用户名: 密码: 验证码:
利用重磁资料进行构造边界识别与弱异常提取的方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究内容主要包括利用重磁数据进行边界识别和寻找区域弱异常等项研究,同时通过理论模型试验加以证实,最后对具有复杂区域地质构造格局的齐齐哈尔地区重磁资料进行了相关处理,给出了初步地质解释,主要工作如下:
     1.提出了利用双方向区块扫描Lyapunov指数极小值确定物质区块分界线的方法,进行了有益的尝试,具体过程如下:
     (1)重力和航磁的网格化数据都满足行或列在同一直线上,以每条线为一个窗口,即以行或列作为单变量时间序列直接计算其Lyapunov指数。
     (2)把m×n数据矩阵按照行来划分,得到n行数列,可以计算出每一行对应的一个Lyapunov指数值;相似地按照列来划分,可以得到每一列所对应的一个Lyapunov指数值。这样实质上就是得到两个Lyapunov指数序列。
     (3)在所得到的两个Lyapunov指数序列中,行和列两个方向交汇处的每一个点都存在唯一的一对Lyapunov指数值,当满足双方向的Lyapunov指数值同时达到极小时,这个点的坐标就是所计算曲面拐点或极值的平面位置。
     2.通常重磁异常曲面的拐点或极值的连线往往对应地下地质体物性的分界面或轴线在地表的投影。为了检验上述Lyapunov指数方法的有效性,进行了台阶、水平圆柱体两个理论模型试验,并对齐齐哈尔地区实测重力数据进行了处理。理论模型试验结果与设计位置吻合,实际处理所得极小Lyapunov指数值点的连线与大兴安岭梯度带边界吻合。
     3.为了更有效地提取弱异常,文中总结了自相关滤波法在重磁数据处理中的优缺点。通过建立单球体和多球体模型试验发现,秦葆瑚1991年提出的自相关滤波因子具有基本消除了随机干扰的影响、能够在一定程度上反映区域异常的变化趋势、能显示异常有无的优点;但也存在滤波结果仍受区域场影响、提取的弱异常幅值太小且伴随有假异常、其滤波公式部分物理意义不明确等缺点。
     针对自相关滤波方法在提取局部弱异常中的缺陷,对一维和二维自相关滤波因子进行了适当改造,具体方法如下:
     (1)一维自相关滤波因子改造:在每条测线内自动寻找剩余局部异常最大点处的观测值做为参考模型,并沿整条测线进行滑动自相关处理。数据处理时,只需通过分析异常规模给出滤波窗口K,并让K等于最大异常范围半径,模型试验结果位置准确,减小了区域场的影响,异常相对强度明显变大,有效地突出了弱异常。当对含有随机干扰的数据进行处理时,不能完全消除随机干扰,虚假异常分布不对称,区域场大的一侧虚假异常强度较大,处理结果有窗口滑动痕迹。
     (2)二维自相关滤波因子改造:改变自相关滤波函数ρ的系数,以及四周测点的平均值Z(l)的表达式。二维自相关滤波只适用于线距等于点距的情况,对于其它类型数据必须先网格化成正方形网格;自相关半径选取在3~6个网格节点距为佳,异常零值线能较好反映异常体范围;对随机干扰压制效果有所改善,不仅消除了背景影响,有效地提取了弱异常,还可以通过零值线大体划出异常边界;高值突变点对本方法有较大影响,所以要求对原始资料先作剔除畸变点的预处理。
     4.为了检验改造后自相关滤波因子的效果,对齐齐哈尔地区实测航磁数据进行了处理,结果能很好地确定出各局部异常位置,边界划分清晰,基本提出了强区域场内的所有弱异常。但由于自相关滤波因子对随机干扰压制能力有限,不能完全消除它们,结果中可能还存在一定虚假异常。
     选择用匹配滤波和自相关滤波进行对比分析,发现处理结果有区域场影响小、局部异常独立性强的特点,更好的反映了该区局部异常的分布状况。按局部弱异常密集程度将该区大致分为两个区:第一区属大兴安岭华力西褶皱带,局部弱异常受区域地质构造控制,构造线多数沿NE~NNE向延伸;第二区为松嫩平原地带,地磁场相对平稳,无明显磁异常。其中A处具有较大研究价值,这里磁异常反应强烈,相对集中,对此地可做为找矿远景区进一步勘探。最后绘制了构造特征线图。
     5.介绍了分形几何的理论知识、分形与混沌成矿的关系,总结了分形理论在重磁数据处理中的应用。由于分形维数和Lyapunov指数都是描述非线性系统特征的量,所以把双方向Lyapunov指数极小值识别物质区块分界线的思想应用到分形理论中对地质体进行边界识别,这是将来本人要做的后续工作之一
In this paper, we mainly use the gravity and magnetic data to identify the border and extract the weak anomalies and then prove it with theoretical models. Finally, we consider the gravity and magnetic data in Qiqihar as the research object, which has complex geological constitution, and then give some geological interpretation. The main parts of my work are as follows:
     1.We propose a method to determine the boundary by scanning the smallest Lyapunov index on both directions and made a useful attempt. The specific process is as follows:
     (1) The gravity and aeromagnetic grid data meets in the same line along rows or columns. We select each line as a window, that is, row or column is selected as a single variable time list to calculate the Lyapunov index directly.
     (2) Divide the data matrix m x n by line to get n rows, and each row can be calculated, that is, there is only one Lyapunov index corresponding to every latitude,which is the same with every longitude according to the column. Two Lyapunov index sequences are attained essentially.
     (3) We can see from the two Lyapunov index sequences that, every point has only one couple Lyapunov indexes. As we known for the definition of lyapunov indexes, when the two indexes are both the smallest of each sequence, the point should be inflexion of surface or plane location of extremum.
     2. Usually, link line of inflexions or extremums corresponds with the boundary surface or axes projection on ground of geological properties. To test the validity of the method above, the two theoretical models of step and Horizontal cylinder are established, and the Qiqihar gravity and magnetic data are processed. The result of theoretical model tallied with the location of design, and link line of lyapunov index minimums tallied with the boundary of Great Xing'an Mountains gradient zone.
     3. In order to extract weak anomalies more Effectively, advantages and disadvantages of the self-autocorrelation filters in gravity and magnetic data processing are summarized. Through testing the established single sphere and multi sphere gravity models, it is found that Baohu Qin's self-autocorrelatioin filter factor could basically eliminate the random noise and could reflect the regional tendency at a certain extent in portrait as well as showing up the existence of anomaly in landscape in 1991.However, it has some disadvantages. For example, the result of the filter is still affected by the regional filed,the weak anomaly extracted is too small and accompanied false anomaly, some of the filter functions are ambiguous and so forth.
     1D and 2D self-autocorrelatioin filter factors are researched and modified to remedy these drawbacks that extracting local weak anomalies. The specific methods are as follows:
     (1) Modify 1D self-autocorrelatioin filter factor:by automaticly finding the point whose local residual anomaly was maximum in each line, considering it's value as our reference model and making use of sliding autorelation processing in the whole line. In data processing, we only need to give the filter window K, which should be equal to the radius of the scale of the anomaly maximum, by analyzing the anomaly scale. The result of models is correct, and it does not only reduce the regional effect, but also highlight the weak anomaly. When the data is combined with random noise, it can not be completely healed, and falsehood anomalies distributed inhomogeneous, and falsehood anomalies is bigger on the side where has bigger regional field, and the result is scored by window sliding.
     (2) Modify 2D self-autocorrelatioin filter factor:we change the coefficient of self-autocorrelatioin function p and the expression of the mean value of the point all around Z(l).2D self-autocorrelatioin filter could only be applied to the case that line space equals to spot space, and the data has to be transformed to a network of square if not; Choosing 3~6 plus the grid distance as the self-autocorrelatioin radius is preferred, in the time the zero isoline could reflect the range of the geologic body well; The improved method has many advantages such as suppressing the random noise at a certain extent, eliminating the impact of background, extracting the weak anomaly, and outlining the boundary of geologic body by the zero isoline; As high saltation points will strongly influence the result, eliminating preprocessing is required.
     4.To test the effect of modified filter factor, we apply this method to the aeromagnetic data in Qiqihar. The result can well determine the location of every local anomaly, partition the boundary clearly and extract the weak anomaly on the field of strong anomaly basically. However, the random noise could not be eliminated absolutely as the self-autocorrelatioin filter factor does not suppress the random noise well, which will lead to the existence of false anomaly.
     By comparing matched filtering with self-autocorrelatioin filtering, it shows that the effect of regional filed is small and the local anomaly is independent, and therefore, the processing result could better reflect the distribution of local anomaly. According to the denseness of the weak anomalies, the area is divided into two parts. The first, whose local anomaly is controlled by the regional geological structure and most of the tectonic lines extend along between NE and NNE directions, belongs to the Variscan fold belt of Daxinganling:while the other one belongs to Songnen Plain, where the magnetic filed is stable without obvious anomaly. Because of it's strong and concentrated magnetic anomaly, the aero marked A has some important scientific interests and can be future explored as a prospect area. Finally, the map of structural characteristic lines is drawn.
     5. Introduce academic knowledge of fractal geometry, the connection of fractal and chaos ore formation, summarize the application of fractal in gravity and magnetic data. Both the fractal dimension and lyapunov index characterize the non-linear system, so the mind that identifying the boundary by Lyapunov index on both directions can be used into fractal, that is, window sliding in fractal can be used for identifying the boundary of geological body, and this is one of my works forward.
引文
[1]张勇.中国东北地区地震物理预测模型反演研究初探[D].北京:中国地震局工程力学研究所,2007.
    [2]成秋明.非线性成矿预测理论:多重分形奇性—广义自相似性—分形谱系模型与方法[J].地球科学,2006,31(1):337-348.
    [3]於崇文.成矿动力系统在混沌边缘分形生长—一种新的成矿理论与方法[J].地学前缘,2001,8(4):471-489.
    [4]於崇文.大型矿床和成矿区(带)在混沌边缘[J].地学前缘,1999,6(1):85-102.
    [5]赵鹏大.地质异常理论与矿床预测:现代矿产资源评价理论与方法[M].北京:地质出版社,1998.
    [6]SKEELS D C. What is residual gravity? [J].Geophysics,1967,2(5):872-876.
    [7]GRIFFIN W R. Residual gravity in theory and practice [J].Geophysics,1949, 14(1):39-56
    [8]LI Y., OLDENBURG D W. Separation of regional and residual magnetic field data [J].Geophysics,1998,63 (2):431-439.
    [9]GUPTA V K., RAMANI N. Some aspects of regional residual separation of gravity anomalies in a Precambrian terrain [J].Geophysics,1980,45(9):1412-1426.
    [10]AGOCS W B. Least-squares residual anomaly determination[J]. Geophysics,1951,16(4):686-696.
    [11]OLDHAM C H G, SUTHERLAND D B. Orthogonal polynomials:their use in estimating the regional effect [J].Geophysics,1955,20(2):295-306.
    [12]SIMPSON S M., Jr. Least-squares polynomial fitting to gravitational data and density plotting by digital computers[J]. Geophysics,1954,19(2):255-269.
    [13]FAJKLEWICZ Z. The use of cracovian computation in estimating the regional gravity [J].Geophysics,1959,24(3):465-478.
    [14]BELTRAO J F., SILVA J B C., COSTA J C., Robust polynomial fitting method for regional gravity estimation [J].Geophysics,1991,56(1):80-89.
    [15]焦新华,吴燕冈.重力与磁法勘探[M].北京:地质出版社,2009.
    [16]ABDELRAHMAN E M., BAYOUMI A. L, EL-ARABY H. M. A least-squares minimization approach to invert gravity data [J].Geophysics,1991, 56(1):115-118.
    [17]ULRYCH T J. Effect of wavelength filtering on the shape of the residual anomaly [J].Geophysics,1968,33(6):1015-1018.
    [18]PAUL M K.A method of computing residual anomalies from bouguer gravity map by applying relaxation technique [J].Geophysics,1967,32(4):708-719.
    [19]MICKUS K L, AIKEN C L V, KENNEDY W D. Regional-residual gravity anomaly Separation using the minimum-curvature technique [J].Geophysics, 1991,56(2):279-283.
    [20]GUSPI F, INTROCASOB. A sparse spectrum technique for gridding and separating potential field anomalies [J].Geophysics,2000,65(4):1154-1161.
    [21]童永春.一种提取重力局部异常的方法—九点差分格式异步迭代法[J].地质与勘探,1984,(12):51-58.
    [22]程方道,刘东甲,姚汝信.划分重力区域场与局部场的研究[J].物探化探计算技术,1987,9(1):1-9.
    [23]文百红,程方道.用于划分磁异常的新方法—插值切割法[J].中南矿冶学院学报,1990,21(3):229-235.
    [24]汪炳柱,徐世浙,刘保华,等.多次插值切割法分场的一个实例[J].石油地球物理勘探,1997,32(3):431-438.
    [25]段本春,徐世浙,阎汉杰,等.划分磁异常的插值切割法在研究火成岩体分布中的应用[J].石油地球物理勘探,1998,34(1):125-131.
    [26]邢怡.重磁异常分离方法技术研究[D].北京:中国地质大学,2008.
    [27]DEAN W C. Frequency analysis for gravity and magnetic interpretation [J]. Geophysics,1958,23(1):97-127.
    [28]BHATTA CHARYYA B K. Design of spatial filters and their application to high-resolution areomagnetic data [J]:Geophysics,1964,37(1):68-91.
    [29]SAX R L. Application of filter theory and information theory to the interpretation of gravity measurements [J].Geophysics,1966,31(3):570-575.
    [30]ZURFLUEH E G. Applications of two-dimensional linear wavelength filtering [J].Geophysics,1967,32(6):1015-1035.
    [31]KU C C, TELFORD W M, LIM S. H. The use of linear filtering in gravity problems [J].Geophysics,1971,36(6):1174-1203.
    [32]程方道.波数域重磁数据处理中的随机误差分析[J].石油物探,1985,24(1):70-90.
    [33]刘祥重.区域重力波数域解释及找油效果[J].石油地球物理勘探,1988,23(1):110-118.
    [34]候重初.补偿圆滑滤波方法[J].石油物探,1981,20(2):22-29.
    [35]魏献齐.椭圆窗方向滤波器在重力资料处理中的应用[J].石油地球物理勘探,1984,(6):556-566.
    [36]穆石敏,申宁华,孙运生.区域地球物理数据处理方法及其应用[M].吉林:吉林科学技术出版社,1990:22-23.
    [37]DARBY E K, DAVIES E B. The analysis and design of two-dimensional filters for two-dimensional data [J]. Geophysical Prospecting,1967,15(3):383-406.
    [38]CLARKE G K C. Optimum second derivative and downward continuation filters [J].Geophysics,1969,34(3):424-437.
    [39]AGARWAL B N P, LAL L. Application of rational approximation in the calculation of the second derivative of the gravity fields [J].Geophysics,1971,36(3):571-581.
    [40]COWAN D.R. COWAN S. Separation filtering applied to aeromagnetic data [J].Exploration Geophysics,1993,24(4):429-436.
    [41]PETERS L J. The direct approach to magnetic interpretation and its practical application [J]:Geophysics,1949,14(3):290-320.
    [42]HENDERSON R G ZIETZ I, The computation of second vertical derivatives of geomagnetic fields [J].Geophysics,1949,14(4):508-516.
    [43]ROBISON E S.Upward continuation of total intensity magnetic fields [J].Geophysics,1970,35(5):920-926.
    [44]HANSEN R. O., MIYAZKI Y. Continuation of potential fields between arbitary surface [J].Geophysics,1984,49(6):787-795.
    [45]KONTIS A. Aeromagnetic field test of total intensity upward continuation [J].Geophysics,1971,36(2):418-425.
    [46]曾华霖.重磁资料数据处理某些方法效果的讨论[J].物探与化探,1982, 6(5):257-264.
    [47]曾华霖,许德树.最佳向上延拓高度的估计[J].地学前沿,2002,9(2):499-503.
    [48]毛小平,吴蓉元,曲赞.频率域位场下延的振荡机制及消除方法[J].石油地球物理勘探,1998,33(2):230-237.
    [49]WANG B.2D and 3D potential-field upward continuation using splines [J]: Geophysics,2006,54(2):199-209.
    [50]卡尔曼滤波-MBA智库百科-Microsoft Internet Explorer[OL]. http://wiki.mbalib.com/wiki/卡尔曼滤波.
    [51]SPECTOR A, GRANT F S. Statistical models for interpreting aeromagnetic data [J].Geophysics,1970,35(2):293-302.
    [52]SYBERG F J R. A Fourier method for the regional-residual problem of potential fields [J].Geobhvsical Prosbectina.1972.20(1):47-75.
    [53]JACOBSEN B H. A case for upward continuation as a standard separation filter for Potential-field maps [J].Geophysics,1987.52(8):1138-1148.
    [54]于舟,李昭荣.重磁异常的方向维纳串联滤波器[J].物探化探计算技术,1989,11(2):149-155.
    [55]梁锦文.分离重磁区域场与局部场的维纳滤波器[J].地球物理学报,1983,26(1):80-88.
    [56]刘青松,王宝仁.利用多次匹配滤波技术进行垂向位场分离[J].物探化探计算技术,1996,18(4):279-286.
    [57]董焕成,李宗杰.重力异常匹配滤波法的原理和应用[J].物探与化探,1993,17(5):331-340.
    [58]PAWLOWSKI R S,HANSEN R O. Gravity anomaly separation by Wiener filtering [J].Geophysics.1990.55(5):539-548.
    [59]PAWLOWSKI R S. Green's equivalent-layer concept in gravity band-pass filter design [J].Geophysics,1994,59(1):69-76.
    [60]雷林源.二维Wiener滤波器及在物探中应用的一些问题[J].地球物理学报,1982,25(2):153-162.
    [61]蒋甫玉,孟令顺,张凤旭,等.维纳滤波技术及其在新疆地球重力场划分中的应用[J].吉林大学学报(地球科学版),2007,37(5):1016-1022.
    [62]刘沈衡.维纳滤波法在重力资料解释中的应用[J].有色金属矿产与勘查,1995,4(1):48-51.
    [63]肖锋.重力数据处理方法的研究及其在钾盐矿勘探中的应用[D].吉林:吉林大学,2009.
    [64]Thompson D T. EULDPH:A new technique for making computer-assisted depth estimates from magnetic data [J].Geophysics,1982,47(1):31-37.
    [65]Reid A B, A llsop, JM, Granser H, et al.1990, Magnetic interpretation in three dimensions using eular deconvolution [J].Geophysics,55:80-91.
    [66]Mushayandebvu M F, van Driel P, Reid A B, et al.2001, Magnetic source parameters of two-dimensional structures using extended Eular deconvolution[J].Geophysics,66:814-823.
    [67]范美宁.欧拉反褶积方法的研究及应用[D].吉林:吉林大学,2006.
    [68]徐宝慈,李春华.位场数据处理理论与问题[M].吉林:吉林大学出版社,1995.
    [69]刘沈衡,吴燕冈.利用欧拉算法反演磁性界面[J].石油物探,2000,39(2):101-106.
    [70]姚长利,管志宁,吴其斌,等.欧拉反演方法分析及实用技术改进[J].物探与化探,2004,28(2):150-155.
    [71]R. J. Durrheim and G. R. J. Cooper, Euldep:A program for the Euler deconvolution of magnetic and gravity data [J].Computers & Geosciences,1998,24(6):545-550.
    [72]习宇飞,等.欧拉反褶积法用于井中磁测数据反演与解释[J].工程地球物理学报,2008,5(2):181-186.
    [73]刘燕戌.勃利盆地和鸡西盆地的构造特征及油气远景研究[D].吉林:吉林大学,2009.
    [74]刘财.东北地球物理场与地壳演化[M].北京:地质出版社,2009:40-49.
    [75]许家妹.漠河盆地构造特征及油气远景研究[D].吉林:吉林大学,2010.
    [76]杨高印.位场数据处理的一项新技术-小子域滤波法[J].石油地球物理勘探,1995,30(2):240-244.
    [77]张凤旭,张凤琴,刘财,等.断裂构造精细解释技术—三方向小子域滤波[J].地球物理学报,2007,50(5):1543-1550.
    [78]肖锋,吴燕冈,孟令顺.位场数据处理中小子域滤波的改进[J].石油地球物理勘 探,2010,45(1):149-152.
    [79]边肇祺,张学工,等.模糊识别[M].北京:清华大学出版社,2000.
    [80]刘天佑.应用地球物理数据采集与处理[M].武汉:中国地质大学出版社,2004.
    [81]数字神经网络系统[OL].http://www.jgchina.com/ednns/ednnsbk/4.4.htm.
    [82]关新平,等.信号处理与模式识别[M].北京:机械工业出版社,2006:95.
    [83]温熙森.模式识别与状态监控[M].北京:科学出版社,2007:301.
    [84]王映辉.人脸识别原理、方法与技术[M].北京:科学出版社,2009:82.
    [85]蒋金山,等.最优化计算方法[M].广州:华南理工大学出版社,2007:279.
    [86]朱晓军,申宁华.BP网络在位场解释中的应用[J].长春:长春地质学院学报,1995,25(1):81-84.
    [87]申宁华,王喜臣,王光杰,等.中国大陆重磁异常场的计算方法及地质解释[M],长春:吉林科学技术出版社,1997:48-61.
    [88]Art Raiche, Appattern recognition approach to geophysical inversion using neural nets[J].Geophy.J.Int.1991,105:629-648.
    [89]Yi Guo, R.O.Hanson & Norman Har Thill,Feature recognition from potential fields SEG 1992,AI1.1.
    [90]Massimo Fossatl.Lineaments analysis for potential field data using neural network, SEG 1991,AI1.2.
    [91]赵文礼.测试技术基础[M].北京:高等教育出版社,2009:52.
    [92]褚标.小波理论在图象去噪与纹理分析中的应用研究[D].安徽:合肥工业大学,2008.
    [93]李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002:41-190.
    [94]周霖.DSP算法设计与系统方案[M].北京:国防工业出版社,2004:60.
    [95]衡彤.小波分析及其应用研究[D].四川:四川大学,2003.
    [96]Syberg F J R. A Fourier method for the regional residual problem of potential fields [J].Geophysical Prospecting,1972,20(3):47-75.
    [97]张凤旭,张凤琴,刘财,等.基于余弦变换的匹配滤波方法分离重磁异常[J].石 油地球物理勘探,2006,41(2):216-220.
    [98]蒋甫玉.位场数据处理中的滤波技术研究及其应用[D].吉林:吉林大学,2008.
    [99]FEDI M, QUARA T. Wavelet analysis for the regional-residual and local separation of potential field anomalies [J]. Geophysical Prospecting,1998,46(5):507-525.
    [100]RIDSDILL-SMITH T A. Separation filtering of aeromagnetic data using filter-banks [J].Exploration Geophysics,1998,29(4):577-583.
    [101]汤井川,宋守根,何继善.多分辨分析和重磁异常的识别与分层次提取[J].中国有色金属学报,1994,4(3):6-14.
    [102]高德章,侯遵泽·唐建.东海及邻区重力异常多尺度分解[J].地球物理学报,2000,43(6):842-849.
    [103]杨文采,施志群,侯遵泽,等.离散小波变换与重力异常多重分解[J].地球物理学报,2001,44(4):534-541.
    [104]邱宁,何展翔,昌彦君.分析研究基于小波分析与谱分析提高重力异常的分辨能力[J].地球物理学进展,2007,22(1):112-120.
    [105]黎海龙,朱国器.桂西地区重力场小波多重分解及地质意义[J].物探与化探,2007,31(5):465-468.
    [106]李晓奇.先驱者的足迹:高等数学的形成[M].沈阳:东北大学出版社,2004:11.
    [107]董长虹Matlab小波分析工具箱原理与应用[M].北京:国防工业出版社,2004:108-109.
    [108]杨洁,刘聪锋.小波分析在信号消噪中的应用[J].西安邮电学院学报,2004,9(3):59-63.
    [109]邓自旺,林振山,周晓兰.西安市近50年来气候变化多时间尺度分析[J].高原气象,1997:16(1),81-93.
    [110]林振山,邓自旺.子波气候诊断技术的研究[M].北京:气象出版社,1999.
    [111]李一柱,许炳南.贵州短期气候预测技术[M].北京:气象出版社,2001.
    [112]王文圣,丁晶.水文小波分析[M].北京:化学工业出版社,2005:115.130.
    [113]吕金虎,陆君安,等.混沌时间序列分析及应用[M].武汉:武汉大学出版社,2002:21-136.
    [114]李尧亭等.混沌和李雅谱诺夫特征指数[J].物理,1996,25(5):282-286.
    [115]M. T.Hagan and S.M.Behr. The time series aproach to short term load forcasting IEEE Trans. On Power System PWRRS-2,3,1987
    [116]T. Kapitaniak, Chaos in Systems with Noise [M], Word Scientific, Singapore, 1990.
    [117]韩小龙.混沌分形理论在期货市场的应用研究[D].天津:天津大学管理学院,2004.
    [118]申维.矿化富集的耗散结构研究[J].矿物岩石地球化学通报2000,19(4):416-417.
    [119]申维.矿化富集动力学模型及其在矿产资源预测中的应用[J],地学前缘,2000,7(1):189-194.
    [120]韩兆红.基于Lyapunov指数的资源评价方法研究[D].吉林:吉林大学,2008.
    [121]Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources [J].Nonrenewable Resources,1993,2(2):69-81.
    [122]赵鹏大,陈建平,张寿庭.“三联式”成矿预跚新进展[J].地学前缘,2003,10(2):455-463.
    [123]hitads工程师.混沌理论在信息技术中的应用[J/OL].数学综合-数学与物理-百思论坛,[2011-04-14]http://www.baisi.net/thread-798505-1-1.html.
    [124]张焰明.基于Lyapunov指数分析的液压泵故障诊断方法及实验研究[D].河北:燕山大学机械工程学院,2007.
    [125]黄强,赵雪花.河川径流时间序列分析预测理论与方法[M].郑州:黄河水利出版社,2008:226.
    [126]邱伟Lorenz系统的分析与同步研究[D].辽宁:大连海事大学电路与系统,2008.
    [127]王宇.机床导轨结合部接触动力学的混沌与分盆的研究[D].陕西:西安理工大学机械电子工程,2008.
    [128]何晓群,等.应用回归分析[M].北京:中国人民大学出版社,2001.
    [129]郑兆苾等.最大Lyapunov指数计算的几种方法[J].地震,1994.(4):86-92
    [130]付强.数学分析方法及其农业应用[M].北京:科学出版社,2006,379-380.
    [131]张勇.交通流混沌的小样本判定方法[D].天津:天津大学管理学院,2007.
    [132]郭文州.有界噪声激励下典型非线性系统的关联维数和Lyapunov指数估计[D].浙江:浙江大学机械与能源工程学院,2006.
    [133]张济世.统计水文学[M].郑州:黄河水利出版社,2006,632-634.
    [134]韩文蕾.中国股票市场的非线性分析与预测[D].陕西:西北工业大学系统工程,2005.
    [135]郭伯和.油水两相流流型的混沌时间序列分析[D].天津:天津大学电气与自动化工程学院,2005.
    [136]徐兵.基于相空间重构的资源评价方法研究[D],武汉:中国地质大学博士后出站报告,2003.
    [137]杨毅恒,韩燕,徐兵,等.多维地学数据处理技术与方法[M].北京:科学出版社,2002.
    [138]韩兆红,吴燕冈,徐兵,赵玉岩.基于Lyapunov指数的矿产资源评价模型的建立[J].物探化探计算技术,2010,32(2):179-181.
    [139]秦元喜.亚洲东部古板块结合带上的火山—侵入作用及有关矿产[J].火山地质与矿产,1991,12(4):13-20.
    [140]郝柏林.从抛物线谈起---混沌动力学引论[M].上海:上海科技出版社,1993.
    [141]格莱克著,张淑誉译,郝柏林校.混沌开创新科学[M].上海:上海译文出版社,1990.
    [142]孙霞,吴自勤,黄畇.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003:1-51.
    [143]梁志珊等.基于人工神经网络的自适应电力系统短期负荷预测[J],东北电力学院学报,1994,14(1):47-51.
    [144]刘丹.实用分形图形学[M].大连:大连海事大学出版社,2001:33-34.
    [145]李长春.基于相空间重构的克里格方法研究[D].吉林:吉林大学,2007.
    [146]齐春亮,马义德,杜鸿飞.分形图像压缩综述[J/OL].[2011-04-15].百度文库,http://www.paper.edu.cn
    [147]李桐林,林君.吉林东部重力异常的分形特征及其地质意义[J].铀矿地质,1999,15(4):225-228.
    [148]李庆谋,成秋明.测井曲线分形校正[J].地球科学—中国地质大学学报,2002,27(1):63-66.
    [149]毛宁波.测井数据分维计算及其应用条件研究[J].地球物理学进展,2000,15(1):70-77.
    [150]王霞,吴新林.航磁数据多重分形研究及应用[J].铀矿地质,1999,15(6):356-360.
    [151]Garland, G.D., Combmed analysis of gravity and magnetic Anomalies[J].Geophysics,1951, Vol.16:51-62.
    [152]Chandler, V.W., J.S.Koski, W.J.Hanze & L.W.Braile, Analysis of Multi-sourcer gravity and magnetic data sets by moving-window application of poisson's tjepre[J].GEOPHYS,1981, Vol.46:30-39.
    [153]刘心铸.重磁异常对应分析:赴美学习重磁方法介绍之一[J].国外地质勘探技术,1985,4:1-8.
    [154]姜枚,张瑜才,王德夫.试谈统计分析方法在区域重磁资料解释中的某些应用[J].物探与化探,1982,(6):321-327.
    [155]刘天佑.相关滤波方法及其在扬子地台断裂分析中的应用[J].地质科技情报,1993,12:45-50.
    [156]贺日政,范芸芳Visuai Fortran 5.0下的重磁数据处理及图像显示[J].世界地质,2000,19(2):182-184.
    [157]秦葆瑚.用自相关滤波法提取弱异常[J].物探化探计算技术,1991,15(3):240-241.
    [158]查显杰,傅容珊,戴志阳,等.基于小波包变换的SAR干涉图去噪研究[J].吉林大学学报:地球科学版,2008,38(3):489-494.
    [159]Rao B S., Murthy I V, Rao V C. A successive approximation method of deriving residual gravity [J]. Geo-exploration,1975,13(2):129-135.
    [160]罗抟翼,程桂芬.随机信号处理与控制基础[M].北京:化学工业出版社,2002.
    [161]韩兆红,吴燕冈,张成海,孙鹏飞.自相关滤波法提取重磁场中弱异常[J].世界地质,2010:29(1):124-129.
    [162]董焕成.东北地区1:100万航磁图匹配滤波及地质解释[J].长春地质学院学报,1987,17(4):461-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700