用户名: 密码: 验证码:
知识流动理论框架下的科学前沿与技术前沿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会进入知识经济时代,科技决策与科技管理工作越来越重视对知识的计量研究。在现代信息技术环境下,科技文献数据的类型和科技知识的分类都得到了极大的丰富和发展,这就要求科技情报研究人员不断探索新的研究体系和分析方法,以满足实际工作的需要。本文在借鉴了国内外相关研究成果的基础上,从理论和实证两个方面进行了研究。
     首先,基于引文分析理论、知识网络理论和知识进化论等理论思想,建立了形成科学技术前沿的知识流动理论框架,详细分析了从知识基础到科学技术前沿的知识流动作用机制及其主要路径。在此基础上,确立了本研究所遵循的知识计量学研究范式,构建了基于科技文献的研究前沿辨识模型,同时针对知识单元、知识链和知识群等概念,提出了系统的分析指标和计量方法。
     其次,以太阳能电池领域的科学论文和专利文献数据为例,利用共被引网络分析方法,分别构建了论文-论文科学知识图谱和专利-专利技术知识图谱,针对关键节点文献形成的知识单元,共被引关系形成的知识链,以及共被引文献聚类形成的知识群,从产生过程的共时性与历史性角度,对科学前沿和技术前沿进行了分析和探测。分析结果显示,以关键节点文献为代表的知识基础与聚类知识群相对应的研究前沿之间具有极强的知识继承关系,其形成的知识流动路径可以有效地辨识科学与技术研究前沿及其演化趋势;同时,由关键节点专利文献形成的知识单元不仅对某一具体应用技术研究的发展起到了知识基础的作用,而且使不同的技术研究方向之间产生了技术的交叉与互补。
     最后,应用同一组专利文献数据,分别构建了论文-专利和专利-专利共被引网络,通过比较两种类型知识网络中的知识单元、知识链和知识群在描述技术知识结构方面的特征,对两种知识流动路径共同作用下的应用技术前沿进行了辨识分析;同时,结合对被引文献标题的共词分析,揭示了科学知识对应用技术发展所起到的促进作用以及两者的知识关联特征。研究结果显示,科学研究到技术研究的知识转移主要体现在与科学理论解释、表征方法等相关的研究领域,而应用技术研究之间的知识转移主要集中在材料的制备工艺、合成结构等方面,并体现出明显的“共性技术”特征。
     本文的研究结果表明,在知识流动理论框架下,基于科技文献的知识发现理论与科技前沿探测方法,可以系统有效地为科技决策过程提供数据支持,为科技管理工作提供一种重要的辅助手段。
With the coming of knowledge economy, the study of knowledge measurement plays a more and more important role towards S&T decision making and management. Under the modern information technology circumstances, both of the type of S&T literatures and the classification of S&T knowledge have been greatly enriched and developed, which requires the exploring of new research system and analysis approaches should be put forward by S&T information researchers so as to meet the practical demands. Both of the theoretical and empirical studies are demonstrated in this dissertation based on the exsiting research results at home and abroad.
     First, this dissertation constructs knolwdge flow theory frame of S&T frontiers based on the citation analysis theory, knowledge network theory and knowledge evolutionary theory. Moreover, the mechanisms and the main paths from intellectual base to research frontiers of S&T are analyzed. Then, research frontiers identification model based on S&T literatures is established, following research framework of knowmetrics above-mentioned. Meanwhile, systematic analysis indicators and quantitative methods are put forward against the concepts concerning knowledge units, knowledge chains and knowledge clusters.
     Second, the scientific literatures and patent data, in the case of solar cell, are used to construct Article-Article and Patent-Patent knowledge maps by the means of co-cited network analysis method. The S&T frontiers are detected and analyzed temporally with aiming at the knowledge units, knowledge chains and knowledge clusters. Main results show that the relationship between intellectual base and research frontier are inheritable and the knowledge flow path can effectively identify the S&T research frontier and its evolution trend. Meanwhile, knowledge units supported by core patent data are not only playing a role of intellectual base toward a certain application technology, but also they can adcance the intercrosses on different technology study directions.
     Last, Article-Patent and Patent-Patent co-citation networks are extracted by using the same dataset mentioned above. Through comparing the knowledge units, knowledge chains and knowledge cluster within these two different knowledge networks, applied frontiers under the two knowledge flow paths are identified and analyzed. Furthermore, co-words analysis is used to reveal the positive effects of scientific knowledge towards application techonology development and the knowledge connections between both of them. The results show that knowledge transfer from science to technology is mainly reflected in the fields of theoretical interpretations and characterizations etc. While knowledge transfer among technologies is mainly presented in semiconductor materials and semiconductor composite structures, and it demonstrates the obvious features of "Generic Technology"
     In summary, this dissertation indicates that, from the perspective of knowledge flow theory, the S&T frontiers detecting methods and knowledge discovery theory based on the scientific and technological literatures are quite effective and practical to provide data supports in decision-making and supportive means in S&T management.
引文
[1]李正风.科学知识生产方式及其演变[M].北京:清华大学出版社,2006.
    [2]秦勇,冯记春.浅谈科技管理创新[J].科学学与科学技术管理,2001,22(5):5-6.
    [3]刘则渊,陈悦,侯海燕.科学知识图谱-方法与应用[M].北京:人民出版社,2008.
    [4]Davenport T H, Working knowledge how organizations manage what they know [M]. USA:Harvard Business School Press,1998.
    [5]Szulanski G. Exploring Internal Stickiness:Impediments to the Transfer of Best Practice within the Firm [J]. Strategic Management Journal,1996,17:27-43.
    [6]Gup A K, Govindarajan V. Knowledge flows and structure of control within multinational corprations [J]. Academy of Management Review,2000,21(4):473-496.
    [7]Hendriks P. Why share knowledge? The influence of ict on the motivation for knowledge sharing [J]. Knowledge and Process Management,1999,6(2):91-100.
    [8]李正风,曾国屏.国家创新系统与知识经济[J].科技导报,1999(11):24-26.
    [9]OECD. The Knowledge-Based Economy [R]. Paris:,2003.
    [10]Garfield E. Citation Indices for Science [J]. Science,1955(122):109-110.
    [11]Price D. Networks of scientific papers [J]. Science,1965,149(3683):510-515.
    [12]邱均平.文献计量学[M].北京:科学技术文献出版社,1988.
    [13]Garfield E. New factors in the evaluation of scientific literature through citation indexing [J]. American Documentation,1963,14(3):195-201.
    [14]Garfield E, Sher I H, Torpie R J. The use of citation data in writing the history of science[Z]. Philadelphia:1964.
    [15]Kessler MM. Bibliographic coupling between scientific papers [J]. American Documentation,1963, 14(1):1963.
    [16]Small H. A Co-Citation Model of a Scientific Specialty:A Longitudinal Study of Collagen Research [J]. Social Studies of Science,1977,7(2):139-166.
    [17]Small H. The Relationship of Information Science to the Social Sciences:A Co-Citation Analysis [J]. Information Processing and Management,1981,17(1):39-50.
    [18]Small H. Co-citation in the scientific literature:A new measure of the relationship between two documents [J]. Journal of the American Society for Information Science,1973,24(4):265-269.
    [19]Small H, Griffith B C. The Structure of Scientific Literatures I:Identifying and Graphing Specialties [J]. Science Studies,1974,4(1):17-40.
    [20]Marshakova-Shaikevich I. System of documentation connections based on references [J]. NauchnoTekhnicheskaya Informatsiya Seriya,1973,2(6):3-8.
    [21]埃格希L.,鲁索R.情报计量学引论[M].北京:科学技术文献出版社,1992.
    [22]Burton R E, Kebler R W. The half-life of some scientific and technical literatures [J]. American Documentation,1960,11(1):18-22.
    [23]Braam R R, Moed H F, Raan A F J. Mapping of science by combined co-citation and word analysis ii:Dynamical aspects [J]. Journal of the American Society for Information Science,1991,42(4): 252-266.
    [24]Persson O. The intellectual base and research fronts of jasis 1986-1990 [J]. Journal of the American Society for Information Science,1994,45(1):31-38.
    [25]Morris SA, Yen G, Wu Z. Time line visualization of research fronts [J]. Journal of the American Society for Information Science and Technology,2003,54(5):413-422.
    [26]Chen Chaomei, Mapping Scientific Frontiers [M]. London:Springer-Verlag,2002.
    [27]Callon M, Law J, Rip A, Mapping the Dynamics of Science and Technology:Sociology of Science in the Real World [M]. London:Macumillan,1986.
    [28]Glanzel W, Czerwon H J. A new methodological approach to bibliographic coupling and its application to research-front and other core documents[Z].1995167-176.
    [29]Granovetter M. Strength of weak ties [J]. American Journal of Sociology,1973(8):1360-1380.
    [30]Burt R S, Structure holes:the social structure of competition [M]. Cambridge:Harvard University Press,1992.
    [31]Bettencourt LMA, Kaiser DI, Kaur J. Scientific discovery and topological transitions in collaboration networks [J]. Journal Of Informetrics,2009,3(3):210-221.
    [32]Chubin D E, Studer K E. Knowledge and structures of scientific growth measurement of a cancer problem domain [J]. Scientometrics,1979,1(2):171-193.
    [33]White H D, McCain K W. Visualizing a discipline:An author co-citation analysis of information science,1972-1995 [J]. Journal of the American Society for Information Science,1998,49(4): 327-356.
    [34]Robert J W Tijssen, Anthony F J Van Raan. Mapping changes in science and technology:bibliometric co-occurrence analysis of the R&D literature [J]. Evaluation Review,1994,18(1):98-115.
    [35]Zhang Jian, Chen Chaomei, Li Jiexun. Visualizing the intellectual structure with paper-reference matrices [J]. IEEE Transactions on Visualization and Computer Graphics,2009,15(6):1153-1160.
    [36]Plaisant C, Fekete JD, Grinstein G. Promoting insight-based evaluation of visualizations:From contest to benchmark repository [J]. IEEE Transactions on Visualization and Computer Graphics, 2008,14(1):120-134.
    [37]Collins P, Wyatt S. Citations in patents to the basic research literature [J]. Research Policy,1988, 17(2):65-74.
    [38]Grupp H, Schmoch U. Perceptions of scientification of innovation as measured by referencing between patents and papers:dynamics in science-based fields of technology [M]//H. GRUPP. Dynamics of Science based Innovation, Germany:Springer-Verlag,1992,73-122.
    [39]Narin F. Patent bibliometrics [J]. Scientometrics,1994,30(1):147-155.
    [40]Narin F, Noma R E. Is technology becoming science? [J]. Scientometrics,1985,7(3):369-381.
    [41]Meyer M. Does science push technology? Patents citing scientific literature [J]. Research Policy,2000, 29:409-434.
    [42]Martin M. What is special about patent citations? Differences between scientific and patent citations [J]. Scientometrics,2000,48(2):151-178.
    [43]Bhattacharya S, Martin M. Large firms and the science-technology interface Patents, patent citations, and scientific output of multinational corporations in thin films [J]. Scientometrics,2003,58(2): 265-279.
    [44]Glanzel W, Maring M. Patents cited in the scientific literature:An exploratory study of reverse citation relations [J]. Scientometrics,2003,58(2):415-428.
    [45]Bush Vannevar科学:永无止境的前沿[R].,1945.
    [46]刘则渊,陈悦.新巴斯德象限:高科技政策的新范式[J].管理学报,2007,4(3):346-353.
    [47]Casimir H B J. Industries and academic freedom [J]. Research Policy,1971,1(1):3-8.
    [48]Elise B, Michel Z. Patents and Publications-The lexical connection [M]//Et Al Moed H. F. Handbook of Quantitative Science and Technology Research, Netherlands:Kluwer Academic Publishers,2003, 665-694.
    [49]Chang D S, Kao H C. Developing a novel patent map to explore R&D directions and technical gaps for thin-film photovoltaic industry [C].Proceedings of the 2009 IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong, China:2009.
    [50]Fang-Mei Tseng, Yi-Wei Chu, Ya-Ni Peng. Using patent data to analyze the development of the next generation of solar cells [C].PICMET'09-2009 Portland International Conference on Management of Engineering & Technology, Portland, OR, USA,:2009.
    [51]王惠翔,宋晓燕.核心期刊《太阳能学报》引文定量分析[J].太阳能学报,2005,6(3):443--446.
    [52]李振.太阳能产业的专利战略研究[D].武汉,中国:华中科技大学,2007.
    [53]王凤岐.柔性太阳能电池专利技术分析[J].信息记录材料,2009,10(6):56-64.
    [54]任智军,朱东华,荆雷.太阳能电池专利分析方法研究[J].北京理工大学学报,2007,10(5):60-64.
    [55]Chen Chaomei, Morris S. Visualizing evolving networks:Minimum spanning trees versus pathfinder networks [C].Proceeding of IEEE Symposium on Information Visualization, Seattle, Washington: IEEE Computer Society Press,2003.
    [56]OECD. Benchmarking Industry-Science Relations [R]. Paris:Organisation for Economic Cooperation and Developoment,2002.
    [57]野中郁次郎,竹内弘高.创造知识的企业:日美企业持续创新的动力[M].北京:知识产权出版社,2006.
    [58]杨梅英.知识经济与管理创新[M].北京:经济管理出版社,1999.
    [59]洛埃特雷迭斯多夫.科学计量学的挑战[M].北京:科学技术文献出版社,2003.
    [60]赵红州.科学能力学引论[M].北京:科学出版社,1984.
    [61]陈洪澜.知识分类与知识资源认识论[M].北京:人民出版社,2008.
    [62]吴彤.分类和分岔:知识和科学知识自组织起源的探索——以生物学中的分类和分类文化视角转变的演化为例[J].自然辨证法通讯,2000,22(6):25-33.
    [63]杨挺.文献知识:主观知识的一种静态知识[J].江苏图书馆学报,2001(5):3-4.
    [64]UNESCO. Information for all Programme (IFAP) Report [R]. Paris:,2004.
    [65]沈玉春,江子章.科技管理[M].北京:科学技术文献出版社,1993.
    [66]D E司托克斯.基础科学与技术创新:巴斯德象限[M].北京:科学出版社,1999.
    [67]张光斗,高景德.技术科学与高等工程教育[J].科学学研究,1987(5):1-6.
    [68]丁厚德.中国科技运行论:科技战略与运行管理[M].北京:清华大学出版社,2001.
    [69]刘则渊.钱学森与技术科学[M]//中国技术哲学研究年鉴.大连:大连理工大学出版社,2002.
    [70]钱学森.钱学森文集(1938-1956)[M].北京:科普教育出版社,1991.
    [71]刘则渊,刘凤朝.关于知识计量学研究的方法论思考[J].科学学与科学技术管理,2002,23(8):15-18.
    [72]周超.科学知识进化与科学合理性——波普科学合理性理论研究[J].中国青年政治学院学报,2004(3):64-68.
    [73]D. Archibugi, M. Piannta. Measuring Technological Change Through Patents and Innovation Surveys [J]. Technovation,1996,16(9):451-468.
    [74]Chen Chaomei. CiteSpace II:Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature [J]. Journal-American Society For Information Science and Technology,2006, 57(3):359-377.
    [75]Freeman L C. Centrality in social networks conceptual clarification [J]. Social Networks,1979,1(3): 215-239.
    [76]Rayson P, Garside R. Comparing corpora using frequency profiling[Z]. Hong Kong:20001-6.
    [77]蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18.
    [78]Shi J, Malik J. Normalized cut s and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
    [79]Kleinberg J. Bursty and hierarchical structure in streams [J]. Data Mining and Knowledge Discovery, 2002,7(4):373-397.
    [80]Keevers J. Mark. Development of a fabrication process for parallel multijunction thin film silicon solar cells on wafer substrates [J]. Progress in Photovoltaics,2001,8(6):579-589.
    [81]Ghannam M Y. A new n[RU+]pn[RU+] structure with back side floating junction for high efficiency silicon solar cells[Z]. Las Vegas:1991284-289.
    [82]王涛,王正志.太阳电池表面钝化技术[J].半导体技术,2006,31(7):506-508.
    [83]Green M A, Blakers A W, Jiqun Shi. High Efficiency Silicon Solar Cells [J]. IEEE Transactions on Electron Devices,1984, ED-31(5).
    [84]Green M A, Blakers A W, Jiqun Shi.19.1% efficiency silicon solar cell [J]. Appl.Phys.Lett,1984, 44(12).
    [85]Green M A, Blakers A W, Zhao J. Characterization of 23%Efficiency silicon solar cells [J]. IEEE Transactions on Electron Devices,1990,37(2):331-336.
    [86]Wang A, Zhao J, Green M A.24%efficient silicon solar cells [J]. Appl.Phys.Lett.,1990,57(6): 602-604.
    [87]Gokarna A, Pavaskar N R, Sat Haye S D. Elect rolumines2 cence from heterojunctions of nanocrystalline CdS and ZnS with porous silicon [J]. J Appl Phys,2002,92(4):2118.
    [88]赵波,李清山,张宁.ZnO/PS异质结的光学和电学性质[J].半导体学报,2006,27(7):1217-1220.
    [89]Krc J, Smole F, Topic M. potential of light trapping in microcrystalline silicon solar cells with textured substrates [J]. Progress in Photovoltaics:Research and Applications,2003,11(7):429-436.
    [90]王海燕.硅基太阳能电池陷光材料及陷光结构的研究[D].郑州:郑州大学,2005.
    [91]Staebler D L, Wronski C R. Reversible conductivity changes in discharge-produced amorphous Si [J]. Applied Physics Letters,1977,31(4):292-294.
    [92]Schmid D, Ruckh M, Grunwald F, et al. Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2 [J]. Journal of Applied Physics,1993,73 (6):2902-2909.
    [93]Gabor A M, Tuttle J R, Albin D S, et al. High-efficiency cuinxgal-xse2 solar cells made from (inx,gal-x)2se3 precursor films [J]. Applied physics letters,1994,65(2):198-200.
    [94]Dils D W. Electro-optical characterization and modeling of thin film cds-cdte heterojunction solar cells [J]. Solar Energy Materials and Solar Cells,2000,63(4):445-466.
    [95]Yamada A. Charge transport mechanism in a typical au/cdte schottky diode [J]. Solar Energy Materials and Solar Cells,2000,63(4):355-365.
    [96]Mathew X, Enriquez J P, Romeo A. cdte/cds solar cells on flexible substrates [J]. Solar Energy,2004, 77(6):831-838.
    [97]方玲,李德仁,卢志超,等.CuInS2薄膜太阳能电池发展现状[J].科技导报,2007,25(20):77-79.
    [98]Zheng JP. properties of zno thin films prepared by reactive evaporation [J]. Solar Energy Materials and Solar Cells,2001,69(3):251-260.
    [99]陈雄飞,汪雷,杨德仁.超声喷雾法制备In2 S3薄膜及后续快速热处理对薄膜性能的影响[J].人工晶体学报,2008,37(5):67-69.
    [100]Shockley W, Queisser H J. Detailed Balance Limit Of Efficiency of p-n Junction Solar Cells [J]. J. Appl. Phys.,2009,32(3):510-519.
    [101]Luque A, Marti A. Increasing the eficiency of ideal solar cells by photon induced transitions at intermediate levels [J]. Phys. Rev. Lett.,1997,14(78):5014-5017.
    [102]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991(353):737-740.
    [103]Yablonovitch E, Cody G D. Intensity enhancement in textured optical sheets for solar cells [J]. IEEE Transactions on Electron Devices,1982,29(2):300-305.
    [104]Campbell P, Green MA. Light trapping properties of pyramidally textured surfaces [J]. Journal of Applied Physics,1987,62(1):243-249.
    [105]Gratzel M. perspectives for dye-sensitized nanocrystalline solar cells [J]. Progress in Photovoltaics: Research and Applications,2000,8(1):171-185.
    [106]Sommeling P M, Rieffe H C, Van Roosmalen J A. spectral response and iv-characterization of dye-sensitized nanocrystalline tio2 solar cells [J]. Solar Energy Materials and Solar Cells,2000, 62(4):399-410.
    [107]Hara K, Horiguchi T, Kinoshita T. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells [J]. Solar Energy Materials and Solar Cells,2000,64(2):115-134.
    [108]Contreras MA, Egaas B, Ramanathan K. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells [J]. Progress in Photovoltaics:Research and Applications,1999, 7(4):311-316.
    [109]Jianhua Zhao, Aihua Wang, Green M A.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells [J]. Applied Physics Letters,1998,73(14):122-125.
    [110]Wang A, Zhao J, Wenham S R.21.5% Efficient thin silicon solar cell [J]. Progress in Photovoltaics: Research and Applications,1996,4(1):55-58.
    [111]黎立桂,鲁广昊,杨小牛.聚合物太阳能电池研究进展[J].高分子通报,2006,51(21):53-59.
    [112]Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid Nanorod-Polymer Solar Cells [J]. Science,2002, 295(5564):2425-2427.
    [113]Ramanathan K, Contreras MA, Perkins CL, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells [J]. Progress in Photovoltaics:Research and Applications, 2003,11(4):225-230.
    [114]Chow T T. Performance analysis of photovoltaic-thermal collector by explicit dynamic model [J]. Solar Energy,2003,75(2):143-152.
    [115]Zondag H A, Vries D W, Van Helden W G J. The yield of different combined pv-thermal collector designs [J]. Solar Energy,2003,74(3):253-269.
    [116]Coventry J S. Performance of a concentrating photovoltaic/thermal solar collector [J]. Solar Energy, 2005,78(2):211-222.
    [117]Padinger F, Rittberger R S, Sariciftci N S. Effects of postproduction treatment on plastic solar cells [J]. Advanced Functional Materials,2003,13(1):85-88.
    [118]Gang Li, Shrotriya V, Jinsong Huang. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nature Materials,2005,75(4):864-868.
    [119]Ma W, Yang X, Gong K. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Advanced Functional Materials,2005,15(10):1617-1622.
    [120]Yang Xiaoniu, Loos Joachim, S. C. Veenstra. Nanoscale morphology of high-performance polymer solar cells [J]. Nano Letter,2005,5(4):579-583.
    [121]Krebs F C, Carle J E, Cruys-Bagger N. Lifetimes of organic photovoltaics:photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices [J]. Solar Energy Materials and Solar Cells,2004,86(4):499-516.
    [122]KATAOKA I, MORI T, YAMADA S. Solar cell module for electrical power generation-has transparent surface layer with film comprised of fluoro-resin containing dispersed ultraviolet absorber [P]. JP,090987.1994,04,28.
    [123]YAMADA S, MORI T, KATAOKA I. Solar cell module having surface coating material of three-layer structure-has rigid resin layer, and adhesive layer which absorbs UV rays that would deteriorate rigid resin layer [P]. JP, JP244170.1997,07,22.
    [124]BORENSTEIN JT, GONSIORAWSKI RC. Forming contact on front side of solar cell substrate-fabricating bus=bar element using ink comprising spherical silver@ particles and glass frit disposed in liquid medium [P]. US,5178685.1991,07,11.
    [125]JANSEN KW, MALEY N. Photovoltaic module for converting solar radiation into electrical energy, comprises substrate front and back dual layer contacts and at least one solar cell [P]. US,6288325. 1998,07,14.
    [126]JI J. J, SHI Z, JI J. Formation of a light trapping structure for thin film cells, involves texturing a surface of a substrate on which a thin film is formed [P]. US,6420647.1998,11,06.
    [127]GEE JM. Back-contacted photovoltaic cell fabricating method-using laser-drilled vias, processed for high conductivity, to conduct current from front surface carrier-collection junction to a grid on rear-side [P]. US,5468652.1993,07,14.
    [128]PROBST V, RIMMASCH J, HARMS H. Solar cell having higher degree of activity-has chalcopyrite absorber layer contg. sodium@, potassium@, or lithium@ [P]. US,5626688. 1994,12,01.
    [129]PROBST V, KARG F. Solar cell with chalcopyrite absorber layer-sepd. from substrate by adhesion-promoting layer [P]. US,5676766.1993,09,30.
    [130]ARYA RR. Monolithic solar cell for converting solar radiation and other light into usable electrical energy, includes vitreous substrate, two semiconductors, and n-type conductor [P]. US,6121541. 1997,07,28.
    [131]WIESMANN HJ. Photovoltaic tandem cell-comprises amorphous cell and poly heterojunction cell in optical series [P]. US,4536607.1984,03,04.
    [132]Campbell R S, Neives N L. Technology Indicators Based on Patent Data:The Case of Catalytic Convertors [R]. Design and Demonstration. Batelle Pacific Northwest Laboratories,1979.
    [133]Tijssen R J W, Buter R K, Van Leeuwen TH. Technological relevance of science:An assessment of citation linkages between patents and research papers [J]. Scientometrics,2000,47(2):389-412.
    [134]Bhattacharya S, Sukeeja G, Basu P. Mapping the knowledge domain of a research field through scientometric indicators[Z]. Colima:Universidad de Colima,199937-50.
    [135]Meyer M. Patent citation analysis in a novel field of technology:an exploration of nano-science and nano-technology [J]. Scientometrics,2001,51(1):163-183.
    [136]Narin F, Noma R E, Perry R. Patents As Indicators Of Corporate Technological Strength [J]. Research Policy,1987,16(2-4):143-155.
    [137]Callon M, Courtial JP, Turner WA. From translations to problematic networks-an introduction to co-word analysis [J]. Social Science Information Sur Les Sciences Sociales,1983,22(2):191-235.
    [138]Tang C W.2-layer organic photovoltaic cell [J]. Appl Phys Lett,1986,48(2):183-185.
    [139]Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science,1995,270(5243):1789-1791.
    [140]Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature,1998(395):583-585.
    [141]姜春华,胡宇宁,万发荣.染料敏化纳米晶体TiO2太阳能电池的对电极结构[J].感光科学与光化学,2006,24(5):325-334.
    [142]曾我哲夫.纳米结构材料在太阳能转化中的应用[M].北京:科学出版社,2007.
    [143]李纪珍.产业共性技术供给体系[M].北京:中国金融出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700