用户名: 密码: 验证码:
大跨度钢桁架拱桥预拱度设置及拼装误差理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路建设的发展,客运专线对大桥的安全性和舒适性提出了更高要求,桥梁结构需要具有足够的竖向刚度、一定的横向刚度和匀顺的成桥线形。除制造误差(包括材料的物理参数和杆件的几何尺寸误差)之外,预拱度设置和螺栓对孔拼装精度是决定大跨度钢桁架拱桥成桥线形的主要因素。为了使成桥状态与设计要求更加吻合,本文从当前钢桁架拱桥的设计计算方法和施工工艺出发,研究了若干影响落梁线形的关键技术。主要完成了以下研究工作:
     (1)理论预拱度计算有限元模型特殊区域等效处理
     针对大跨度钢桁架拱桥理论预拱度计算的常用梁单元计算模型不方便直接考虑整体节点构造和横隔板加强等缺陷问题,选取具有普遍性特点的桁架杆件,通过建立实体模型和梁单元模型,对整体节点翼板、采用高强螺栓附加拼接板的弦杆连接特性、弦杆横隔板的影响和竖杆、斜腹杆与弦杆节点的连接分别作数值对比分析,探索出特殊区域的相应等效处理方法。经东莞东江大桥荷载试验验证,对钢桁梁特殊区域等效处理后的空间有限元计算模型,具有较高的计算精度。
     (2)大跨度钢桁梁桥厂制预拱度设置
     针对常用的斜杆形下承式钢桁架拱桥结构,采用有限单元法,以相对预拱度作为荷载参数,将通常由求解杆件伸缩引起拱度的逆问题转化为由相对预拱度求解杆件伸缩量的正问题,推导了杆件的伸缩公式。然后将该方法编译成计算程序和做成“杆件伸缩-预拱值”对照表格,方便设置预拱度时兼顾杆件伸缩的统一性,避免反复试算。使用该方法设置预拱度,容易使成桥节点的预拱值落在理论预拱线上,从而得到更加匀顺的预拱度线形。在此基础上,根据预拱度设置引起错孔的允许范围,推导了相对预拱度允许值的计算公式,对于错孔较厉害的杆件连接,提出了螺栓孔布置的处理方法。
     (3)杆件连接拼装误差计算
     根据杆件拼装定位施工工艺,分析了弦杆定位、竖杆和拱肋拼装定位的状态,重点研究了大跨度钢桁梁常用悬臂拼装架设方法的拼装误差,通过引入定位拼装误差概念,推导了梅花形定位安装杆件的定位拼装误差计算公式。
     在此基础上,将定位拼装误差计算公式应用于厦深铁路榕江特大桥弦杆拼装误差计算,计算分析结果揭示了定位拼装误差的变化规律:定位拼装的线误差对杆端的偏位影响较小,杆端偏位主要来自定位拼装的角误差;在拼接接头的对角位置打入定位冲钉,能减小定位拼装误差。
     (4)累积拼装误差对桥梁状态的影响
     运用工艺尺寸链理论和定位拼装误差计算方法,推导悬臂拼装的误差线形和合龙口的极值拼装误差,揭示了拼装误差累积规律。在此基础上,分析了拼装误差对大跨度拱桥线形和内力的影响。通过采用极值法求解了榕江特大桥施工过程的拼装误差,得出:拼装累积误差对高精度合龙和成桥线形以及内力均有较大影响。
     (5)拼装误差控制技术研究
     首先根据拼装误差的控制要求,采用极值法推导了螺栓孔直径和定位冲钉直径之差的关系式;然后将工艺尺寸链理论应用于拼装误差控制,采用增环和减环错开技术将拼装误差分散,能减小拼装累积误差对成桥线形和内力的影响。根据施工工艺,对杆件连接的拼装误差提出控制措施,以及较系统地阐述了合龙误差调整技术。
With the developing of rapid transit railway construction, higher requirements of safetyand comfort of the bridges are needed for Passenger Dedicated Lines. That is to say, thebridges should have enough vertical stiffness, some lateral stiffness and smooth curve.Besides forming errors, camber setting and installation accuracy are also two key elements tothe shape of long-span steel trussed arch bridges. To make the shape and stress distribution ofthe completed bridges agree well with the corresponding design value, the paper researchedthe camber computation, the camber setting, the installation error compute and the installationerror control techniques according to the design procedures and construction technology ofthe long-span steel trussed arch bridge. The main research work covers the following aspects:
     (1) Equivalent process method in some special areas about finite element model ofcomputational camber.
     To solve the problem of the common beam elements, which can not directly consider thespecial structure of integral joint and diaphragm reinforced effect of chord member of steeltrussed arch bridge, a solide element model and several beam element models were erectedfor the common component parts. Then, frange plate of integral joint, high strength boltaddition with buttcover plate connection, diaphragm reinforced effect of chord member anddiagonal members and integral joint connection were computed with these models. Throughcomparing the calculation results, equivalent process method was obtained for solving thesespecial areas of steel trussed arch bridge. The result of the acceptance loading test ofDongjiang Bridge presents that the equivalent process method can get higher precision. So, amore reasonable camber will be obtained by the proposed method.
     (2) Study on fabrication camber setting of long-span steel truss bridge
     Based on the finite element method, taken the relative camber between two adjacentnodes as displacement load, some computational formulas of member bar extension orcontraction were deduced for the frequently-used N type steel truss girder. The proposedmethod can be compiled conveniently and made a comparison table between the relativecamber and the length of member bars. So, the proposed method could avoid compute andadjust repeatedly, and a close to the theoretical camber curve could be designed easily by theproposed method. On that basis, a computational formula of the allowable value of relativecamber according to the fixed position boundary of driftpin, and some processing methods ofbolt hole were proposed for severe deviation closure members.
     (3) Installation error compute of member bars
     The fixed position of the chord member, vertical member and diagonal member werediscussed according to the construction technology. Then, the installation error was studiedunder cantilever construction of long-span stell trussed bridges. Through introducing fixedposition error concept, the computational equations were deduced by quincuncial fixedposition.
     On that basis, the installation error of chord member connection of Rongjiang Bridgewas obtained by the proposed equations. The calculated results present that: the line error offixed position has small influence on the cantilever end, and most of deviation of thecantilever end comes from angle error of fixed position; when two across corners bolt holesplay fixed position of the chord member role, the deviation is smallest.
     (4) The influence of cumulative installation error on finished bridge
     Based on dimension chain theory and calculation method of fixed position error, theinstallation error line of cantilever construction and the extremum installation error of closurewere deduced. Then, the paper analysed the influence on the shape and stress of the stelltrussed bridge by the installation error. The installation error of construction of RongjiangBridge was researched by extremum method, which presents that: the cumulative installationerror has great influence on high precision closured, the shape and the stress of the bridge.
     (5) Research on installation error control technology
     Based on dimension chain theory, the relationship between the diameter of bolt hole and thediameter of driftpin was deduced according the allowable installtion error value. The positiveinstallation error internodes by the negative installation error internodes distribution canminimize the influence on the shape and the stress of the bridge. According to constructiontechnology, the paper proposed some installation error control measures for the member barconnection, and researched a systematic adjust technology about closure error.
引文
[1]方秦汉,高宗余,李加武.中国铁路钢桥的发展历程及展望[J].建筑科学与工程学报,2008,25(4):1-5.
    [2]高宗余,方秦汉,卫军.中国铁路桥梁技术发展与展望[J].铁道工程学报,2007,(1):55-59.
    [3]曾庆元,杨毅,骆宁安,等.列车-桥梁时变系统的横向振动分析[J].铁道学报,1991,13(2):38-46..
    [4]王荣辉,郭向荣,曾庆元.高速列车-钢桁梁桥系统横向振动随机分析[J].铁道学报,1996,18(1):90-95.
    [5] Diana G., Cheli F. Dynamic Interaction of Railway Sys-tems with Large Bridges [J].Vehicle System Dynamics,1989,18(1):71-106.
    [6] M Olsson. Finite Element Model Coordinate Analysis of Structures Subjected to MovingLoads [J]. Journal of Sound&Vibration,1985,99(1):1-12.
    [7] Yeong-Bin Yang, Bing-Houng Lin. Vehicle-Bridge Inter-action Analysis by DynamicCondensation Method [J]. Journal of Structural Engineering, ASCE,1995,121(11):1636-1643.
    [8] Yeong-Bin Yang, Shu-Shyan Liao, Binghoung Lin. Impact Formulas for Vehicle Movingover Simple and Con-tinuous Beams [J]. Journal of Structural Engineering, ASCE,1995,121(11):1644-1650.
    [9] Van Bogaert. Dynamic Response of Trains crossingLarge Span Double-track Bridges [J].Journal of Constructional Steel Research,1993,24(1):57-74.
    [10] Xia He, De Roeck G, et al. Dynamic Analysis of TrainBridge System and Its Applicationin Steel Girder Rein-forcement [J]. Journal of Computers and Structures,2001,79,1851-1860.
    [11]孙海涛.大跨度钢桁架拱桥关键问题研究[D].上海:同济大学,2006.
    [12]戴公连,李德建.桥梁结构空间分析设计方法与应用[M].北京:人民交通出版社,2001.
    [13]戴公连,李德建.浏阳河洪山大桥异形斜拉桥主梁空间受力及稳定性分析[J].中国公路学报,2002,(3):53-56.
    [14] Zhang xin, James MarK, William B.. Time domain formulation of self-excited forces onbridge deek for wind tunnel experiment [J]. Journal of wind Engineering and IndustrialAerodynamics,2003,91:723-736.
    [15] Shaaban H.F., Atabi M., Hakim H.A..Space truss deekforcable一stayed bridges [J].Journal of the international Association for Shell and Spatial structures,2003,44(142):77-91.
    [16] Zhu L.D., Xiang H.F., Xu Y.L.. TriPle-girder model for modai anaiysis of cable-stayedbridges with warping effect [J].Engineering Structures,2000,22(10):1313-1323.
    [17]严国敏,周世忠.现代悬索桥[M].北京:人民交通出版社,2002..
    [18] Bleich F. Dynamics instability of truss-stiffened suspension bridges under wind action [J].Proc. ASCE,1948,74(7):1269-1314.
    [19] Kim Ho-Kyung, Lee Myeong-Jae, Chang Sung-Pil. Non-linear shape-finding analysis ofa self-anchored suspension bridge [J]. Engineering Structures,2002,24(12):1547-1559.
    [20]程进,江见鲸,肖汝诚.大跨度钢拱桥结构极限承载力分析.工程力学[J],2003,20(2):7-9.
    [21] Austin W.J.. In Plane Bending and Buckiing of Arches [J]. Journal of Structural Division,1971,97(5):1575-1592.
    [22] Pi Y.L., Trahair N.S. In-Plane Inelastic Buckling and Strengths of Steel Arches [J]. StructEng, ASCE,1996,122(7):734-747.
    [23] Pi Y.L., Trahair N. S. Out-of-Plane Inelastic Buckling and Strengths of Steel Arches [J].Struct Eng, ASCE,1998,124(2):174-183.
    [24]范立础,胡世德,叶爱君.大跨度桥梁抗震设计.北京:人民交通出版社,2001.
    [25] Emesto H Z, Vanmareke E H. Seismic random vibration analysis of ufti-supportstructural systems [J]. ASCE, Journal of Engineering Mechanics,1994,120:1107-1128.
    [26] SARKAR A.. Critical Seismic Vector Random Excitations for Multiply SupportedStructures [J]. Journal of Sound and Vibration,1998,212(3):525-546.
    [27] Yamamura N, Tanaka H, Response analysis of flexible MDOF systems formultiple-support seismic excitation [J]. Earthquake Engng Struct Dyn,1992,(19):345-357.
    [28]邵克华,方秦汉,赵煌澄.九江长江大桥钢梁15MnVNq钢材质优化[J].桥梁建设,1993,(1):7-11.
    [29]方秦汉,邵克华,赵煌澄.九江长江大桥钢梁56mm厚板的使用[J].桥梁建设,1993,(1):71-76.
    [30]方万,沈庆.新材料大直径高强度螺栓在九江长江大桥的应用[J].铁道工程学报,1992,(3):133-139.
    [31]成宇海,黄鑫.重庆朝天门长江大桥钢拱座整体节点制造研究[J].工程技术,2008,(2):19-22.
    [32]欧阳平,吕慎明.南京大胜关长江大桥高强度螺栓试验控制方案[J].工程技术,2009,(6):19-22.
    [33] LIU Yongjian, LIU Jian, ZHONG Guanxin, et al. Mechanical Behavior of Steel TrussBridge Stiffened with Rigid Cable in Construetion Stage [J].Jounal of Traffic andTransportation Engineering,2009,9(3): l-10.
    [34]韩衍群.高速铁路三主桁道碴整体桥面板桁组合桥受力特性及计算理论研究[D].长沙:中南大学桥梁与隧道工程,2008.
    [35]刘雪锋.多重组合体系拱桥的静动力特性研究[D].长沙:长沙理工大学桥梁与隧道工程,2008.
    [36] Quail Douglas J., West Richard P.. Sydney harbour bridge bus lane [J]. ProceedingsConference of the Australian Road Research Board,1992:263-285.
    [37] Lardner-Smith P. Sydney harbour bridge electronic toll collection pilot project [J].Proceedings of of the26thinternational symposium on Automotive Technology andautomation,1993:121.
    [38]张锋.朝天门大桥关键施工技术的时变力学分析[D].重庆:重庆交通大学桥梁与隧道工程,2008.
    [39]王东辉,覃勇刚.南京大胜关长江大桥钢梁架设及关键技术[J].桥梁建设,2009(3):5-9.
    [40]潘东发,李军堂.南京大胜关长江大桥钢梁安装方案研究[J].桥梁建设,2007(3):5-8.
    [41]余岭.九江长江大桥三大拱吊杆风致振动试验研究[J].长江科学学院院报,1995,12(3):53-60.
    [42]李瀛沧.九江长江大桥正桥钢梁设计简介[J].桥梁建设,1993,(1):3-6.
    [43] Auyueng Y., Balaguru P., Chung L.. Bond behavior of corroded reinforcement bars [J].ACI Materials Journal,2000,97(2):214-220.
    [44] Congqi F., Karin L., Liuguo C., et al. Corrosion influence on bond in reinforced concrete[J]. Cement and Concrete Research,2004,34(11):2159-2167.
    [45]林元培.我国桥梁的进展[J].《城市道桥与防洪》全国高峰论坛专辑,2006,(4):1-8.
    [46]铁道部大桥工程局.孙口黄河大桥技术总结.北京:科学技术出版社,1997:109~192
    [47]李仲襄,李军平,陶祖纪.厚板焊接整体节点制造技术[J].铁道工程学报,2002,(1):103~107.
    [48]刘汉顺,文武松.芜湖长江大桥主跨斜拉桥施工监控[J].桥梁建设,2003,(3):19-21.
    [49]赵廷衡,林荫岳.京九线孙口黄河大桥整体节点钢桁梁[J].铁道工程学报,1996,(3):53-61.
    [50]崔鑫,潘际炎,张玉玲.武汉天兴洲公铁两用大桥疲劳四线系数的研究[J].中国铁道科学,2006,27(3):13-17.
    [51]王天亮,王邦相,潘东发.芜湖长江大桥钢梁整体节点疲劳试验研究[J].中国铁道科学.2001,22(5):93-97.
    [52]任伟平.钢桥整体节点疲劳性能试验与研究[D].成都:西南交通大学桥梁与隧道工程,2004.
    [53]荣振环,张玉玲,刘晓光.天兴州桥正交异性板焊接部位疲劳性能研究.中国铁道科学,2008,29(2):48-52.
    [54]荣振环.芜湖长江大桥主桥长期实时监控疲劳损伤[D].北京:铁道科学研究院,2005.
    [55] Dong P.. A structural stress definition and implementation for fatigue analysis of weldedjoints [J]. International Journal of Fatigue,2001,(23):856一876.
    [56] Shin S.B.. The use of hot spot stress for estimating the fatigue strength of weldedcomponents [J]. Steel Research,2000,71(11):466-473.
    [57]潘际炎.铁路钢桥疲劳可靠性设计及铁路桥梁荷载谱研究[J].铁道学报,1992,14(4):58-66.
    [58] Hahin C., South J.M., Mohanunadi J.. Accurate and rapid determination of fatiguedamage in steel bridges [J]. Journal of structural Engineering,1993,119(2):150-167.
    [59] Savaidis G., Vormwald M.. Hot spot stress evaluation of fatigue in welded structuralconnections supported by finite element analysis [J]. International Journal of Fatigue,2000,(22):85-91.
    [60]张敏.南京大胜关长江大桥受力特性、计算方法、桥面疲劳和防腐问题研究[D].长沙:中南大学土木建筑学院,2010.
    [61] WENG C.C., CHEN J.J.. Study on Residual Stress Re-lief of Welded Structural SteelJoints [J]. Journal of Materials in Civil Engineering,1993,5(2):265-279.
    [62]周志良,谢明,焦建强,等.芜湖长江大桥整体节点焊接残余应力的研究[J].大连铁道学院学报,1998,19(3):79-84.
    [63]黄永辉,王荣辉,甘泉.钢桁梁桥整体节点焊接残余应力试验[J].中国公路学报,2001,24(1):83-88.
    [64]月兰.焊管的残余应力测试与研究[J].实验力学,2001,16(3):305-312.
    [65]俞家欢,戴利,李洪双,刘琼阳.焊缝与螺栓混合连接梁柱钢节点的残余应力有限元分析[J]焊接学报,2010,31(10):22-27.
    [66] Jinxiang Zhang, Kaishin Liu, Kai Zhao, etal. A study on the relief of residual stresses inWeldments with explosive treatment [J].International Journal of Solids and Structures,2005,(42):3794-3806.
    [67]王天亮.钢桁梁整体节点试验研究[J].桥梁建设,1999,29(4):32-40.
    [68]陈毅明,谭永高,吴游宇.四渡河大桥钢桁梁节点板局部应力分析[J].桥梁建设,2008,(1):58-61.
    [69] KISS K., DUNAI L.. Stress History Generation for Truss Bridges Using Multi-levelModels [J]. Computers&Structures,2000,78(1):329-339.
    [70]李厚民,熊健民,余天庆,褚利波.钢桁梁整体节点模型强度分析[J].湖北工学院学报,2002,17(1):37-41.
    [71]谭明鹤,王荣辉,黄永辉,谷利雄.刚性悬索加劲钢桁梁桥特殊节点模型试验[J].中国公路学报,2008,21(1):47-52.
    [72]方志.上海闵浦二桥钢桁梁节点的应力分析[J].交通科技,2009,(4):4-6.
    [73] Kiss K. Advaneed model for the stress analysis of steel struss bridges. Journal ofConstructional Steel Researeh,1998,46:76-7.
    [74]张建民,高锋.钢桁梁桥整体节点的优化分析.中国铁道科学,2001,22(5):89~92.
    [75]王芬.钢结构梁柱刚性连接节点优化研究[D].西安:西安理工大学结构工程,2007.
    [76] Dubina D., Zaharia R.. Cold-formed steel trusses with semi-rigid joints. Thin-WalledStruetures,2007,(29):273-287.
    [77] Kiss K., Dunai L.. Stress history generation for truss bridges using multi-level models [J].Computers&Struetures,2000,(78):329-339.
    [78]方京.九江长江大桥216m梁及三大拱的拼装与合拢设计[J].桥梁建设,1993,(1):12-18.
    [79]郑机.九江长江大桥第四联钢梁安装过程中的纵横移[J].桥梁建设,1993,(1):58-63.
    [80]胡汉舟,张驰,张关成,赵煜澄.九江长江大桥钢梁跨中合拢施工[J].桥梁建设,1993,(1):18-27.
    [81]余岭,王晶.用调质阻尼器抑制九江桥吊杆风致振动[J].长江科学院院报,1996,13(4):45-49.
    [82]陈永涛,尹向红.菜园坝长江大桥上部结构施工监控[J].桥梁建设,2007,(S1):83-86.
    [83]李新永.重庆菜园坝长江大桥静力及稳定分析[D].重庆:重庆大学土木工程学院,2006.
    [84]张亮亮,曾永平,晏致涛,王睿.菜园坝长江大桥节段模型风洞试验[J].重庆大学学报(自然科学版),2006,29(3):134-137.
    [85]张锋,王福敏,尚军年.刚度分配法在重庆朝天门长江大桥扣索力计算与研究中的应用[J].公路交通技术,2009,(2):75-79.
    [86]孙莉,刘祚波,姚莉.重庆朝天门长江大桥主桥边跨钢梁半伸臂安装技术[J].公路交通技术,2008,(5):57-60.
    [87]易伦雄.南京大胜关长江大桥大跨度钢桁拱桥设计研究[J].桥梁建设,2009,(5):1-9.
    [88]胡文军.目京沪高速铁路南京大胜关长大桥节段模型试验研究[D].长沙:中南大学结构工程,2008.
    [89]易伦雄.大胜关长江大桥工程特点与关键技术[J].钢结构,2007,22(5):77-79.
    [90]张德铭.天兴洲大桥钢桁梁桥整节段架设技术[J].桥梁建设,2006,(S1):52-56.
    [91]姜天华,朱红兵,刘唐.天兴洲大桥主桥钢桁梁节间长度研究[J].武汉科技大学学报(自然科学版),2006,29(4):412-414.
    [92]左宏献,张召.武汉天兴洲公铁两用长江大桥斜拉索安装技术[J].桥梁建设,2009,(4):5-8.
    [93]谢莉.新广州站东平水道桥受力特性及桥面系比较研究[D].长沙:中南大学结构工程,2009.
    [94]刘永健,刘剑,刘君平,等.刚性悬索加劲钢桁梁桥施工阶段全桥模型试验研究[J].土木工程学报,2010,43(2):72-78.
    [95]彭振华.三桁刚性悬索加劲钢桁梁关键技术研究[D].上海:同济大学建筑与土木工程,2007.
    [96] TB10002.2-2005,铁路桥梁钢结构设计规范[S].北京:中国铁道出版社,2005.
    [97]何畏,强士中.板桁组合结构中混凝土桥面板有效宽度计算分析[J].中国铁道科学,2002,23(5)::55-61.
    [98]王军文,梁志广,苏木标.芜湖长江大桥连续板桁结合梁的空间结构分析[J].石家庄铁道学院学报,2001,14(2):72~75.
    [99]周惟德,陈辉求.钢一混凝土组合桁架有限元计算模型[J].工业建筑,1996,26(7):14-19.
    [100]陈玉骥,叶梅新.高速铁路下承式板桁结合梁的受力分析.中南大学学报,2004,35(5):849-855.
    [101]叶梅新,江锋.芜湖桥板桁组合结构的研究.铁道学报,2001,23(5):65-69.
    [102]赵煜澄.关于铁路桥梁刚度的几点意见[J].铁道工程学报,1997,(2):23~30.
    [103]谭明鹤,王荣辉,黄永辉.整体节点刚度对钢桁梁桥结构受力的影响分析[J].公路.2007(10):27-30.
    [104]郑凯锋,唐继舜.铁路钢桥的全桥结构仿真分析研究[J].铁道学报.1999,21(1):62-66.
    [105]王荣辉,蔡禄荣,黄永辉,等.双层公路特大桥的模态参数识别及成桥模型分析[J].华南理工大学学报.2011,39(6):113-118.
    [106]李绍麟.改善现行三角形铁路钢桁梁主桁起拱方法的建议[J].桥梁建设,1978(2).
    [107]万明坤.钢桁梁起拱方法探讨[J].长沙铁道学院学报,1981(1):43-58.
    [108]李堪以.合理设置铁路钢梁的上拱度[J].铁道建筑,1994(1):26-28.
    [109]曾永平,陈天地,袁明,等.大跨度铁路钢桁梁斜拉桥预拱度设置[J].铁道工程学报,2010(10):78-81.
    [110]胡步毛,艾宗良,袁明,戴胜勇.基于非线性规划实现钢桁连续梁预拱度[J].铁道工程学报,2010(4):49-52.
    [111]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001.
    [112]张治成.大跨度钢管混凝土拱桥施工控制研究[D].杭州:浙江大学,2004.
    [113]李竞.东江大桥钢桁梁合龙参数研究[D].西安:长安大学,2008.
    [114] TB10212-2009,铁路钢桥制造规范[S].北京:中国铁道出版社,2009.
    [115] JTJ041-2000,公路桥涵施工技术规范[S].北京:人民交通出版社,2000.
    [116] Irvine H.M.. Cable structure Massachusetts, The MIT Press Cambridge,1981.
    [117] Pandey P.C., Bakshi P.. Analytical Response Sensitivity Using Hybrid Finite Elements[J]. Comp and Struct,1999,56(3):525-534.
    [118] Aryana F., Bahai H.. Sensitivity Analysis and Modification of Structural DynamicCharacteristics Using Second Order Approximation [J].Engineering Structures,2003,(25):1279-1287.
    [119] Datong S., Suhuan C., ZhiPin Q.. Stochastic Sensitivity Analysis of Eigen Values andEigen Vectors [J]. Comp and Struct,1995,54(5):891-896.
    [120]章光,朱维申.参数敏感性分析与试验方案优化[J].岩土力学,1993,14(1):51-58.
    [121]魏春明,陈淮,王艳.矮塔斜拉桥参数敏感性分析[J].郑州大学学报(理学版),2007,39(3):179-182.
    [122]方华兵,田启贤.大跨度预应力混凝土连续刚构桥主梁线形控制参数敏感性分析[J].桥梁建设,2006,(2):81-83.
    [123]林驰,刘沐宇,王海亮.南太子湖拱形连续箱梁桥参数敏感性分析[J].武汉理工大学学报,2007,29(12):93-96.
    [124]张雷.三桁连续钢桁梁桥施工误差参数敏感性分析[J].西安:长安大学,2010.
    [125] Hohenbiehler M., Rackwitz R.. Sensitivities and importance measures in structuralreliability [J]. Civil Eng. System,1986,(3):203-209.
    [126] Karamehandani A., Comell C.A.. Sensitivity estimation within first and secondreliability methods [J]. Struct. Safety,1992,(11):97-105.
    [127]刘宁,吕泰仁.三维结构可靠度对随机变量的敏感性分析[J].工程力学,1995,12(2):119-128.
    [128]佟晓利.钢筋混凝土结构施工期可靠性研究[D].大连:大连理工大学,1997.
    [129]刘春华,秦权.架设阶段悬索桥静力问题的随机有限元分析[J].计算力学学报,1998,15(2):232-235.
    [130]陈铁冰.斜拉桥几何材料非线性静力分析及其可靠度评估[D].上海:同济大学,2000.
    [131]刘志文,陈艾荣,贺拴海.风荷载作用下斜拉桥概率有限元分析[J].长安大学学报(自然科学版),2004,24(2):53-57.
    [132]张永水.大跨度预应力砼连续刚构桥施工预应力调整的Kalman滤波法[J].重庆交通学院学报,2000,19(3):13-16.
    [133]林元培.卡尔曼滤波法在斜拉桥施工中的应用[J].土木工程学报,1983,16(3):7-14.
    [134]马增琦.卡尔曼滤波法在大跨度预应力混凝土连续刚构桥施工监控中的应用[D].成都:西南交通大学,2002.
    [135]陈雷,刘立农,陈东银.自适应卡尔曼滤波法用于变形监测数据处理[J].测绘工程,2008,17(1):49-52.
    [136]汪娟娟.灰色系统理论在大跨径桥梁施工控制中的应用[D].武汉:武汉理工大学,2006.
    [137]刘圣钦.最小二乘问题计算方法[M].北京:北京工业大学出版社,1989.
    [138]吴国胜,卜一之.基于最小二乘法的参数识别方法在斜拉桥施工控制中的应用[M].中外公路,2008,(12):108,110.
    [139]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2006.
    [140]张荣瑞.尺寸链原理及其应用[M].北京:机械工业出版社,1986.
    [141]刘之生.尺寸链原理及应用[M].北京:兵器工业出版社,1990.
    [142]周宛莹.计算机辅助装配尺寸链分析与计算[D].成都:西南交通大学,1991.
    [143]邱海波.一种新的尺寸链计算机辅助分析、解算方法的研究[D].南京:南京理工大学硕机械制造及其自动化,2003.
    [144] Shivakumar R., Kaushal P.. Computer Aided Tolerance Assignment. Computers ind [J].Engng,1991,21(4):67-71.
    [145] KAUSHAL P., Shivakumar R., Simin P.. Computer-aided tolerance assignmentprocedure for design dimensioning [J]. INT. J. PROD. RES,1992,(3):599-610.
    [146] Desrochers A., Clement A.. A Dimensioning and tolerancing assistance model forCAD/CAM systems [J]. Int J Adv Manuf Technol.1994,(9):352-361.
    [147] JAMI J.S.. Dimension and tolerance modeling and transformations in feature baseddesign and manufacturing [J]. Journal of Intelligent Manufacturing,1998(9):475-488.
    [148]杨一帆,庄嘉.应用尺寸链原理算一两孔定位误差[J].现代机械,1995,(4):43-45.
    [149]于凤云.尺寸链原理在零件精度设计中的应用[J].机械设计与制造,2009,(8):86-87.
    [150]蒋志华,李红泉.航空绞车尺寸链设计研究[J].航空发动机,2011,37(6):40-42.
    [151]张丽珍,周哲波,陈飞虎,等.三支承五曲拐曲轴尺寸链设计及计算分析[J].煤矿机械,2012,33(2):16-18.
    [152]吴冲.强士中.现代钢桥,北京:人民交通出版社,2006.9.
    [153]邹鸿地.杆系结构矩阵分析,辽宁科学技术出版社,1985.
    [154]李国豪.桁梁桥的扭转、稳定和振动.北京:人民交通出版社,1975.
    [155]李国豪.桁梁桥空间内力、稳定、振动分析[J].中国科学,1978,(6):687-693.
    [156]曾庆元等.形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元法,铁道学报,1986,8(2):48-59.
    [157]郑凯锋.钢桥全桥全壳单元模型的空间计算方法,铁路工程学报,1997,(2):18-23.
    [158]蔺鹏臻,刘世忠.桥梁结构有限元分析[M].北京:科学出版社,2008.
    [159] BS EN1993-1-8:2005. Eurocode3: Design of steel structures, Part1-8: Design ofjoints[s], May2005.
    [160] TBJ214-92.铁路钢桥高强度螺栓连接施工规定[S].
    [161]李国强,李明菲,殷颖智,等.高温下高强度螺栓20MnTIB钢的材料性能试验研究[J].土木工程学报,2001,(34(5):100-104.
    [162] Yamamoto A., Kasei S. A solution for self-loosening mechanism of threaded fastenersunder transverse vibration [J].Bull. Jpn. Soc. Precis. Eng.,1984,(18):261–266.
    [163] Sakai T. The friction coefficient of fasteners [J]. Bull. JSME,1978,(21):333–340.
    [164] Ming Zhang, Yanyao Jiang, Chu-Hwa Lee. Finite element modeling of self-loosening ofbolted joints [J]. ASME Journal of Mechanical Design.2007,129(2):218-226.
    [165] Yanyao Jiang, Ming Zhang, Tae-Won Park, etc. An experimental study of self-looseningof bolted joints [J]. ASME journal of mechanical design.2004,126(9):925-931.
    [166]穆健.高强螺栓连接节点疲劳破坏试验研究[D].重庆:重庆大学桥梁与隧道工程,2010.
    [167]党志杰.摩擦型长列高强度螺栓接头研究[J].桥梁建设,1993,(1):52-57.
    [168]周学镛.起重机偏轨箱形梁横隔板的计算[J].起重运输机械,1983,(5):31-37.
    [169]李胜华,周志祥,张鑫.墩顶横隔板对连续刚构箱梁顶板力学性能的影响[J].重庆交通大学学报(自然科学版),2007,26(4):3-6.
    [170]吕玉匣,刘炎海.横隔板对多主梁结构受力行为的影响分析[J].兰州交通大学学报(自然科学版),2003,23(1):38-42.
    [171]钱竹,戴公连.三主桁连续钢桁拱桥整体节点有限元分析[J].企业技术开发,2009,28(7):54-57.
    [172]赵宽荣,石德生.变截面梁变形计算的等效梁法[J].陕西工学院学报,1995,11(2):103-107.
    [173]郑书英.非均匀变截面梁的等效梁解法[J].西北建建筑工程学院学报,1995,(3):38-47.
    [174]武芳.变截面空间梁单元刚度矩阵及等效结点荷载公式[D].杭州:浙江大学建筑工程学院,2006.
    [175]杨咏昕,陈艾荣,项海帆.桥梁结构动力特性分析中节点刚性区问题的处理[J].土木工程学报.2001,34(1):4-18.
    [176]武芳文,薛成凤,赵雷.连续刚构桥梁悬臂施工线形控制分析[J].铁道工程学报,2006(7):29-33.
    [177]刘承虞,赵廷衡.孙口黄河大桥整体节点钢桁梁的设计与制造[J],桥梁建设,1996,(3):44-48.
    [178]王荣辉.杆板壳结构计算理论及应用.中国铁道出版社出版,1999.
    [179]孙训芳等.材料力学[J].北京:高等教育出版社,2002.
    [180]阮欣,汪军,石雪飞.大跨径外倾式拱桥钢箱拱肋拼装误差影响[J].结构工程师,2005,21(4):23-27.
    [181]郭福元.东江大桥钢桁梁架设线形控制[J].科技资讯,2009,(8):1-2.
    [182]梁鹏,肖汝诚,徐岳.超大跨度斜拉桥施工过程随机模拟分析[J].中国公路学报,2006,19(4):52-58.
    [183]赵达斌,魏云祥,李庆瑞.芜湖长江大桥2×120m联钢桁梁主桁杆件制造与试装[J].钢结构,2001,16(5):1-3.
    [184]黄鑫,罗章智,成宇海.重庆朝天门长江大桥主桁试拼装精度控制方法研究[J].世界桥梁,2009,(2):31-33.
    [185]马学武.定位误差的尺寸链解法[J].宁夏机械,2002,(2):46-47.
    [186]龙驭球,包世华.结构力学[J].北京:高等教育出版社,2004.
    [187]区展楷.大跨度钢桁梁桥精确合龙误差理论分析[D].广州:华南理工大学土木与交通学院,2010.
    [188]田仲初,陈得良,颜东煌.大跨度拱桥拱圈拼装过程中扣索索力和标高预抬量的确定[J].铁道学报.2004,26(3):81-87.
    [189]罗世东,严爱国,刘振标.大跨度连续刚构柔性拱组合桥式研究[J].铁道科学与工程学报,2004,1(2):57-62.
    [190] Aryana F., Bahai H.. Sensitivity Analysis and Approximation Modification of StructuralDynamic Characteristics Using Second Order [J]. Engineering Structures,2003,(25):1279-1287.
    [191]杨梦纯.郑州黄河公铁两用桥连续钢桁梁悬臂拼装关键技术[J].桥梁建设,2010,(3):1-4.
    [192]苏蕴.计算机辅助工艺尺寸链分析与解算[D].上海:上海师范大学计算机软件与理论,2007.
    [193]何景熙.复杂尺寸链分析计算理论与应用[D].重庆:重庆大学机械工程学院,2003.
    [194] GB50017-2003,钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [195]李月华.钢桁架结构次应力影响分析[D].郑州:郑州大学结构工程,2005.
    [196]严辉均.钢桁架节点刚性次应力及正交异性桥面板计算方法分析[D].合肥:合肥工业大学工程力学,2007.
    [197]隋宝善.孙口黄河大桥整体节点钢桁梁的制造[J].桥梁建设,1995,(2):71-74.
    [198]李军平,姚小元,王岁利.芜湖长江大桥钢梁制造技术[J].桥梁建设,2001,(5):52-55.
    [199]郭兆棋,李军平,王岁利,马立芬.芜瑚筑江大桥钢梁里体节点的制造[J].桥梁钢结构,2001,16(1):31-34.
    [200]贾志军,刘庆明.提高钢结构高强螺栓过孔率的有效途径[J].钢结构,2006,21(4):81-83.
    [201]范重,王喆,唐杰.国家体育场大跨度钢结构温度场分析与合拢温度研究材料力学[J].建筑结构学报,2007,28(2):32-40.
    [202]王政兵,李红旗.万州长江大桥钢梁架设方案及关键技术[J].桥梁建设,2003,(S1):1-4.
    [203]李芳军,赵志尚,朱鹏飞.万州长江大桥钢桁拱梁合龙技术[J].桥梁建设,2006,(1):56-59.
    [204]孙吉飚.朝天门长江大桥钢桁拱合龙技术[J].现代交通技术,2007,4(2):46-48.
    [205]戴福忠,刘学文,潘家英,胡所亭.南京大胜关长江大桥主跨钢梁合龙调整的过程控制[J].铁道建筑,2011,(5):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700