循环伏安电化学行为,归属了普鲁士白、PB、普鲁士黄三者间的转变过程,以及金基底和PB膜内所夹带的Fe(CN)63-/Fe(CN)64-杂质的氧化还原峰,为UV-Vis光谱电化学实验所支持。考察了两电极体系中PB对过氧化氢的催化还原。此外,还研究了PB粉末的两电极固态电化学。夹在两喷金的铟锡氧化物(ITO)电极间的PB粉末的两电极固态循环伏安图和两PB修饰金电极在水溶液中的两电极循环伏安图相似,说明发生了类似的电极反应。双通道EQCM有望成为研究其他物质或材料的两电极系统电化学行为的高效技术。
     7.为研究8-羟基喹啉型类锰(Ⅲ)配合物催化剂(Q3MnⅢ)催化烯烃环氧化的机理,采用液相CV和QCM技术研究了Q3MnⅢ、Q3FeⅢ、5-NO2-8-QMnⅢCl和salen-MnⅢCl催化剂。CV和QCM研究表明,六齿配位的Q3MnⅢ催化剂中轴向Mn-O键可被打开而形成羟基,转变为五齿配位结构,Q3MnⅢ催化烯烃环氧化的高催化效率应与Q3MnⅢ催化剂在反应介质中的配位模式转变有关。CV和QCM技术可为液相化学催化过程和机理研究提供大量有用信息,有望在催化科学中获得进一步应用。
Bio/chemocatalyst modified electrodes have been widely used in bio/chemosensing, energy science, and electrosynthesis. Reactions using biocatalysts can proceed with higher efficiency and better selectivity under milder conditions than those using chemical catalysts. Bioelectocatalysis is virtually the discipline base of biosensors and biofuel cells (BFCs), and it is thus important to efficiently immobilize enzymes and other biocatalysts on electrodes for bioelectrocatalysis. In addition, the electrochemical techniques feature the three-in-one integration of synthesis, separation and analysis functions, it is thus of great significance to develop new characterization methods with the electrode as a research platform for bio/chemocatalysis systems. In this dissertation, recent advances in quartz crystal microbalance (QCM), enzymatic biosensors, enzymatic BFCs, and enzyme-catalyzed polymerization are briefly reviewed, and detailed studies on several bio/chemocatalysis systems are carried out using many instrumental analysis techniques including electrochemical quartz crystal microbalance (EQCM). The main contents are as follows.
     1. An electrochemical noise (ECN) device is utilized for the first time to study and characterize a glucose/air membraneless BFC and a monopolar glucose BFC. In the glucose/air membraneless BFC, ferrocene (Fc) and glucose oxidase (GOx) were immobilized on a multiwalled carbon nanotubes (MWCNTs)/Au electrode with a gelatin film at the anode; and laccase (Lac) and an electron mediator,2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS), were immobilized on a MWCNTs/Au electrode with polypyrrole at the cathode. This BFC was performed in a stirred acetate buffer solution (pH 5.0) containing 40 mM glucose in air, with a maximum power density of 8μW cm-2, an open-circuit cell voltage of 0.29 V, and a short-circuit current density of 85μA cm-2, respectively. The cell current at the load of 100 kQ retained 78.9% of the initial value after continuous discharging for 15 h in a stirred acetate buffer solution (pH 5.0) containing 40 mM glucose in air. The performance decrease of the BFC resulted mainly from the leakage of the ABTS mediator immobilized at the cathode, as revealed by the two-channel quartz crystal microbalance technique. In addition, a monopolar glucose BFC was performed with the same anode as that in the glucose/air membraneless BFC in a stirred phosphate buffer solution (pH 7.0) containing 40 mM glucose, and a carbon cathode in Nafion-membrane-isolated acidic KMnO4, with a maximum power density of 115μW cm-2 an open-circuit cell voltage of 1.24 V, and a short-circuit current density of 202μA cm-2, respectively, which are superior to those of the glucose/air membraneless BFC. A modification of the anode with MWCNTs for the monopolar glucose BFC increased the maximum power density by a factor of 1.8. The ECN device is highly recommended as a convenient, real-time and sensitive technique for BFC studies.
     2. A simple chemical modification on the popular biocompatible biopolymer chitosan (CS) makes it feasible as an acid-resistant film matrix for biosensing and BFC applications in acidic media. To covalently immobilize Lac from Trametes versicolor that shows its maximum enzymatic activity in acidic solutions, CS was chemically modified with glutaraldehyde (GA) to form GA functionalized CS (GAfCS), which was then allowed to react with Lac to form a Lac-GAfCS composite that is robust in acidic solutions (two-step protocol), as confirmed by QCM and durability tests. The Lac-GAfCS-multiwalled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE), Lac-GAfCS-MWCNTs/GCE, exhibited good catalytic activity towards O2 reduction in the presence of 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS), and the pH-dependent enzymatic activity of the immobilized Lac towards O2 reduction was examined. A glucose/air biofuel cell was fabricated, with the Lac-GAfCS-MWCNTs/GCE and a glucose oxidase (GOx)-GAfCS-MWCNTs/GCE as the biocathode and the bioanode in Nafion-membrane-separated acetate buffer solutions (pH 5.0), respectively. The biofuel cell output a maximum power density of 9.6μW cm-2, an open-circuit cell voltage of 0.19 V, and a short-circuit current density of 114μA cm-2, respectively, as measured with an ECN device. Furthermore, the Lac-GAfCS-MWCNTs/GCE was applied to determine catechol in Britton-Robinson buffer solution (pH 3.0), with a linear range of 0.1-50μM and a limit of detection of 20 nM. In comparison with the direct use of GA for one-pot Lac-GA-CS or Lac-GA crosslinking to immobilize enzyme, the use of macromolecular GAfCS in the proposed two-step protocol was proven to be less harmful to enzymatic activity and thus more suitable for immobilizing Lac to construct the biofuel cell and biosensor.
     3. Pre-crosslinking enzyme molecules to CS with low-concentration crosslinker and then one-pot electrodeposition of the resultant complex can increase the enzyme load and sensitivities of thus-prepared biosensors (vs. conventional CS electrodeposition). GOx is chosen to examine the proposed protocol in detail. GOx was crosslinked to CS with low-concentration GA (0.08 wt%), and the electroreduction of added H2O2 increased the electrode-surface pH and triggered the electrodeposition of a GOx-GA-CS composite film. The GOx-GA-CS electrodeposition was monitored by an electrochemical quartz crystal microbalance and is theoretically discussed based on an electrogenerated base-to-acid titration model. The prepared first-generation enzyme electrode (CS-GA-GOx/Ptnano/Au) exhibits a current sensitivity as high as 102μA mM-1 cm-2 at 0.70 V vs SCE, being 13 times that of the CS-GOx/Ptnano/Au prepared similarly but without precrosslinking GOx to CS. UV-Vis spectrophotometric determination of the GOx remains in the supernatant liquids after pH-induced CS precipitation suggested a high enzyme load in the GOx-GA-CS film, and amperometric measurements suggested a negligible decrease in the enzymatic activity of GOx after its reaction with the low-concentration GA. Also, the proposed protocol works well for the precrosslinking manner of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysulfosuccinimide activation, the water-electroreduction-triggered CS electrodeposition, the second-generation biosensing mode, a 5.0-μm-radius Pt microelectrode, and immobilization of alkaline phosphatase for phenyl phosphate biosensing. Because electrodeposition has been so widely used to immobilize biomacromolecules, and it is always an important topic to increase the load and activity of the immobilized biomacromolecule, the proposed protocol of pretethering the target biomacromolecule to the electrodeposition precusor for immobilization of the biomacromolecule at high load/activity is recommended for wide applications.
     4. The facile preparation of polymer-enzyme-MWCNTs cast films accompanying in-situ Lac-catalyzed polymerization is described for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-Vis spectroscopy, cyclic voltammetry (CV), QCM, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a GCE yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone (HQ) with 643-μA mM-1 cm-2 sensitivity and 20-nM detection limit (S/N=3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, GOx, Lac and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6μA mM-1 cm-2. In addition, ABTS was also co-immobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O2, and it was successfully used as the biocathode of a membraneless glucose/02 BFC in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.
     5. The electropolymerization of L-noradrenaline (NA) after Lac-catalyzed preoxidation to efficiently immobilize GOx at an Au electrode is described for sensitive amperometric biosensing of glucose. The Lac-catalyzed preoxidation of NA was studied by UV-vis spectrophotometry and electrochemical technique. The prepared glucose biosensor displayed a sensitivity of 38μA mM-1 cm-2 and a limit of detection of 0.4μM at 0.7 V vs. SCE, which are obviously better than those prepared via preoxidation-free conventional electropolymerization. The immobilized GOx retained high enzymatic specific activity, as quantified by EQCM and UV-vis spectrophotometry. The proposed Lac-catalyzed preoxidation strategy may have application potential in many fields, such as biosensing, biocatalysis, and BFCs.
     6. A two-channel EQCM is used to investigate the cyclic voltammetric behavior of two Prussian blue (PB) film-modified Au electrodes in a two-electrode configuration in aqueous solution. The redox peaks observed in the two-electrode cyclic voltammogram are assigned to the intrinsic redox transitions among the Everitt's salt, PB, and Prussian yellow for the film itself, the redox process of the Au substrate and the redox process of small-quantity ferri-/ferrocyanide impurities entrapped in the PB film, as also supported by UV-Vis spectroelectrochemical data. The electrocatalytic reduction of H2O2 was also examined in two-electrode system. The profile of the two-electrode solid-state cyclic voltammogram for the PB powder sandwiched between two gold-coated indium-tin oxide electrodes is similar to that for two PB-modified Au electrodes in aqueous solution, implying similar origins for the corresponding redox peaks. The two-channel EQCM method is expected to become a highly effective technique for the studies of the two-electrode electrochemical behaviors of many other species/materials.
     7. To investigate the catalytic mechanism of 8-quinolinolato manganese(III) complexes (Q3MnⅢ) epoxidation system, CV and QCM were employed to study catalytic Q3MnⅢ, Q3FeⅢ,5-nitryl-8-quinolinolato MnⅢCl and salen-MnⅢCl complexes. The results showed that the high catalytic efficiency for the epoxidation of olefins with Q3MnⅢcatalysts should be due to their special hexadentate binding structures that could be easily converted to the corresponding pentadentate with pendant hydroxyl groups via opening an axial Mn-O bond in the reaction media. The CV and QCM tests have given us much useful information on the liquid-phase catalysis mechanism, which are highly expected to find wider applications in catalysis science and technology.
引文
[1]Kobayashi, S.; Makino, A., Enzymatic polymer synthesis:an opportunity for green polymer chemistry. Chem. Rev.2009,109,5288-5353.
    [2]齐耿耿;孙建中;周其云;蔡智奇,酶催化聚合研究进展.功能高分子学报2002,15,347-354.
    [3]Sauerbrey, G., The use of quartz oscillators for weighting thin layers and for microweighting. Z. Phys.1959,155,206-222.
    [4]Kanazawa, K. K.; Gordon, J. G., The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chem. Acta 1985,175,99-105
    [5]Martin, S. J.; Granstaff, V. E.; Frye, G. C., Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem.1991,63, (20), 2272-2281.
    [6]Xie, Q.; Zhang, Y.; Yuan, Y.; Guo, Y.; Wang, X.; Yao, S., An electrochemical quartz crystal impedance study on cystine precipitationonto anAu electrode surface during cysteine oxidation in aqueous solution. J. Electroanal. Chem.2000,484, 441-454.
    [7]Yao, S. Z.; Zhou, T. A., Dependence of the oscillation frequency of a piezoelectric crystal on the physical parameters of liquids. Anal. Chem. Acta 1988, 212,61-72.
    [8]姚守拙;周铁安,石英压电振子在液相中的某些振荡特性的研究.科学通报1985,30,1153-1156.
    [9]Nomura, T.; Nagamune, T., Internal electrolytic determination of silver in solution with piezoelectric quartz crystal. Anal. Chim. Acta 1983,155,231-234.
    [10]姚守拙,压电化学与生物传感湖南师范大学出版社:长沙,1997.
    [11]Buttry, D. A.; Ward, M. D., Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev.1992,92, 1355-1379.
    [12]Xie, Q.; Xiang, C.; Yang, X.; Zhang, Y.; Li, M.; Yao, S., Simultaneous impedance measurements of two one-face sealed resonating piezoelectric quartz crystals for in situ monitoring of electrochemical processes and solution properties. Anal. Chem. Acta 2005,533,213-224.
    [13]Zhou, Q.; Xie, Q.; Fu, Y.; Su, Z.; Jia, X.; Yao, S., Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. J. Phys. Chem. B 2007,111,11276-11284.
    [14]Xie, Q.; Wang, J.; Zhou, A.; Zhang, Y.; Liu, H.; Xu, Z.; Yuan, Y.; Deng, M.; Yao, S., A study of depletion layer effects on equivalent circuit parameters using an electrochemical quartz crystal impedance system. Anal Chem.1999,71,4649-4656.
    [15]Buttry, D. A., Application of quartz crystal microbalance to electrochemistry. In Electroanalytical Chemistry, Bard, A. J., Ed. Marcel Dekker:New York,1991; Vol. 17.
    [16]Xie, Q. J.; Xiang, C. H.; Yuan, Y.; Zhang, Y Y.; Nie, L. H.; Yao, S. Z., A novel dual-impedance-analysis EQCM system investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces. J. Collid Interface Sci. 2003, 262,107-115.
    [17]Tu, X.; Xie, Q.; Xiang, C.; Zhang, Y.; Yao, S., Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly(o-phenylenediamine) thin films. J. Phys. Chem. B 2005,109,4053-4063.
    [18]Xie, Q.; Kuwabata, S.; Yoneyama, H., EQCM studies on polypyrrole in aqueous solutions J. Electroanal. Chem.1997,420,219-225.
    [19]Yang, X.; Xie, Q.; Yao, S., A comparative study on polyaniline degradation by an electrochemical quartz crystal impedance system:electrode and solution effects. Synth. Met.2004,143,119-128.
    [20]Xie, Q.; Zhang, Y.; Xiang, C.; Tang, J.; Li, Y.; Zhao, Q.; Yao, S., A comparative study on the viscoelasticity and morphology of polyaniline films galvanostatically grown on bare and 4-aminothiophenol-modified gold electrodes using an electrochemical quartz crystal impedance system and SEM. Anal. Sci.2001,17, 613-620.
    [21]Li, Y.; Liu, M.; Xiang, C.; Xie, Q.; Yao, S., Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films 2006,497, 270-278.
    [22]Pruneanu, S.; Csahok, E.; Kertesz, V.; Inzelt, G., Electrochemical quartz crystal microbalance study of the influence of solution composition on the behaviour of poly(aniline) electrodes. Electrochim. Acta 1998,43,2305-2323
    [23]Niikura, K.; Matsuno, H.; Okahata, Y, Direct monitoring of DNA polymerize reaction on a quartz crystal microbalance. J. Am. Chem. Soc.1998,120,8537-8538.
    [24]Yamaguchi, S.; Shimomura, T.; Tatsuma, T.; Oyama, N., Adsorption, immobilization, and hybridization of DNA studied by the. use of quartz crystal oscillators. Anal. Chem.1993,65,1925-1927.
    [25]Hianik, T.; Ostatna, V.; Zajacova, Z., The study of the binding of globular proteins to DNA using mass detection and electrochemical indicator methods J. Electroanal. Chem.2004,564,19-24.
    [26]Konig, B.; Grtzel, M., Detection of viruses and bacteria with piezoelectric immunosensors. Anal. Lett.1993,26, (8),1567-1585
    [27]Redepenning, J.; Schlesinger, T. K.; Mechalke, E. J.; Puleo, D. A.; Bizios, R., Osteoblast attachment monitored with a quartz crystal microbalance. Anal. Chem. 1993,65,(23),3378-3381.
    [28]Su, H.; Williams, P.; Thompson, M., Platinum anticancer drug binding to DNA detected by thickness-shear-mode acoustic wave sensor. Anal. Chem.1995,67, (5), 1010-1013.
    [29]L.Tian; W.Wei, Kinetic studies of the interaction between antitumor antibiotics and DNA using quartz crystal microbalance. Clin. Biochem.2004,37,120-127.
    [30]Cheng, T. J.; Lin, T. M.; Wu, T. H.; Chang, H. C., Determination of heparin levels in blood with activated partial thromboplastin time by a piezoelectric quartz crystal sensor. Anal. Chem. Acta 2001,432,101-111.
    [31]Alfonta, L.; Willner, I., Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Anal. Chem.2001,73,5287-5295.
    [32]Fawcett, N. C.; Evans, J. A.; Chen, L. C.; Flowers, N., Nucleic acid hybridization detection by piezoelectric resonance. Anal. Lett.1988,21,1099-1114.
    [33]Okahata, Y.; Matsunobu, Y.; Ijiro, K.; Mukae, M.; Murakami, A.; Makino, K., Hybridization of nucleic acids immobilized on a quartz crystal microbalance. J. Am. Chem. Soc.1992,114,8299-8300.
    [34]Clark, L. C.; Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NYAcad. Sci.1962,102,29-45.
    [35]Updike, S. J.; Hicks, G. P., The enzyme electrode. Nature 1967,214, (6), 986-988.
    [36]Guilbault, G. G.; Montalvo, J. G, A urea-specific enzyme electrode. J. Am. Chem. Soc.1969,91,2164-2165.
    [37]Taylor, P. J.; Kmetec, E.; Johnson, J. M., Design, construction, and applications of a galactose selective electrode. Anal. Chem.1977,49, (6),789-794.
    [38]汪尔康,21世纪的分析化学.科学出版社:北京,1999.
    [39]Bonnet, C.; Andreescu, S.; Marty, J. L., Adsorption:an easy and efficient immobilization of acetylcholinesterase on screen-printed electrode Anal. Chem. Acta 2003,481,209-211.
    [40]Marko-Varga, G.; Appelqvist, R.; Gorton, L., A glucose sensor based on glucose dehydrogenase adsorbed on a modified carbon electrode. Anal. Chim. Acta 1986, 179,371-379.
    [41]Li, W. J.; Sun, C. Q.; Xian, M.; Zhao, M. Y.; Wang, Z., Fabrication of multilayer films containing horseradish peroxidase and polycation-bearing Os complex by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor. Anal. Chem. Acta 2000,418,225-232.
    [42]Perez, E. F.; Neto, G. d. O.; Kubota, L. T., Bi-enzymatic amperonmetric biosensor for oxalate. Sens. Actual B 2001,72,80-85.
    [43]Kim, J. K.; Shin, D. S.; Chung, W. J.; Jang, K. H.; Lee, K. N.; Kim, Y. K.; Sik, Y, Effects of polymer grafting on a glass surface for protein chip applications. Colloids Surf. B,2004,33,67-75.
    [44]Kharitonov, A. B.; Zayats, M.; Lichtenstein, A.; Katz, E.; Willner, I., Enzyme monolayer-functionalized field effect transistor for biosensor applications. Sens. Actuat. B 2000,70,222-231.
    [45]Freire, R.; Duran, N.; Kubota, L. T., Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds. Talanta 2001, 54,681-686.
    [46]Cosnier, S.; Gondran, C.; Watelet, J. C.; Giovani, W. D.; Furriel, R. P. M.; Leone, F. A., Bienzyme electrode (alkaline phosphatase-polyphenol oxidase) for the amperometric determination of phosphate. Anal. Chem.1998,70,3952-3956.
    [47]Fu, Y.; Chen, C.; Xie, Q.; Xu, X.; Zou, C.; Zhou, Q.; Tan, L.; Tang, H.; Zhang, Y.; Yao, S., Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance. Anal. Chem.2008,80,5829-5838.
    [48]Fu, Y.; Zou, C.; Xie, Q.; Xu, X.; Chen, C.; Deng, W.; Yao, S., Highly sensitive glucose biosensor based on one-pot biochemical preoxidation and electropolymerization of 2,5-dimercapto-1,3,4-thiadiazole in glucose oxidase-containing aqueous suspension. J. Phys. Chem. B 2009,113,1332-1340.
    [49]Willner, I.; Katz, E., Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem., Int. Ed.2000,39,1180-1218.
    [50]Wang, J., Electrochemical glucose biosensors. Chem. Rev.2008,108,814-825.
    [51]Guilbault, G.; Lubrano, G, An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973,64,439-455.
    [52]Sasso, S.; Pierce, R.; Walla, R.; Yacynych, A., Electropolymerized 1,2-dtaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemtcal biosensors Anal Chem.1990,62,1111-1117.
    [53]Emr, S.; Yacynych, A., Use of polymer films in amperometric biosensors. Electroanalysis 1995,7,913-923.
    [54]Malitesta, C.; Palmisano, F.; Torsi, L.; Zambonin, P. G, Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal. Chem.1990,62 (24), 2735-2740.
    [55]Palmisano, F.; Centonze, D.; Guerrieri, A.; Zambonin, P. G, An interference-free biosensor based on glucose oxidase electrochemically immobilized in a nonconducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling. Biosens. Bioelectron.1993,8,393-399
    [56]Sternberg, R.; Bindra, D.; Wilson, G S.; Thevenot, D. R., Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem. 1991,63,1692-1696.
    [57]Moussy, F.; Jakeways, S.; Harrison, D. J.; Rajotte, R. V., In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high temperature curing. Anal. Chem.1994,66,3882-3888.
    [58]Wang, J.; Wu, H., Permselective lipid-poly(o-phenylenediamine) coating for amperometric btosensing of glucose. Anal. Chim. Acta 1993,283,683-688.
    [59]Mercado, R. C.; Moussy, F., In vitro and in vivo mineralization of Nafion membrane used for implantable glucose sensors. Biosens. Bioelectron.1998,13, (2), 133-145
    [60]Karaykin, A.; Gitelmacher, O.; Karaykina, E., Prussian blue based first-generation biosensor:a sensitive amperometric electrode for glucose. Anal. Chem.1995,67,2419-2423.
    [61]Zhang, Y.; Hu, Y.; Wilson, G. S.; Moatti-Sirat, D.; Poitout, V.; Reach, G, Elimination of acetaminophen interference in an implantable glucose sensor. Anal. Chem.1994,66,1183-1188.
    [62]Wang, J.; Liu, J.; Chen, L.; Lu, F., Highly selective membrane-free, mediator-free glucose biosensor. Anal. Chem.1994,66,3600-3603.
    [63]Newman, J.; White, S.; Tothill, I.; Turner, A. P., Catalytic materials, membranes and fabrication technologies suitable for the construction of amperometric biosensors. Anal. Chem.1995,67,4594-4599.
    [64]Yao, Y. L.; Shiu, K. K., A mediator-free bienzyme amperometric biosensor based on horseradish peroxidase and glucose oxidase immobilized on carbon nanotube modified electrode Electroanalysis 2008,20,2090-2095.
    [65]Zhu, L.; Yang, R.; Zhai, J.; Tian, C., Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode Biosens. Bioelectron.2007,23,528-535.
    [66]Cosnier, S.; Lambert, F.; Stoytcheva, M., A composite clay glucose biosensor based on an electrically connected HRP. Electroanalysis 2000,12,356-360.
    [67]Reach, G.; Wilson, G. S., Can continuous glucose monitoring be used for treatment of diabetes? Anal. Chem.1992,64,381-386.
    [68]Gough, D.; Lucisano, J.; Tse, P., Two-dimensional enzyme electrode sensor for glucose. Anal. Chem.1985,57,2351-2357.
    [69]Armour, J.; Lucisano, J.; Gough, D., Application of chronic intravascular blood glucose sensor in dogs. Diabetes 1990,39,1519-1526.
    [70]Wang, J.; Lu, F., Oxygen-rich oxidase enzyme electrodes for operation in oxygen-free solutions. J. Am. Chem. Soc.1998,120,1048-1050.
    [71]Wang, J.; Mo, J. W.; Li, S. F.; Porter, J., Comparison of oxygen-rich and mediator-based glucose-oxidase carbon-paste electrodes. Anal. Chim. Acta 2001,441, 183-189.
    [72]D'Costa, E.; Higgins, I.; Turner, A. P., Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors 1986,2,71-87
    [73]Muguruma, H.; Yoshida, S.; Urata, M.; Fujisawa, K.; Matsui, Y., An amperometric biosensor for glucose based on a composite electrode of glucose dehydrogenase, carbon nanotubes, and plasma-polymerized thin films. Electroanalysis 2008,76,545-548.
    [74]Pandey, P. C.; Upadhyay, S.; Tiwari, I.; Tripathi, V. S., A novel ormosil based electro catalytic biosensor for glucose/ethanol based on dehydrogenase modified electrode. Electroanalysis 2001,13,820-825.
    [75]Laurinavicius, V.; Kurtinaitiene, B.; Liauksminas, V.; Jankauskaite, A.; Simkus, R.; Meskys, R.; Boguslavsky, L.; Skotheim, T.; Tanenbaum, S., Reagentless biosensor based on PQQ-depended glucose dehydrogenase and partially hydrolyzed polyarbutin. Talanta 2000,52,485-493.
    [76]Blaedel, W.; Jenkins, R., Electrochemical oxidation of reduced nicotinamide adenine dinucleotide. Anal. Chem.1975,47,1337-1343.
    [77]Wang, J.; Anges, L.; Martinez, T., Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes. Bioelectrochem. Bioenerg.1992,29,215-221.
    [78]Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun.2002,4,743-746.
    [79]Liu, J. Y.; Tian, S. J.; Knoll, W., Properties of polyaniline/carbon nanotube multilayer films in neutral solution and their application for stable low-potential detection of reduced b-nicotinamide adenine dinucleotide. Langmuir 2005,21, 5596-5599.
    [80]Chen, J.; Bao, J.; Cai, C.; Lu, T., Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta 2004, 516,29-34.
    [81]Degrand, C.; Miller, L. L., An electrode modified with polymer-bound dopamine which catalyzes NADH oxidation. J. Am. Chem. Soc.1980,102,5728-5732.
    [82]Sun, J. J.; Xu, J. J.; Fang, H. Q.; Chen, H. Y., Electrocatalytical oxidation of NADH with dopamine covalently bound to self-assembled cysteamine monolayers on a gold electrode. Bioelectrochem. Bioenerg.1997,44,45-50.
    [83]Raj, C. R.; Ohsaka, T., Electrocatalytic sensing of NADH at an in situ functionalized self-assembled monolayer on gold electrode. Electrochem. Commun. 2001,3,633-638.
    [84]Cass, A.; Davis, G.; Francis, G.;Hill, H. A.; Aston, W.; Higgins, I. J.; Plotkin, E.; Scott, L.; Turner, A. P., Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem.1984,56,667-671.
    [85]Frew, J.; Hill, H. A., Electrochemical biosensors. Anal. Chem.1987,59, 933A-934A.
    [86]Degani, Y.; Heller, A., Direct electrical communication between chemically modified enzymes J. Phys. Chem. B 1987,91,1285-1289.
    [87]Shichiri, M.; Yamasaki, Y.; Hakui, N.; Abe, H., Wearable artificial endocrine pancrease with needle-type glucose sensor. Lancet.1982,2,1129-1131.
    [88]Li, F.; Song, J.; Li, F.; Wang, X.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L., Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes@SnO2-Au composite. Biosens. Bioelectron.2009,25,883-888.
    [89]Deng, S.; Jian, G.; Lei, J.; Hu, Z.; Ju, H., A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens. Bioelectron.2009,25,373-377.
    [90]Wang, K.; Yang, H.; Zhu, L.; Liao, J.; Lu, T.; Xing, W.; Xing, S., Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified by Nafion and ordered mesoporous silica-SBA-15. J. Mol. Catal. B:Enzym.2009,58,194-198.
    [91]Gao, R.; Zheng, J., Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase. Electrochem. Commun.2009,11,608-11.
    [92]Su, Y.; Xie, Q.; Chen, C., Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes. Biotechnol. Prog.2008,24,262-272.
    [93]Yi, X.; Fernando, P.; Eugenii, K.; F, H. J.; Itamar, W., "Plugging into Enzymes": nanowiring of redox enzymes by a gold nanoparticle. Science 2003,299,1877-1881.
    [94]Zhao, M.; Wu, X.; Cai, C., Polyaniline nanofibers:synthesis, characterization, and application to direct electron transfer of glucose oxidase. J. Phys. Chem. C 2009, 113, (12),4987-4996.
    [95]Wang, Z.; Liu, S.; Wu, P.; Cai, C., Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem.2009,81, (4),1638-1645.
    [96]Jankun, J.; Selman, S. H.; Swiercz, R.; SkrzypczakJankun, E., Why drinking green tea could prevent cancer? Nature 1997,387,561-561.
    [97]Bordoni, A.; Hrelia, S.; Angeloni, C.; Giordano, E.; Guarnieri, C.; Caldarera, C. M.; Biagi, P. L., Green tea protection of hypoxia/reoxygenation injury in cultured cardiac cells. J. Nutr. Biochem.2002,13, (2),103-111.
    [98]Bosch, F.; Font, G.; Manes, J., Ultraviolet spectrophotometric determination of phenols in natural and waste water with iodine onobromide. Analyst 1987,112, 1335-1337.
    [99]Mosca, L.; De Marco, C.; Visioli, F.; Cannella, C., Enzymatic assay for the determination of olive oil polyphenol content:assay conditions and validation of the method. J. Agric. Food Chem.2000,48,297-301.
    [100]Ong, C. P.; Lee, H. K.; Li, S. F., Optimization of mobile phase composition for high-performance liquid chromatographic analysis of eleven priority substituted phenols. J. Chromatogr.1989,464,405-410.
    [101]Zhao, L.; Lee, H. K., Determination of phenols in water using liquid phase microextraction with back extraction combined with highperformance liquid chromatography. J. Chromatogr. A 2001,931,95-105.
    [102]Bartak, P.; Frnkova, P.; Cap, L., Determination of phenols using simultaneous steam distillation-extraction. J. Chromatogr. A 2000,867,281-287.
    [103]Angerosa, F.; D'Alessandro, N.; Konstantinou, P.; Di Giacinto, L., GC-MS evaluation of phenolic compounds in virgin olive oil. J. Agric. Food Chem.1995,42, 1802-1807.
    [104]Tasioula-Margari, M.; Okogeri, O., Isolation and characterization of virgin olive oil phenolic compounds by HPLC/UV and GC-MS. J. Food Sci.2001,66, 530-534.
    [105]Yaropolov, A. I.; Kharybin, A. N.; Emneus, J.; Marko-Varga, G.; Gorton, L., Flow-injection analysis of phenols'at a graphite electrode modified with co-immobilised laccase and tyrosinase. Anal. Chim. Acta 1995,308,137-144.
    [106]Freire, R. S.; Duran, N.; Kubota, L. T., Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of kraft El paper mill effluent. Anal. Chim. Acta 2002,463,229-238.
    [107]Vianello, F.; Cambria, A.; Ragusa, S.; Cambria, M. T.; Zennaro, L.; Rigo, A., A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element. Biosens. Bioelectron.2004,20,315-321.
    [108]Vianello, F.; Ragusa, S.; Cambria, M. T.; A., R., A high sensitivity amperometric biosensor using laccase as biorecognition element Biosens. Bioelectron.2006,21,2155-2160.
    [109]Kulys, J.; Vidziunaite, R., Amperometric biosensor based on recombinant laccases for phenols determination. Biosens. Bioelectron.2003,18,319-325.
    [110]Zhang, Y.; Zeng, G. M.; Tang, L.; Huang, D. L.; Jiang, X. Y.; Chen, Y N., A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode Biosens. Bioelectron.2007,22,2121-2126.
    [111]Jarosz-Wilkolazka, A.; Ruzgas, T.; Gorton, L., Amperometric detection of mono-and diphenols at Cerrena unicolor laccase-modified graphite electrode: correlation between sensitivity and substrate structure. Talanta 2005,66,1219-1224.
    [112]Gomes, S. A. S. S.; Nogueira, J. M. F.; Rebelo, M. J. F., An amperometric biosensor for polyphenolic compounds in red wine. Biosens. Bioelectron.2004,20, 1211-1216.
    [113]Torrecilla, J. S.; Mena, M. L.; Yanez-Sedeno, P.; J., G, Application of artificial neural network to the determination of phenolic compounds in olive oil mill wastewater. J. Food Eng.2007,81, (3),544-552.
    [114]Roy, J. J.; Abraham, T. E.; Abhijithb, K. S.; Kumar, P. V. S.; Thakur, M. S., Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase. Biosens. Bioelectron.2005,21,206-211.
    [115]Portaccio, M.; Di Martino, S.; Maiuri, P.; Durante, D.; De Luca, P.; Lepore, M.; Bencivenga, U.; Rossi, S.; De Maio, A.; G, M. D., Biosensors for phenolic compounds:The catechol as a substrate model. J. Mol. Catal. B:Enzym.2006,41, 97-102.
    [116]Quan, D.; Kim, Y.; Shin, W., Characterization of an amperometric laccase electrode covalently immobilized on platinum surface. J. Electroanal. Chem.2004, 561,181-189.
    [117]Haghighi, B.; Gorton, L.; Ruzgas, T.; Jonsson, L. J., Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Anal. Chem. Acta 2003,487,3-14.
    [118]Odaci, D.; Timur, S.; Pazarlioglu, N.; Montereali, M. R.; Vastarella, W.; Pilloton, R.; Telefoncu, A., Determination of phenolic acids using Trametes versicolor laccase. Talanta 2007,71,312-317.
    [119]Liu, Y.; Qu, X. H.; Guo, H. W.; Chen, H. J.; Liu, B. F.; Dong, S. J., Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens. Bioelectron.2006,21, (12), 2195-2201.
    [120]Tan, Y.; Deng, W.; Ge, B.; Xie, Q.; Huang, J.; Yao, S., Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Biosens. Bioelectron. 2009,24,2225-2231.
    [121]Potter, M. C, Electrical effects accompanying the decomposition of organic compunds. Proc. R. Soc. Lond. B1911,84,260-276.
    [122]Yu, E. H.; Scott, K., Enzymatic biofuel cells-fabrication of enzyme electrodes. Energies 2010,3,23-42.
    [123]Barton, S. C.; Gallaway, J.; Atanassov, P., Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev.2004,104,4867-4886.
    w [124] Chen, T.; Barton, S. C.; Binyamin, G.; Gao, Z. Q.; Zhang, Y. C.; Kim, H. H.; Heller, A., A miniature biofuel cell. J. Am. Chem. Soc.2001,123,8630-8631.
    [125]Davis, F.; Higson, S. P. J., Biofuel cells—recent advances and applications. Biosens. Bioelectron.2007,22, (7),1224-1235.
    [126]Heller, A., Miniature biofuel cells. Phys. Chem. Chem. Phys.2004,6, 209-216.
    [127]Katz, E.; Filanovsky, B.; Willner, I., A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 mono layer-functionalized electrodes. New J. Chem.1999,23,481-487.
    [128]Katz, E.; Lioubashevski, O.; Willner, I., Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:enhanced performance of biofuel cells. J. Am. Chem. Soc.2005,127,3979-3988.
    [129]Katz, E.; Willner, I.; Kotlyar, A. B., A non-compartmentalized glucose O2 biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem.1999,479, 64-68.
    [130]Kim, H. H.; Mano, N.; Zhang, X. C.; Heller, A., A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J. Electrochem. Soc. 2003,150,209-213.
    [131]Kim, J.; Jia, H.; Wang, P., Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances 2006,24,296-308.
    [132]Liu, Y.; Wang, M. K.; Zhao, F.; Liu, B. F.; Dong, S. J., A low-cost biofuel cell with pH-dependent power output based on porous carbon as matrix. Chem. Eur. J.2005,11, (17),4970-4975.
    [133]Mano, N.; Fernandez, J. L.; Kim, Y.; Shin, W.; Bard, A. J.; Heller, A., Oxygen is electroreduced to water on a "wired" enzyme electrode at a lesser overpotential than on platinum. J. Am. Chem. Soc.2003,125,15290-15291.
    [134]Mano, N.; Kim, H. H.; Heller, A., On the relationship between the characteristics of bilirubin oxidases and O2 cathodes based on their "wiring". J. Phys. Chem. B 2002,106,8842-8848.
    [135]Mano, N.; Mao, F.; Heller, A., Characteristics of a miniature compartment-less glucose/O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc.2003,125,6588-6594.
    [136]Mano, N.; Mao, F.; Heller, A., A miniature membrane-less biofuel cell operating at+0.60 V under physiological conditions. Chem. Biochem.2004,51, 1703-1705.
    [137]Mano, N.; Mao, F.; Shin, W.; Chen, T.; Heller, A., A miniature biofuel cell operating at 0.78 V. J. Chem. Soc. Chem. Commun.2003,7,518-519.
    [138]Palmore, G. T. R.; Kim, H. H., Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J. Electroanal. Chem.1999,464, 110-117.
    [139]Soukharev, V.; Mano, N.; Heller, A., A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J. Am. Chem. Soc.2004,126,8368-8369.
    [140]Tsujimura, S.; Kano, K.; Ikeda, T., Glucose/02 biofuel cell operating at physiological conditions. Electrochemistry 2002,70,940-942.
    [141]Willner, I.; Arad, G.; Katz, E., A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes. Bioelectrochem. Bioener.1998,44,209-214.
    [142]Willner, I.; Katz, E.; Patolsky, F.; Buckmann, A. F., Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. J. Chem. Soc. Perkin Trans.Ⅱ1998,8,1817-1822.
    [143]宝玥;吴霞琴,生物燃料电池的研究进展.电化学2004,10,(1),1-8.
    [144]贾鸿飞;谢阳;王宇新,生物燃料电池.电池2000,30,(2),86-89.
    [145]康峰;伍艳辉;李佟茗,生物燃料电池研究进展.电源技术2004,28,(11),723-727.
    [146]Marcus, R. A.; Sutin, N., Electron transfers in chemistry and biology. Biochim. Biophys. Acta 1985,811, (3),265-322.
    [147]Davis, F.; Higson, S. P. J., Biofuel cells—Recent advances and applications. Biosens. Bioelectron.2007,22, (7),1224-1235
    [148]薛兴涛;陈志春;施长年;吕德水;林贤福,氧化还原酶催化合成芳香聚合物的研究进展.功能高分子学报2002,1,82-86.
    [149]Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K. J.; Samuelson, L., Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc.1999,121, 71-78.
    [150]Liu, W.; Cholli, A. L.; Nagarajan, R.; Kumar, J.; Tripathy, S.; Bruno, F. F.; Samuelson, L., The role of template in the enzymatic synthesis of conducting polyaniline. J. Am. Chem. Soc.1999,121,11345-11355.
    [151]Xu, P.; Uyama, H.; Whitten, J. E.; Kobayashi, S.; Kaplan, D. L. Peroxidase-catalyzed in-situ polymerization of surface oriented caffeic acid. J. Am. Chem. Soc.2005,127,11745-11753.
    [152]Rumbau, V.; Marcilla, R.; Ochoteco, E.; Pomposo, J. A.; Mecerreyes, D., Ionic liquid immobilized enzyme for biocatalytic synthesis of conducting polyaniline. Macromolecules 2006,39,8547-8549.
    [153]Thiyagarajan, M.; Samuelson, L. A.; Kumar, J.; Cholli, A. L., Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J. Am. Chem. Soc.2003,125,,11502-11503.
    [154]Ikeda, R.; Sugihara, J.; Uyama, H.; Kobayashi, S., Enzymatic oxidative polymerization of 2,6-dimethylphenol. Macromolecules 1996,29,8702-8705.
    [155]Desentis-Mendoza, R. M.; Hernandez-Sanchez, H.; Moreno, A.; E., R.; Chel-Guerrero, L.; Tamariz, J.; Jaramillo-Flores, M. E., Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from ustilago maydis. Biomacromolecules 2006,7,1845-1854.
    [156]Marjasvaara, A.; Torvinen, M.; Kinnunen, H.; Vainiotalo, P., Laccase-catalyzed polymerization of two phenolic compounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociation Biomacromolecules 2006,7,1604-1609.
    [157]Hollmann, F.; Gumulya, Y.; Tlle, C.; Liese, A.; Thum, O., Evaluation of the Laccase from Myceliophthora thermophila as industrial biocatalyst for polymerization reactions. Macromolecules 2008,41,8520-8524.
    [158]Karamyshev, A. V.; Shleev, S. V.; Koroleva, O. V.; Yaropolov, A. I.; Sakharov, I. Y., Laccase-catalyzed synthesis of conducting polyaniline. Enzyme Microb. Technol. 2003,33,556-564.
    [159]Vasil'eva, I. S.; Morozova, O. V.; Shumakovich, G. P.; Shleev, S. V.; Sakharov, I. Y.; Yaropolov, A. I., Laccase-catalyzed synthesis of optically active polyaniline. Synthetic Met.2007,157,684-689.
    [160]Aktas, N.; Tanyolac, A., Reaction conditions for laccase catalyzed polymerisation of catechol. Bioresour. Technol.2003,87,209-214.
    [161]Akkara, J. A.; Kaplan, D. L.; Jhon, V. T.; Tripathy, S. K., Polymeric Materials Encyclopedia. In Salamone, J. C., Ed. CRC Press:New York, USA,1996.
    [162]Song, H. K.; Palmore, G. T. R., Conductive polypyrrole via enzyme catalysis. J. Phys. Chem.B 2005,109,19278-19287.
    [163]Hay, A. S., Polymerization by oxidative coupling:Discovery and commercialization of PPO and Noryl resins. Polym. Sci. Part A:Polym. Chem.1998, 36, (4),505-517.
    [164]Reihmann, M.; Ritter, H., Synthesis of phenol polymers using peroxidases. AdV. Polym. Sci.2006,194,1-49.
    [165]Dordick, J. S.; Marletta, M. A.; Klibanov, A. M., Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnol. Bioeng.1987,30,31-36.
    [166]Uyama, H.; Kurioka, H.; Kaneko, I.; Kobayashi, S., Synthesis of a new family of phenol resin by enzymatic oxidative polymerization. Chem. Lett.1994,23 423-426.
    [167]Uyama, H.; Kurioka, H.; Sugihara, J.; Kobayashi, S., Enzymatic synthesis and thermal properties of a new class of polyphenol. Bull. Chem. Soc. Jpn.1996,69, 189-193.
    [168]Oguchi, T.; Tawaki, S.; Uyama, H.; Kobayashi, S., Soluble polyphenol. Macromol. Rapid Commun.1999,20,401-403.
    [169]Oguchi, T.; Tawaki, S.; Uyama, H.; Kobayashi, S., Enzymatic synthesis of soluble polyphenol. Bull. Chem. Soc. Jpn.2000,73,1389-1396.
    [170]Peng, Y.; Liu, H.; Zhang, X.; Li, Y.; Liu, S., CNT templated regioselective enzymatic polymerization of phenol in water and modification of surface of MWNT thereby. J. Polym. Sci. Part A:Polym. Chem.2009,47,1627-1635.
    [171]Uyama, H.; Lohavisavapanich, C.; Kobayashi, S., Chemoselective polymerization of a phenol derivative having a methacryl group by peroxidase catalyst. Macromolecules 1998,31,554-556.
    [172]Dubey, S.; Singh, D.; Misra, R. A., Enzymatic synthesis and various properties of poly(catechol). Enzyme Microb. Technol.1998,23,432-437.
    [173]Aktas, N.; Sahiner, N.; Kantoglu, O.; Salih, B.; Tanyolac, A., Biosynthesis and characterization of laccase catalyzed poly(catechol). J. Polym. EnViron.2003,11, 123-125.
    [174]Kobayashi, S.; Uyama, H.; Ikeda, R., Artificial urushi. Chem. Eur. J 2001, 7,4755-4760.
    [175]Ikeda, R.; Tsujimoto, T.; Tanaka, H.; Oyabu, H.; Uyama, H.; Kobayashi, S., Man-made urushi. Preparation of crosslinked polymeric films from renewable resources via air-oxidation processes Proc. Jpn. Acad. B 2000,76,155-160.
    [176]Kobayashi, S.; Ikeda, R.; Oyabu, H.; Tanaka, H.; Uyama, H., Artificial urushi. design, synthesis, and enzymatic curing of new urushiol analogues. Chem. Lett. 2000,10,1214-1215.
    [177]Ikeda, R.; Tanaka, H.; Oyabu, H.; Uyama, H.; Kobayashi, S., Preparation of artificial urushi via an environmentally benign process. Bull. Chem. Soc. Jpn.2001, 74,1067-1073.
    [178]Hathway, D. E.; Seakins, J. W. T., Autoxidation of catechin. Nature 1955, 176,218-223.
    [179]Hamada, S.; Kontani, M.; Hosono, H.; Ono, H.; Tanaka, T.; Ooshima, T. Mitsunaga, T.; Abe, I., Peroxidase-catalyzed generation of catechin oligomers that inhibit glucosyltransferase from streptococcus sobrinus. FEMS Microbiol. Lett.1996, 143,35-40.
    [180]Kurisawa, M.; Chung, J. E.; Uyama, H.; Kobayashi, S., Enzymatic synthesis and antioxidant properties of poly(rutin). Biomacromolecules 2003,4,1394-1399.
    [181]Jimenez, M.; Garcia-Carmona, F., Oxidation of the flavonol quercetin by polyphenol oxidase. Journal of agricultural and food chemistry J. Agric. Food Chem. 1999,47,56-60.
    [182]Aizawa, M.; Wang, L.; Shinohara, H.; Ikariyama, Y., Enzymatic synthesis of polyaniline film using a copper-containing oxidoreductase:Bilirubin oxidase.. J. Biotechnol.1990,14,301-310.
    [183]Park, D. H.; Zeikus, J. G, Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng.2003,81, (3), 348-355.
    [184]Vostiar, I.; Ferapontova, E. E.; Gorton, L., Electrical "wiring" of viable Gluconobacter oxydans cells with a flexible osmium-redox polyelectrolyte. Electrochem. Commun.2004,6, (7),621-626.
    [185]Gil, G. C.; Chang, I. S.; Kim, B. H.; Jang, M. J. K.; Park, H. S.; Kim, H. J., Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron.2003,18,327-334.
    [186]Gao, F.; Yan, Y.; Su, L.; Wang, L.; Mao, L., An enzymatic glucose/02 biofuel cell:Preparation, characterization and performance in serum. Electrochem. Commun.2007,9, (5),989-996.
    [187]Zhu, Z.; Momeu, C.; Zakhartsev, M.; Schwaneberg, U., Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosens. Bioelectron.2006,21,2046-2051.
    [188]Katz, E.; Willner, I., A biofuel cell with electrochemically switchable and tunable power output. J. Am. Chem. Soc.2003,125,6803-6813.
    [189]Ikeda, T.; Kano, K., Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochim. Biophys. Acta 2003,1647, (1),121-126.
    [190]Ikeda, T.; Kano, K., An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel Cells. J. Biosci. Bioeng.2001,92, (1),9-18.
    [191]Kjeang, E.; Sinton, D.; A.Harrington, D., Strategic enzyme patterning for microfluidic biofuel cells. J. Power Sources 2006,158,1-12.
    [192]Brunei, L.; Tingry, S.; Servat, K.; Cretin, M.; Innocent, C.; Jolivalt, C.; Rolland, M., Membrane contactors for glucose/O2 biofuel cell. Desalination 2006, 199,426-428.
    [193]Kang, C.; Shin, H.; Zhang, Y.; Heller, A., Deactivation of bilirubin oxidase by a product of the reactionof urate and O2. Bioelectrochemistry 2004,65:83-88, 83-88.
    [194]Mansfeld, F.; Lee, C. C., Evaluation of coating regradation with electrochemical impedance spectroscopy and electrochemical noise analysis. J. Electrochem. Soc.1997,144,2068-2071.
    [195]Bouazaze, H.; Huet, F.; Nogueira, R. P., A new approach for monitoring corrosion and flow characteristics in oil/brine mixtures. Electrochim. Acta 2005,50, 2081-2090.
    [196]Gabrieele, C.; Huet, F.; Keddam, M., Investigation of electrochemical processes by an electrochemical noise analysis. Theoretical and experimental aspects in potentiostatic regime. Electrochim. Acta 1986,31,1025-1039.
    [197]Martinet, S.; R., D.; Ozil, P.; Lablanc, P.; Blanchard, P., Application of electrochemical noise analysis to the study of batteries-state-of-charge determination and overcharge detection. J. Power Sources 1999,83,93-99.
    [198]Willner, I., Tech sight:biomaterials for sensors, fuel cells, and circuitry. Science 2002,298,2407-2408.
    [199]Stankovitch, M. T.; Schopfer, L. M.; Massey, V. J., Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms. J. Biol. Chem.1978,253,4971-4979.
    [200]Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E., Multicopper oxidases and oxygenases. Chem. Rev.1996,96,2563-2606.
    [201]Brunel, L.; Denele, J.; Servat, K.; Kokoh, K. B.; Jolivalt, C.; Innocent, C.; Cretin, M.; Rolland, M.; Tingry, S., Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Comm.2007,9,331-336.
    [202]Yuhashi, N.; Tomiyama, M.; Okuda, J.; Igarashi, S.; Ikebukuro, K.; Sode, K., Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase. Biosens. Bioelectron.2005,20,2145-2450.
    [203]Joshi, P. P.; Merchant, S. A.; Wang, Y.; Schmidtke, D. W., Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal. Chem.2005,77,3183-3188.
    [204]Luterek, J.; Gianfreda, L.; Wojtas-Wasilewska, M.; Rogalski, J.; Jaszek, M.; Malarczyk, E.; Dawidowicz, A.; Finks-Boots, M.; Ginalska, G.; Leonowicz, A., Screening of the wood-rotting fungi for laccase production:induction by ferulic acid, partial purification and immobilization of laccase from the high-laccaseproducing strain, Cerrena unicolor. Acta Microbiol.Pol.1997,46,297-311.
    [205]Gramss, G.; Voigt, K. D.; Firsche, B., Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 1999,38, 1481-1494.
    [206]Abadulla, E.; Tzanov, T.; Costa, S.; Robra, K. H.; Cavaco-Paulo, A.; Gubitz, G. M., Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol.2000,66,3357-3362.
    [207]Crestini, C.; Argyropoulos, D. S., The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorg. Med. Chem.1998,6, 2161-2169.
    [208]Annibale, A.; Stazi, S. R.; Vinciguerra, V.; Mattia, E. D.; Sermanni, G. G., Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem.1999,34,697-706.
    [209]Lante, A.; Crapisi, A.; Krastanov, A.; Spettoli, P., Biodegradation of phenols by Laccase immobilized in a membrane reactor. Process Biochem.2000,36,51-58.
    [210]Hosny, M.; Rosazza, J. P. N., Novel oxidations of (+)-catechin by horseradish peroxidase and laccase. J. Agric. Food Chem.2002,50,5539-5545.
    [211]Huang, H.; Hu, N. F.; Zeng, Y. H.; Zhou, G, Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal. Biochem. 2002,308,141-151.
    [212]Zhang, M. G.; Smith, A.; Gorski, W., Carbon nanotube-chitosan system for electrochemical sensing based on Dehydrogenase enzymes. Anal. Chem.2004,76, 5045-5050.
    [213]Luo, X. L.; Xu, J. J.; Wang, J. L.; Chen, H. Y., Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun.2005,16,2169-2171.
    [214]Wei, X.; Cruz, J.; Gorski, W., Integration of enzymes and electrodes: spectroscopic and electrochemical studies of chitosan-enzyme films. Anal. Chem. 2002,74,5039-5046.
    [215]Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M., Chemistry of carbon nanotubes. Chem. Rev.2006,106,1105-1136.
    [216]Luong, J. H.; Hrapovic, S.; Wang, D.; Bensebaa, F.; Simard, B., Solubilization of multiwall carbon nanotubes by 3-aminopropyltriethoxysilane towards the fabrication of electrochemical biosensors with promoted electron transfer. Electroanalysis 2004,16,132-139.
    [217]Zhao, F.; Wu, X. E.; Wang, M. K.; Liu, Y.; Gao, L. X.; Dong, S. J., Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Anal. Chem.2004,76,4960-4967.
    [218]Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann, W.; Kulesza, P. J., ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen. Anal. Chem.2008,80,7643-7648.
    [219]Liu, Y.; J., D. S., Electrochemical characteristics of mediated laccase-catalysis and electrochemical detection of environmental pollutants. Electroanalysis 2008,8,827-832
    [220]Fernandesa, S. C.; de Oliveirab, I. R. W. Z.; Fatibello-Filho, O.; Spinelli, A.; Vieiraa, I. C., Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sens. Actuat. B 2008,133,202-207.
    [221]Yang, W. Y.; Min, D. Y.; Wen, S. X.; Jin, L.; Rong, L.; Tetsuo, M.; Bo, C., Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan. Process. Biochem.2006,41,1378-1382.
    [222]Mano, N.; Mao, F.; Heller, A., A miniature biofuel cell operating in a physiological buffer. J. Am. Chem. Soc.2002,124,12962-12963
    [223]Roberts, G. A. F.; Taylor, K. E., The formation of gels by reaction of chitosan with glutaralde hyde. Makromol. Chem.1989,190,951-960.
    [224]Rogalski, J.; Dawidowicz, A.; Jozwik, E.; Leonowicz, A., Immobilization of laccase from Cerrena unicolor on controlled porosity glass. J. Mol. Catal. B:Enzyme 1999,6,29-39.
    [225]Tayhas, G.; Palmore, R.; Kim, H. H., Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J. Electroanal. Chem. 1999,464,110-117.
    [226]Tsujimura, S.; Tatsumi, B.; Ogawa, J.; Shimizu, S.; Kano, K.; Ikeda, T., Effect of various water-miscible solvents on enzymatic activity of fungal laccases. J. Electroanal. Chem.2001,496,69-75.
    [227]Tan, Y.; Xie, Q.; Huang, J.; Duan, W.; Ma, M.; Yao, S., Study on glucose biofuel cells using an electrochemical noise device. Electroanalysis 2008,20, 1599-1606.
    [228]Sato, F.; Togo, M.; Islam, M. K.; Matsue., T.; Kosuge, J.; Fukasaku, N.; Kurosawa, S.; Nishizawa, M., Enzyme-based glucose fuel cell using Vitamin K-3-immobilized polymer as an electron mediator. Electrochem. Commun.2005,71, 643-647.
    [229]Kamin, R. A.; Wilson, G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem.1980,52,1198-1205.
    [230]Chen, T.; Friedman, K. A.; Lei, I.; Heller, A., In situ assembled mass-transport controlling micromembranes and their application in implanted amperometric glucose sensors. Anal. Chem.2000,72,3757-3763.
    [231]Zhang, Z.; Liu, H.; Deng, J., A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Anal. Chem.1996,68,1632-1638.
    [232]Cruz, J.; Kawasaki, M.; Gorski, W., Electrode coatings based on chitosan scaffolds. Anal. Chem.2000,72,680-686.
    [233]Gutierrez, M. C.; Hortigiiela, M. J.; Amarilla, J. M.; Jimenez, R.; Ferrer, M. L.; del Monte, F., Macroporous 3D architectures of self-assembled MWCNTs surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J. Phys. Chem. C2007,111,5557-5560.
    [234]Huguenin, F.; Gonzalez, E. R.; Oliveira, O. N., Jr., Electrochemical and electrochromic properties of layer-by-layer films from WO3 and chitosan. J. Phys. Chem. B 2005,109,12837-12844.
    [235]Wang, G. H.; Zhang, L. M., Using novel polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide. J. Phys. Chem. B 2006,110,24864-24868.
    [236]Zhang, M. G.; Gorski, W., Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc.2005,127, 2058-2059.
    [237]Wu, L. Q.; Gadre, A. P.; Yi, H. M.; Kastantin, M. J.; Rubloff, G. W.; Bentley, W. E.; Payne, G. F.; Ghodssi, R., Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir 2002,18,8620-8625.
    [238]Wu, L. Q.; Lee, K.; Wang, X.; English, D. S.; Losert, W.; Payne, G. F., Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir 2005,21,3641-3646.
    [239]Wu, L. Q.; Yi, H.; Li, S.; Rubloff, G. W.; Bentley, W. E.; Ghodssi, R.; Payne, G. F., Spatially selective deposition of a reactive polysaccharide layer onto a patterned template. Langmuir 2003,19,519-524.
    [240]Fernandes, R.; Wu, L. Q.; Chen, T. H.; Yi, H. M.; Rubloff, G. W.; Ghodssi, R.; Bentley, W. E.; Payne, G. F., Electrochemically-induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 2003,19,4058-4062.
    [241]Yi, H.; Wu, L. Q.; Ghodssi, R.; Rubloff, G. W.; Payne, G. F.; Bentley, W. E., A robust technique for assembly of nucleic acid hybridization chips based on electrochemically templated chitosan Anal. Chem.2004,76,365-372.
    [242]Yi, H.; Wu, L. Q.; Ghosdssi, R.; Rubloff, G. W.; Payne, G. F.; Bentley, W. E., Signal-directed sequential assembly of biomolecules on patterned surfaces. Langmuir 2005,21,2104-2107.
    [243]Zhu, C.; Wu, L. Q.; Wang, X.; Lee, J. H.; English, D. S.; Ghodssi, R.; Raghavan, S. R.; Payne, G. F., Reversible vesicle restraint in response to spatiotemporally controlled electrical signals:A bridge between electrical and chemical signaling modes. Langmuir 2007,23,286-291.
    [244]Zeng, X.; Li, X.; Xing, L.; Liu, X.; Luo, S.; Wei, W.; Kong, B.; Li, Y, Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens. Bioelectron.2009, 24,2898-2903.
    [245]Qiu, J. D.; Wang, R.; Liang, R. P.; Xia, X. H., Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application. Biosens. Bioelectron.2009,24,2920-2925.
    [246]Wang, X.; Gu, H.; Yin, F.; Tu, Y., A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens. Bioelectron.2009,24,1527-1530.
    [247]Liang, R. P.; Fan, L. X.; Wang, R.; Qiu, J. D., One-step electrochemically deposited nanocomposite film of CS-Fc/MWNTs/GOD for glucose biosensor application Electroanalysis 2009,21,1685-1691.
    [248]Li, F.; Wang, Z.; Chen, W.; Zhang, S., A simple strategy for one-step construction of bienzyme biosensor by in-situ formation of biocomposite film through electrodeposition. Biosens. Bioelectron.2009,24,3030-3035.
    [249]Feng, D.; Wang, F.; Chen, Z., Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film Sens. Actuat. B 2009,138,539-544.
    [250]Du, Y.; Luo, X. L.; Xu, J. J.; Chen, H. Y, A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor Bioelectrochem.2007,70,342-347.
    [251]Luo, X. L.; Xu, J. J.; Du, Y.; Chen, H. Y, A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem.2004,334,284-289.
    [252]Shankaran, D. R.; Uehara, N.; Kato, T., A metal dispersed sol-gel biocomposite amperometric glucose biosensor. Biosens. Bioelectron.2003,18, 721-728.
    [253]Hrapovic, S.; Liu, Y.; Male, K. B.; Luong, J. H. T., Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem.2004 76,1083-1088.
    [254]Lim, S. H.; Wei, J.; Lin, J.; Li, Q.; You, J. K., A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens. Bioelectron.2005,20, 2341-2346.
    [255]Zou, Y; Xiang, C.; Sun, L. X.; Xua, F., Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosensors and Bioelectronics 2008,23, 1010-1016.
    [256]Chu, X.; Duan, D.; Shen, G.; Yu, R., Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 2007,71,2040-2047.
    [257]Hale, P. D.; Boguslavsky, L. I.; Inagaki, T.; Karan, H. I.; Lee, H. S.; Skotheim, T. A.; Okamoto, Y., Amperometric glucose biosensors based on redox polymer-mediated electron transfer. Anal. Chem.1991,63,677-682.
    [258]Bradford, M., M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.1976,72,248-254.
    [259]Sheng, Q.; Luo, K.; Li, L.; Zheng, J., Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles/chitosan composite film on glassy carbon electrodes and its biosensing application. Bioelectrochemistry 2009,74, 246-253.
    [260]Miao, Y.; Tan, S. N., Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Anal. Chim. Acta 2001,437,87-93.
    [261]Wang, G.; Xu, J. J.; Ye, L. H.; Zhu, J. J.; Chen, H. Y, Highly sensitive sensors based on the immobilization tyrosinase in chitosan. Bioelectrochem.2002, 57,33-38.
    [262]Deng, C.; Li, M.; Xie, Q.; Liu, M.; Tan, Y.; Xu, X.; Yao, S., New glucose biosensor based on a poly(o-phenylendiamine)/glucose oxidase-glutaraldehyde/Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications. Anal. Chim. Acta 2006,557,85-94.
    [263]Nakajima, N.; Ikada, Y, Mechanism of amide formation by carbodiimide for bioconjugation in aqueous me-dia. Bioconjugate Chem.1995,6,123-130.
    [264]Lim, T. K.; Ohta, H.; Matsunaga, T., Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal. Chem.2003,75,3316-3321.
    [265]Wilhelm, E.; Battino, R.; Wilcock, R. J., Low-Pressure Solubility of Gases in Liquid Water. Chem. Rev.1977,77,219-262.
    [266]Foulds, N. C.; Lowe, C. R., Enzyme entrapment in electrically conducting polymers. J. Chem. Soc. Faraday Trans.1.1986,82 1259-1264.
    [267]Cammann, K.; Lemke, U.; Rohen, A.; Sander, J.; Wilken, H.; Winter, B., Chemical sensors and biosensors-principles and applications. Angew. Chem.1991, 103,519-541.
    [268]Sadik, O. A.; Aluoch, A. O.; Zhou, A., Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron.2009,24,2749-2765.
    [269]Lee, Y.; Amemiya, S.; Bard, A. J., Theory and characterization of ring electrodes. Anal. Chem.2001,73,2261-2267.
    [270]Sun, P.; Zhang, Z.; Guo, J.; Shao, Y., Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy. Anal. Chem.2001,73, 5346-5351.
    [271]Su, Y.; Mascini, M., AP-GOD biosensor based on a modified poly(phenol) film electrode and its application in the determination of low levels of phosphate. Anal. Lett.1995,28,1359-1378.
    [272]Xu, F., Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 1996,35,7608-7614.
    [273]Gianfreda, L.; Xu, F.; Bollag, J. M., Laccases:a useful group of oxidoreductive enzymes. Biorem. J.1999,3,1-25.
    [274]Bourbonnais, R.; Paice, M. G, Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett.1990,267,99-102.
    [275]Ramos, J.; Rojas, T.; Navarro, F.; Davalos, F.; Sanjuan, R.; Rutiaga, J.; Young, R. A., Concise Preparation of the (3E,5Z)-alkadienyl system. New approach to the synthesis of principal insect sex pheromone constituents. . J. Agric. Food Chem.2004,52,5057-5062.
    [276]D'Annibale, A.; Stazi, S. R.; Vinciguerra, V.; Di Mattia, E.; Sermanni, G. G, Characterization of immobilized, laccase from Lentinula edodes and its use in olive-mill wastewater treatment Process Biochem.1999,34,697-706.
    [277]Rahman, M. A.; Noh, H. B.; Shim, Y. B., Direct electrochemistry of laccase immobilized on au nanoparticles encapsulated-dendrimer bonded conducting polymer:application for a catechin sensor. Anal. Chem.2008,80,8020-8027.
    [278]Barton, S. C.; Kim, H. H.; Binyamin, G.; Zhang, Y.; Heller, A., Electroreduction of O2 to water on the "Wired" laccase cathode. J. Phys. Chem. B 2001,105,11917-11921.
    [279]Yan, Y.; Zheng, W.; Su, L.; Mao, L., Carbon nanotube-based glucose/O2 biofuel cells. Adv. Mater.2006,18,2693-2643.
    [280]Fei, J.; Song, H. K.; Palmore, G. T. R., A biopolymer composite that catalyzes the reduction of oxygen to water. Chem. Mater.2007,19,1565-1570.
    [281]Gallaway, J. W.; Calabrese Barton, S. A., Kinetics of redox polymer-mediated enzyme electrodes. J. Am. Chem. Soc.2008,130,8527-8536.
    [282]Lee, S. K.; George, S. D.; Antholine, W. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I., Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J. Am. Chem. Soc.2002, 124,6180-6193.
    [283]Puskas, J. E.; Sen, M. Y.; Seo, K. S., Green polymer chemistry using nature's catalysts, enzymes. J. Polym. Sci. Part A:Polym. Chem.2009,47, 2959-2976.
    [284]Njagi, J.; Andreescu, S., Stable enzyme biosensors based on chemically synthesized Au polypyrrole nanocomposites. Biosens. Bioelectron.2007,23, 168-175.
    [285]Cosnier, S.; Gondran, C.; Senillou, A.; Gratzel, M.; Vlachopoulos, N., Mesoporous TiO2 films:New catalytic electrode fabricating amperometric biosensors based on oxidases. Electroanalysis 1997,9,1387-1392.
    [286]Chen, C.; Fu, Y.; Xiang, C.; Xie, Q.; Zhang, Q.; Su, Y.; Wang, L.; Yao, S., Electropolymerization of preoxidized catecholamines on Prussian blue matrix to immobilize glucose oxidase for sensitive amperometric biosensing Biosens. Bioelectron.2009,24,2726-2729.
    [287]Hawley, M. D.; Tatawawadi, S. V.; Piekarski, S.; Adams, R. N., Electrochemical studies of the oxidation pathways of catecholamines. J. Am. Chem. Soc.1967,89,447-450.
    [288]Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-inspired surface chemistry for multifunctional coatings. Science 2007,318, 426-430.
    [289]Schwarz, M. A.; Hauser, P. C., Chiral on-chip separation of neurotransmitters. Anal. Chem.2003,75,4691-4695.
    [290]Barreto, W. J.; Ponzoni, S.; Sassi, P., A Raman and UV-Vis study of catecholamines oxidized with Mn(III). Spectrochim. Acta. A 1999,55,65-72.
    [291]Xiang, L.; Lin, Y.; Yu, P.; Su, L.; Mao, L., Laccase-catalyzed oxidation and intramolecular cyclization of dopamine:A New strategy for selective determination of dopamine with Laccase/carbon nanotube-based electrochemical biosensors. Electrochim. Acta 2007,52,4144-4152.
    [292]Li, M.; Deng, C.; Xie, Q.; Yang, Y.; Yao, S., Electrochemical quartz crystal impedance study on immobilization of glucose oxidase in a polymer grown from dopamine oxidation at an Au electrode for glucose sensing Electrochim. Acta 2006, 51,5478-5486.
    [293]Li, M. R.; Deng, C. Y.; Chen, C.; Peng, L. M.; Ning, G. H.; Xie, Q. J.; Yao, S. Z., An amperometric hydrogen peroxide.biosensor based on a Hemoglobin-immobilized dopamine-oxidation polymer/Prussian blue/Au electrode. Electroanalysis 2006,18,2210-2217.
    [294]He, H.; Xie, Q. J.; Yao, S. Z., An electrochemical quartz crystal impedance study on anti-human immunoglobulin G immobilization in the polymer grown during dopamine oxidation at an Au electrode. J. Colloid Interface Sci.2005,289, 446-454.
    [295]Li, K.; Xu, F.; Eriksson, K. E. L., Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol.1999,65,2654-2660.
    [296]Zhang, F.; Dryhurst, G, Oxidation chemistry of dopamine:Possible insights into the age-dependent loss of dopaminergic nigrostriatal neurons. Bioorg. Chem. 1993,21,392-410.
    [297]Herlinger, E.; Jameson, R. F.; Linert, W., Spontaneous autoxidation of dopamine. J. Chem. Soc. Perkin Trans.1995,2,259-263.
    [298]Cui, X.; Li, C. M.; Zang, J.; Zhou, Q.; Gan, Y.; Bao, H.; Guo, J.; Lee, V. S.; Moochhala, S. M., Biocatalytic generation of Ppy-enzyme-CNT nanocomposite: from network assembly to film growth J. Phys. Chem. C 2007,111,2025-2031.
    [299]Xu, F., Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J. Biol. Chem.1997,272,924-928.
    [300]Cosnier, S., Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Bio sens. Bioelectron.1999,14,443-456.
    [301]Kulesza, P. J., Solid-state electrochemistry of iron hexacyanoferrate (Prussian Blue type) powders. J. Electroanal. Chem.1990,289,103-116.
    [302]Kulesza, P. J., Switching between solid-state electroactivity, coupled with ionic conductivity, and semiconducting or dielectric properties in dry mixed-metal hexacyanoferrate powders. Inorg. Chem.1990,29,2395-2397.
    [303]Kulesza, P. J., In situ FT-IR/ATR spectroelectrochemistry of Prussian blue in the solid state. Anal. Chem.1996,68,2442-2446.
    [304]Kobayashi, N.; Hirohashi, R.; Ohno, H.; E., T., Electrochromic characteristics for all solid state ECD composed of polymer electrolytes. Solid State Ionics 1990,40/41,491-494.
    [305]Dharmadasa, I. M.; Burton, R. P.; M., S., Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells Sol. Energy Mater. Sol. Cells 2006,90,2191-2200.
    [306]He, J.; Mosurkal, R.; Samuelson, L. A.; Li, L.; Kumar, J., Dye-sensitized solar cell fabricated by electrostatic layer-by-layer assembly of amphoteric TiO2 nanoparticles. Langmuir 2003,19,2169-2174.
    [307]Pei, Q.; Yang, Y.; Yu, G.; Zhang, C.; Heeger, A. J., Polymer light-emitting electrochemical cells:in situ formation of a light-emitting p-n junction. J. Am. Chem. Soc.1996,118,3922-3929.
    [308]Sahlin, E.; ter Halle, A.; Schaefer, K.; Horn, J.; Then, M.; Weber, S. G, Miniaturized electrochemical flow cells. Anal. Chem.2003,75,1031-1036.
    [309]Chun, H. G.; Chung, T. D.; Kim, H. C., Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Anal. Chem.2005,77, 2490-2495.
    [310]Correges, P.; Bugnard, E.; Millerin, C.;\Masiero, A.; Andrivet, J. P.; Bloc, A.; Dunant, Y., A simple, low-cost and fast Peltier thermoregulation set-up for electrophysiology. J. Neurosci. Methods 1998,83,177-184.
    [311]Liu, C. Y.; Bard, A. J., Electrochemistry and electrogenerated chemiluminescence with a single faradaic electrode. Anal. Chem.2005,77, 5339-5343.
    [312]Kayakin, A. A.; Gitelmacher, O. V.; Kayakina, E. E., Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose. Anal. Chem.1995,67,2419-2423.
    [313]Mortimer, R. J.; Rosseinsky, D. R., Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J. Electroanal. Chem.1983,151,133-147.
    [314]Itaya, K.; Ataka, T.; Toshima, S., Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc.1982,104,4767-4772.
    [315]Ellis, D.; Eckhoff, M.; Neff, V. D., Electrochromism in the mixed-valence hexacyanides.1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem 1981,85,1225-1231.
    [316]Ogura, K.; Nakayama, M.; Nakaoka, K., Electrochemical quartz crystal microbalance and in situ infrared spectroscopic studies on the redox reaction of Prussian blue. J. Electroanal. Chem.1999,474,101-106.
    [317]Lasky, S. J.; Buttry, D. A., Mass measurements using isotopically labeled solvents reveal the extent of solvent transport during redox in thin films on electrodes. J. Am. Chem. Soc.1988,110,6258-6260.
    [318]Aoki, K.; Miyamoto, T.; Ohsawa, Y, The determination of selectivity coefficient of Na+versus Li+on Prussian blue thin film in propylene carbonate by means of quartz crystal microbalance. Bull. Chem. Soc. Jpn.1989,62,1658-1659.
    [319]Feldman, B., J.; Melroy, O. R., Ion flux during electrochemical charging of Prussian blue films. J. Electroanal.Chem.1987,234,213-227
    [320]Deakin, M.; R. Byrd, H., Prussian blue coated quartz crystal microbalance as a detector for electroinactive cations in aqueous solution. Anal. Chem.1989,61, 290-295.
    [321]Garcia-Jareno, J. J.; Gimenez-Romero, D.; Vicente, F.; Gabrielli, C.; M., K.; Perrot, H., EIS and Ac-electrogravimetry study of PB films in KCl, NaCl, and CsCl aqueous solutions. J. Phys. Chem. B 2003,107,11321-11330.
    [322]Kim, K.; Jureviciute, I.; Bruckenstein, S., Electrochemical quartz crystal microbalance studies of anion and pH effects on water fluxes accompanying redox switching of Prussian blue. Electrochim. Acta 2001,46,4133-4140.
    [323]Itaya, K.; Uchida, I., Nature of intervalence charge-transfer bands in Prussian blues Inorg. Chem.1986,25,389-392.
    [324]Shimazu, K.; Takechi, M.; Ohtomo, Y.; Uosaki, K., Simultaneous evaluation of optical properties and mass transport process at Prussian blue films with the novel spectroelectrochemical quartz crystal microbalance. Denki Kagaku 1994,62, 516-517.
    [325]Jiang, L.; Xie, Q.; Yang, L.; Yang, X.; Yao, S., Simultaneous EQCM and diffuse reflectance UV-visible spectroelectrochemical measurements: poly(aniline-co-o-anthranilic acid) growth and property characterization. J. Colloid Interface Sci.2004,274,150-158.
    [326]Orellana, M.; Arriola, P.; Del Rio, R.; Schrebler, R.; Cordova, R.; Scholz, F.; Kahlert, H., Chronocoulometric study of the electrochemistry of Prussian Blue. J Phys Chem B 2005,109,15483-15488.
    [327]Lin, C. L.; Ho, K. C, A study on the deposition efficiency, porosity and redox behavior of Prussian blue thin films using an EQCM. J. Electroanal. Chem. 2002,524/525,286-293.
    [328]Xia, S. J.; Birss, V. I., A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solutions. J. Electroanal.Chem.2001,500, 562-573.
    [329]Gordon, J. S.; Johnson, D. C., Application of an electrochemical quartz crystal microbalance to a study of water adsorption at gold surfaces in acidic media. J. Electroanal. Chem.1994,365,267-274.
    [330]Watanabe, T.; Gerischer, H., Photoelectrochemical studies on gold electrodes with surface oxide layers:Part I. Photocurrent measurement in the visible region.J. Electroanal. Chem.1981,117,185-200.
    [331]Tremiliosi-Filho, G.; Dall' Antonia, L. H.; Jerkiewicz, G, Limit to extent of formation of the quasi-two-dimensional oxide state on Au electrodes. J. Electroanal. Chem.1997,422,149-159.
    [332]Itaya, K.; Uchida, I.; Neff, V. D., Electrochemistry of polynuclear transition metal cyanides:Prussian blue and its analogues. Acc. Chem. Res.1986,19,162-168.
    [333]Jernigan, J. C.; Surridge, N.; Zvanut, M. E.; Silver, M.; Murray, R. W., Electrical-field-driven electron self-exchange in a mixed-valent osmium(Ⅱ/Ⅲ) bipyridine polymer:solid-state reactions of low exothermicity. J. Phys. Chem.1989, 93,4620-4627.
    [334]Ibers, J. A.; Davidson, N., On the interaction between hexacyanatoferrate(iii) ions and (a) hexacyanatoferrate(ii) or (b) iron(III) ions. J. Am. Chem. Soc.1951,73, 476-478.
    [335]Bellino, M. G.; Sacanell, J. G.; Lamas, D. G.; Leyva, A. G.; Walsoe de Reca, N. E., High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc.2007,129,3066-3067.
    [336]Zhang, W.; Loebach, J. L.; Wilson, S. R.; N.Jacobsen, E., Enantioselective epoxidation of unfunctionalized olefins catalyzed by (salen)manganese complexes. J. Am. Chem. Soc.1990,112,2801-2803.
    [337]Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L., Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J. Am. Chem. Soc.1991,113,7063-7064.
    [338]Zhong, S.; Fu, Z.; Tan, Y.; Xie, Q.; Xie, F.; Zhou, X.; Ye, Z.; Peng, G.; Yin, D.,5-Chloro-7-iodo-8-quinolinolatomanganese (Ⅲ) with the feature of pH-regulated molecular switches as a highly efficient catalyst for epoxidation of olefins with hydrogen peroxide. Adv. Synth. Catal.2008,350,6.
    [339]Zhong, S.; Tan, Y.; Fu, Z.; Xie, Q.; Xie, F.; Zhou, X.; Ye, Z.; Peng, G.; Yin, D., A highly efficient method of epoxidation of olefins with hydrogen peroxide catalyzed by changeable hexadentate 8-quinolinolato manganese(Ⅲ) complexes. J. Catal.2008,256,(1),154-158.
    [340]邓芹英;刘岚;邓慧敏,波谱分析教程.科学出版社:北京,2003.
    [341]Biswas, S.; Mitra, K.; Chattopadhyay, S. K.; Adhikary, B.; Lucas, C. R., Mononuclear manganese(Ⅱ) and manganese(Ⅲ) complexes of N2O donors involving amine and phenolate ligands:absorption spectra, electrochemistry and crystal structure of [Mn(L3)2](C104) Transition Met. Chem.2005,30,393-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700