用户名: 密码: 验证码:
PMSM直接转矩控制方法及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电动机(PMSM)具有体积小、功率密度大和效率高等优点,随着电力电子技术及现代控制理论的迅速发展,永磁同步电机得到了广泛地应用。PMSM直接转矩控制(DTC)动态性能好,系统鲁棒性强,已成为学术界研究热点。本文在PMSM传统DTC理论基础上,深入研究PMSM DTC速度环控制方法、定子磁链估计以及无传感器运行转速估计方法,并进行相应地仿真分析和实验研究。
     本文的主要内容和创新点:
     1.设计了基于自抗扰控制(ADRC)PMSM DTC速度调节器。ADRC采用非线性控制方法,由跟踪-微分器(TD)、扩张状态观测器(ESO)、非线性状态误差反馈(NLSEF)和扰动补偿四部分组成,具有实时估计系统所受扰动并进行补偿的能力。为了抑制负载及摩擦力矩变化等外部扰动,以及电机参数变化等内部扰动对PMSM伺服系统产生的影响,将以上参数的变化视为系统所受扰动,利用TD对给定转速信号提取合适的过渡过程;根据实际转速信号利用ESO实时估计系统状态及系统所受扰动量;利用NLSEF得到电磁转矩初始控制量,在此基础上,将扰动估计值进行实时前馈补偿,得到电磁转矩最终控制量,提高系统对电磁转矩的控制能力。仿真和实验结果表明,从低速到高速运行范围内,该方案均有效地削弱了系统运行中所受扰动影响,抗干扰能力得到了较大程度地提高。
     2.设计了基于扩展卡尔曼滤波器(EKF)PMSM定子磁链和转速估计方法。传统DTC系统一般采用电压积分法计算定子磁链,由于积分器存在误差累积和积分饱和等问题,定子磁链估计常常不准确;此外,机械速度传感器的使用带来电机体积增大、维护不便等问题。本文设计的磁链和转速估计观测器建立在两相静止坐标系下,将PMSM电压和电流作为EKF观测器的输入信号,以定子磁链、转速作为EKF观测器状态变量,能够同时进行磁链和转速估计。算法采用估计误差均方差最小原则,因而避免了传统方法的缺陷。仿真和实验结果表明,该方法有效地降低了磁链和转矩脉动,提高了PMSM DTC系统稳态运行性能,转速估计准确,实现了无传感器运行,同时保持了DTC固有的动态响应快的优点。
     3.研究了基于EKF永磁同步电机SVM直接转矩控制。传统DTC采用滞环比较器和开关电压矢量选择表,是产生磁链和转矩脉动的主要原因之一,同时导致逆变器开关频率不恒定。本文第五章分析电压空间矢量调制技术(SVM)两种实现方法,指出两种实现方法的区别,分析表明基于SVM第二种实现方法逆变器开关损耗更小。将EKF磁链和转速观测器与SVM DTC有效结合,取代传统DTC滞环比较器和开关电压矢量选择表,保证逆变器开关频率恒定,进一步减小磁链和转矩脉动。通过仿真和实验对该方法进行了验证。
Permanent Magnet Synchronous Motors (PMSM) have many advantages of small size, high power density and high efficiency. These advantages are responsible for its wide utilization with the rapid development of the power electronics technology and modern control theory. Direct torque control (DTC) of PMSM theory does not need rotating coordinate transformation, and has good dynamic performance. Thus, it has become a hot spot of academic research. Based on the traditional PMSM DTC theory, speed-loop control strategy, stator flux estimation and speed estimation methods are deeply researched in this paper. The corresponding simulation and experimental study is done.
     The main contents and innovations of this paper are as following.
     1. Speed regulator based on ADRC of PMSM DTC is designed. ADRC adopts nonlinear control method, and is composed of track-differentiator (TD), extended state observer (ESO), nonlinear state error feedback (NLSEF) and the disturbance compensation. Disturbance can be estimated and compensated real time. In order to suppress external disturbances such as changes in loads and friction torque, and internal disturbances such as motor parameters changes in the PMSM servo system, the changes of above parameters are seen as a PMSM servo system disturbance. The appropriate given speed transition signal is extracted by TD. The system states and systems disturbance are real-time estimated by ESO according to the actual speed signal. The initial electromagnet torque value is got by NLSEF. The estimated value of disturbance is compensated feedforward in real time. Then, the final electromagnet torque value is got. The control ability of the electromagnetic torque is improved in this method. Simulation and experimental results show that, from low to high speed operating range, the impact of disturbance can be effectively weaken, and the anti-interference ability has been greatly improved.
     2. Stator flux linkage and speed estimation based on extended kalman filter (EKF) is designed. Voltage integration stator linkage computation method in the traditional DTC has the disaventages of error accumulation and saturation, which results to inaccurate stator flux estimation. There are big ripples on flux linkage and torque in traditional DTC system; meanwhile, increased motor volume and inconvenience maintenance is casused by mechanical speed sensor. The flux linkage and speed observer is based on two-phase stationary coordinate. The EKF observer is designed with the input signals of PMSM voltage and current and the state variables of stator flux linkage and speed. Stator flux linkage and speed are estimated at the same time. The principle of the smallest mean square of estimation error is adopted in the algorithm. The shortcomings of traditional method are avoided. Simulation and experimental results show that, the ripples on flux linkage and torque are effectively reduced, the performance of PMSM DTC system steady-state operation is improved, the speed is accurately estimated and speed sensorless operation is achieved, and the excellent dynamic performance of DTC is maintained.
     3. PMSM DTC based on EKF and SVM is researched. Hysteresis comparators and switching voltage vector selection table in traditional DTC result to big ripples on flux linkage and inconstant switching frequency. The two implementation methods of voltage Space vector modulation (SVM) are analyzed in Chapter five. The difference between the two implementation methods is pointed out. The smaller inverter switching loss based on the second SVM implementation method is concluded. Stator flux linkage and speed estimation based on EKF and SVM DTC is combined effctively. Hysteresis comparators and switching voltage vector selection table are replaced. Switching frequency is ensured constant and flux linkage and torque ripples are reduced further. Simulation and experimental results have verified this method.
引文
仪表与自动化,2005,8:22~24
    [19]杨耕,罗应立,等,电机与运动控制系统,北京:清华大学出版社,2006,336~341
    [20]陈伯时,电力拖动自动控制系统,北京:机械工业出版社,2000,160~163,175~176
    [21]徐艳平,钟彦儒,杨惠,永磁同步电机矢量控制和直接转矩控制的研究,电力电子技术,2008,42(1):60~62
    [22] Zhou D J, Zhao Z M, Wang S M, et al. Vector control for a twelve-phase synchronous motor. International Conference on Electrical Machines and Systems, 2007,10:1037~1040
    [23]齐放,邓智泉,仇志坚,等,一种永磁同步电机无速度传感器的矢量控制,电工技术学报,2007,22(10):30~34,41
    [24]葛红娟,周波,苏国庆,等,矩阵变换器-永磁同步电机矢量控制系统的新型电流控制方法,电工技术学报,2007,22(3):21~26
    [25] Molavi R, Shojaee K, Khaburi D A. Optimal vector control of permanent magnent synchronous motor. IEEE Power and Energy Conference, 2008: 249 ~253
    [26] Konghirun M, Xu L. A fast transient-current control strategy in sensorless vector-controlled permanent magnet synchronous motor. IEEE Transction on Power Electronics, 2006,21(5):1508~1512
    [27] Morimoto S, Tong Y, Takeda Y, et al. Loss minimization control of permanent magnent synchronous motor drives. IEEE Transaction on Industrial Electronics, 1994,41(5):511~517
    [28]杨明,牛里,王宏佳,等,PMSM矢量控制系统的精确仿真研究,电气传动,2009,39(10):14~17,66
    [29]王占友,谢顺依,基于修正因子的无速度传感器PMSM模糊控制器研究,武汉理工大学学报:交通科学与工程版,2009,33(3):573~575
    [30]吴姗姗,李永东,基于信号注入的极低速PMSM无速度传感器控制,电气传动,2008,38(1):19~22
    [31]张绍,周波,葛红娟,基于双空间矢量调制的矩阵变换器-永磁同步电机矢量控制系统,电工技术学报,2007,22(4):47~52
    [32] Mademlis C, Kioskeridis I, Margaris N. Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives. 2004,19(4):715~723
    [33] Mademlis C, Margaris N.Loss minimization in vector-controlled interior仪表与自动化,2005,8:22~24
    [19]杨耕,罗应立,等,电机与运动控制系统,北京:清华大学出版社,2006,336~341
    [20]陈伯时,电力拖动自动控制系统,北京:机械工业出版社,2000,160~163,175~176
    [21]徐艳平,钟彦儒,杨惠,永磁同步电机矢量控制和直接转矩控制的研究,电力电子技术,2008,42(1):60~62
    [22] Zhou D J, Zhao Z M, Wang S M, et al. Vector control for a twelve-phase synchronous motor. International Conference on Electrical Machines and Systems, 2007,10:1037~1040
    [23]齐放,邓智泉,仇志坚,等,一种永磁同步电机无速度传感器的矢量控制,电工技术学报,2007,22(10):30~34,41
    [24]葛红娟,周波,苏国庆,等,矩阵变换器-永磁同步电机矢量控制系统的新型电流控制方法,电工技术学报,2007,22(3):21~26
    [25] Molavi R, Shojaee K, Khaburi D A. Optimal vector control of permanent magnent synchronous motor. IEEE Power and Energy Conference, 2008: 249 ~253
    [26] Konghirun M, Xu L. A fast transient-current control strategy in sensorless vector-controlled permanent magnet synchronous motor. IEEE Transction on Power Electronics, 2006,21(5):1508~1512
    [27] Morimoto S, Tong Y, Takeda Y, et al. Loss minimization control of permanent magnent synchronous motor drives. IEEE Transaction on Industrial Electronics, 1994,41(5):511~517
    [28]杨明,牛里,王宏佳,等,PMSM矢量控制系统的精确仿真研究,电气传动,2009,39(10):14~17,66
    [29]王占友,谢顺依,基于修正因子的无速度传感器PMSM模糊控制器研究,武汉理工大学学报:交通科学与工程版,2009,33(3):573~575
    [30]吴姗姗,李永东,基于信号注入的极低速PMSM无速度传感器控制,电气传动,2008,38(1):19~22
    [31]张绍,周波,葛红娟,基于双空间矢量调制的矩阵变换器-永磁同步电机矢量控制系统,电工技术学报,2007,22(4):47~52
    [32] Mademlis C, Kioskeridis I, Margaris N. Optimal efficiency control strategy for interior permanent-magnet synchronous motor drives. 2004,19(4):715~723
    [33] Mademlis C, Margaris N.Loss minimization in vector-controlled interiorpermanent-magnet synchronous motor drives. 2002,49(6):1344~1347
    [34] Chang Kuan Teck, Low Teck-Seng, Lee Tong-Heng. An optimal speed controller for permanent-magnent synchronous motor drives. IEEE Transaction on Industrial Electronics, 1994, 41(5),503~510
    [35] Chen Jiunn-Jiang, Chin Kan-Ping. Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors. IEEE Transaction on Power Electronics, 2003,18(4):929~936
    [36] Lin Faa-Jeng, Chou Po-Huan. Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network. IEEE Transaction on Industrial Electronics, 2009, 56(1):178~193
    [37] Saleh K I, Mohammed O A, Badr M A. Field-oriendted vector control of synchronous motors with additional field winding. IEEE Transaction on Energy Conversion, 2004,19(1):95~101
    [38] Zhong L, Rahman M F, Hu W Y, et al. A direct torque controller for permanent magnet synchronous motor drives. IEEE Transactions on Energy Conversion, 1999,14(3):637~642
    [39] Mohamed Y.A.-R.I. A newly designed instantaneous-torque control of direct-drive PMSM servo actuator with improved torque estimation and control characteristics. IEEE Transaction on Industrial Electronics, 2007, 54(5): 2864~ 2873
    [40]王宝仁,张承瑞,贾磊,永磁同步电机低脉动直接转矩控制建模与仿真,电机与控制学报,2007,11(3):221~226
    [41] Paicu M C, Boldea I, Andreescu G D, et al. Very low speed performance of active flux based sensorless control: interior permanent magnet synchronous motor vector control versus direct torque and flux control. IET Electric Power Applications,2009,3(6):551~561
    [42]李耀华,商蓓,刘卫国,等,永磁同步电机直接转矩控制转矩脉动抑制研究,电气传动,2008,38(3):21~24
    [43]李耀华,刘卫国,永磁同步电机直接转矩控制不合理转矩脉动抑制研究,西边工业大学学报,2007,25(5):667~671
    [44] Inoue Y, Morimoto S, Sanada M. Examination and linearization of Torque control system for direct torque controlled IPMSM. IEEE Transactions on Industry Applications, 2010,46(1):159~166
    [45] Faiz J, Mohseni-Zonoozi S H. A novel technique for estimation and control ofstator flux of a salient-pole PMSM in DTC method based on MTPF. IEEE Transaction on Industrial Electronics, 2003,50(2):262~271
    [46]徐艳平,钟彦儒,基于占空比控制的永磁同步电机新型直接转矩控制策略,电工技术学报,2009,24(10):27~32
    [47]崔皆凡,王贺敏,王成元,等,基于滑模变结构永磁同步电机的直接转矩控制,沈阳工业大学学报,2008,30(2):143~147
    [48]郑黎明,李国平,基于自适应模糊控制器的永磁同步电机直接转矩控制,2007,40(3):26~29
    [49] Haque M E, Rahman M F. Incorporating control trajectories with the direct torque control scheme of interior permanent magnet synchronous motor drive. IET Electric Power Applications, 2009,3(2):93~101
    [50] Zhuang Xu, Rahman, M F. Direct torque and flux regulation of an IPM synchronous motor drive using variable strcture control approach. IEEE Transaction on Power Electronics, 2007,22(6):2487~2498
    [51]徐艳平,钟彦儒,永磁同步电机最小损耗控制的仿真研究,系统仿真学报,2007,19(22):5283~5286
    [52]贾洪平,贺益康,永磁同步电机直接转矩控制无传感器运行研究,浙江大学学报:工学版,2007,41(9):1592~1597
    [53]孙丹,贺益康,何宗元,基于容错逆变器的永磁同步电机直接转矩控制,浙江大学学报:工学版,2007,41(7):1101~1106,1131
    [54]李洪珠,付兴武,梁鸿雁,低脉动转矩的永磁同步电机直接转矩控制系统的研究,电气传动自动化,2005,27(3):34~36
    [55]田淳,胡育文,永磁同步电机直接转矩控制系统理论及控制方案的研究,电工技术学报,2002,17(1):7~11
    [56] Zhong L , Rahman M F, Hu W Y, et al. Analysis of direct torque control in permanent magnet synchronous motor drives. IEEE Transactions on Power Electronics, 1997,12(3):528~536
    [57]王敏,PID调节及参数整定,科技创新导报,2009,31:57
    [58]韩京清,自抗扰控制技术,前沿科学,2007,1(1):24~31
    [59]韩京清,从PID技术到“自抗扰控制”技术,控制工程,2002,9(3):13~18
    [60]刘金琨,滑模变结构控制MATLAB仿真,北京:清华大学出版社,2005,3~5
    [61] Baik I, Kim K, Youn M, Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique, IEEE Trans.on Control Systems Technology,2000,8(1):47~54
    [62] Han Y, Choi J, Kim Y. Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimation. IEEE Transaction on Magnetics,2000,36(5):3588~3591
    [63]刘军,王洋,黄盟芝,一种新型趋近律的滑模控制在永磁同步电动机中的应用,青岛科技大学学报(自然科学版),2009,30(5):457~464
    [64]汪海波,周波,方斯琛,永磁同步电机调速系统的趋近律滑模控制,微电机,2009,42(10):44~48
    [65]许强,贾正春,李郎如,永磁同步电动机的模型参考自适应速度控制,电气传动,1998,28(5):3~7
    [66] Kenneth R Shouse, David G Taylor. A digital self-tuning tracking controller for permanent-magnet synchronous motors. IEEE Transaction on Control Systems Technology ,1994,2(4):412~422
    [67]刘刚,李华德,杨丽娜,永磁同步电机的非线性自适应解耦控制,西安交通大学学报,2009,43(8):101~106
    [68]刘美俊,王耀南,基于参数自适应PID的交流电机智能控制方法研究,电气开关,2004,42(5):24~26
    [69]蔡自兴,人工智能控制,北京:化学工业出版社,2005,1~2
    [70]冉振亚,杨超,曹文明,等,永磁同步电动机调速系统的模糊控制与仿真,重庆大学学报(自然科学版),2004,27(7):32~35
    [71]吴浦升,基于模糊控制的永磁同步电机直接转矩控制研究,硕士学位论文,西安理工大学,2004
    [72]于亲波,基于智能优化的模糊PID控制算法研究,硕士学位论文,华北电力大学,2004
    [73]周寰,纪志成,基于DSP永磁同步电机模糊PI控制系统研究,电力电子技术,2004,38(5):72-73,79
    [74]胡晓磊,喻俊志,一种新型模糊PID控制器在伺服系统的应用,电力电子技术,2009,43(11):35~37
    [75]李静,程小华,基于模糊PI控制的永磁同步电机直接转矩控制系统,防爆电机,2010,45(152):24~27
    [76]王竹林,俞迪峰,徐生林,交流伺服系统中PID参数模糊自整定控制器,机电工程,2009,26(1):57~59
    [77]郝东丽,郭丹颖,贾凯,基于神经网络的永磁同步电机矢量控制,电力电子技术,2004,38(4):54~55,61
    [78]李鸿儒,白湘波,顾树生,等,基于神经网络的永磁同步电机的鲁棒控制,东北大学学报(自然科学版),2002,22(4):362~365
    [79]林海,严卫生,李宏,等,基于BP神经网络和模糊控制的PMSM-DTC研究,系统仿真学报,2009,21(5):1403~1405
    [80]宋传玉,永磁同步电机的模糊神经网络控制方法,电机与控制应用,2008,35(6):24~26
    [81]乔维德,基于神经网络模糊控制的永磁同步电动机直接转矩控制,微特电机,2008,8:36~39
    [82]郭庆鼎,王军。基于在线辨识补偿的永磁直线同步电机模型参考自适应神经网络速度控制,电气传动,2000,30(4),16~19
    [83]沈显庆,王成元,基于模型参考自适应模糊神经网络的永磁直线同步电动机速度伺服系统,电机与控制学报,2005,9(5):425~427
    [84]乔维德,基于免疫遗传模糊神经网络的永磁同步电机控制,电气传动,2008,38(5):18~21
    [85]李文江,杨崔,王涛,基于蚁群优化的模糊神经网络控制器的应用研究,工况自动化,2009,3:14~16
    [86]贾洪平,PMSM DTC无传感器运行及传感器集成研究,博士学位论文,浙江大学,2006
    [87]许俊峰,徐英雷,冯江华,等,基于改进型积分器的永磁同步电机直接转矩控制,电工技术学报,2004,19(7):77~80
    [88]韦立祥,刘丛伟,孙旭东,等,一种消除电压型磁链观测中直流偏置误差的新方法,清华大学学报(自然科学版),2001,41(9):51-54
    [89]杨立永,李正熙,赵仁涛,等,基于可编程级联数字低通滤波器的定子磁链估计器,电气传动,2007,37(10):25~28
    [90]何志明,廖勇,向大为,定子磁链观测器低通滤波器的改进,中国电机工程学报,2008,28(18):61~65
    [91]郎宝华,刘卫国,周熙炜,等,基于定子磁链全维状态观测器的直接转矩控制,电力电子技术,2007,41(11):29~30,33
    [92]冯江华,桂卫华,永磁同步电机定子磁链观测方法研究,电气传动,2008,38(6):20~22
    [93]齐忠霞,朱小平,基于神经网络与模糊逻辑的直接转矩控制系统,西安石油大学学报(自然科学版),2005,20(1):62~65
    [94]贾洪平,贺益康,一种适合DTC应用的非线性正交反馈补偿磁链观测器,中国电机工程学报,2006,26(1):101~105
    [95]冯江华,许峻峰,基于定子磁链自适应观测的永磁同步电机直接转矩控制系统,中国电机工程学报,2006,26(12):1222~127
    [96]崔晶,基于ESO磁链观测器的直接直接控制的研究,2009,17(8):50~52
    [97]王丽梅,赵艇,永磁同步电机鲁棒自适应位置控制,沈阳工业大学学报,2008,30(1):16~18,37
    [98]郎宝华,刘卫国,王永强,基于卡尔曼滤波器的永磁同步电机定子磁链观测研究,微电机,2007,40(6):17~20
    [99] Maidu M, Bose B K. Rotor position estimation scheme of a permanent magnet synchronous machine for high performance variable speed drive. IEEE IAS Annual Meeting, 1992, (1): 48~53
    [100] Shigeo Morimoto, Keisuke Kawamoto, Yoji Takeda. Sensorless control of salient-pole pmsm based on extended EMF in rotating reference frame. IEEE Trans. on Industry Applications, 2002, 38(4): 1054~1061
    [101] French C, Acarnley P. Control of permanent magnet motor drives using a new position estimation technique. IEEE Transaction on Industry Applications, 1996, 32(5): 1089~1097
    [102] Shin Nakashima, Yuya Inagaki. Ichiro Miki, Sensorless initial rotor estimation of surface permanent synchronous motor. IEEE Transaction on Industry Applications, 2000,36(6):1598~1603
    [103] Jones L A, Lang J H. A state observer for permanent magnet synchronous motors. IEEE Transaction on Industrial Electronics, 1989, 36(3):374~382
    [104] Tatematsu K, Hamada D, Uchida K. Sensorless control for permanent magnet synchronous motor with reduced order observer. IEEE Transaction on Industrial Electronics,1996, 43(4): 492~497
    [105] Jun Hu, Dongqi Zhu, Yongdong Li, et al. Application of sliding observer to sensorless permanent magnet synchronous motor drive system. PESC '94, 1994(1):532~536
    [106] Yiguang Chen, Tao Fu, Shengzhi Xing. Sensorless control for permanent magnet synchronous motor using sliding mode observer. Intelligent Control and Automation, 2006, 2:8079~8083
    [107] Urlep E, Jezernik K, Kos D. Sensorless sliding-mode control of PM synchronous machine. EPE-PEMC 2004 11th International Power Electronics and Motion Control Conference, 2004(3): 63~65
    [108] Ilioudis V C, Margaris N I. PMSM sensorless speed estimation based on slidingmode observers. 2008, 2838~2843
    [109] Han Yoon-seok, Choi Jung-soo, Kim Young-seok. Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator. IEEE Transaction on Magnetics,2000,36(51):3588~3591
    [110] Li Changsheng, Elbuluk M. A robust sliding mode observer for permanent magnet synchronous motor drives. IEEE Industrial Electronics Society, 2002,2:1014~1019
    [111] Bolognani S, Tubiana L, Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transaction on Industry Applications, 2003(39):1741~1747
    [112] Borsjie P, Chan T F, Wong Y K. A comparative study of Kalman filtering for sensorless control of a permanent-magnet synchronous motor drive. Electric Machines and Drives, 2005:815~822
    [113] Zhe Shang, Rongxiang Zhao, Jing Wu. Sensorless control method of PMSM based on extended kalman filter. Intelligent Control and Automation, 2006, 8093~8097
    [114] Dhaouadi R, Mohan N, Norum L. Design and implementation of an extended kalman filter for the state estimation of a permanent magnet synchronous motor. IEEE Transatcion on Power Electronics, 1991, 6(3):491~497
    [115] Boussak M. Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive. IEEE Transaction on Power Electronics, 2005,20(6): 1413 ~1422
    [116]齐放,邓智泉,仇志坚,等,基于MRAS的永磁同步电机无速度传感器,电工技术学报,2007,22(4):53~58
    [117]齐冀龙,田彦涛,龚依民,等,无传感器PMSM直接计算与自适应算法,吉林大学学报(信息科学版),2009,27(1):23~30
    [118]邱佰平,凌云,基于MRAS的新型永磁同步电机的速度辨识方案,机电工程技术,2009,38(10):32~35
    [119]王庆龙,张崇巍,张兴,基于变结构MRAS辨识转速永磁电机矢量控制系统,系统仿真学报,2007,19(22):5230~5233
    [120]孙凯,自抗扰控制策略在永磁同步电动机伺服系统中的应用研究与实现,博士学位论文,天津大学,2007
    [121] Corley M J, Lorenz R D. Rotor position and velocity estimation for a permanentmagnet synchronous machine at standstill and high speed. IEEE IAS Annual Meeting, San Diego, 1996(1): 36~4
    [122] Jang Ji-Hoon, Sul Seung-Ki, Ha Jung-Ik. Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency. IEEE Transaction on Industry Applications, 2003,39(4):1031~1039
    [123] Jang Ji-Hoon, Sul Seung-Ki, Ha Jung-Ik. Analysis of permanent magnet machine for sensorless control based on high freuqency signal injection. Industry Applications Conference,2003,1:592~598
    [124] Corley M J, Lorenz R D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous motor at standstill and high speeds. IEEE Transaction on Industry Applications, 1998, 34(4):784~789
    [125]王成元,夏加宽,杨俊友,等,电机现代控制技术,北京:机械工业出版社,2007,79~80
    [126]陈伯时,电力拖动自动控制系统,北京:机械工业出版社,2000.177~178
    [127]王成元,夏加宽,杨俊友,等,电机现代控制技术,北京:机械工业出版社,2007,157~159
    [128]韩京清,自抗扰控制技术-估计补偿不确定因素的控制技术,北京:国防工业出版社,2008,17~18
    [129]韩京清,自抗扰控制器及其应用,控制与决策,1998,13(1):19~23
    [130]韩京清,利用非线性特性改进PID控制律,信息与控制,1995,24(6):356~264
    [131]苏位峰,异步电机自抗扰矢量控制调速系统,博士学位论文,清华大学,2004
    [132]韩京清,自抗扰控制技术-估计补偿不确定因素的控制技术,北京:国防工业出版社,2008,58
    [133]韩京清,王伟,非线性跟踪微分器,系统科学与数学,1994,14(2):177~183
    [134]纪恩庆,肖维荣,二阶自抗扰控制器的参数简化,自动化仪表,2007,28(5):27~31
    [135]宋金来,甘作新,韩京清,自抗扰控制技术滤波特性的研究,控制与决策,2003,18(1):110~119
    [136]朴军,韩京清,自抗扰控制器(ADRC)仿真软件,系统仿真学报,1999,11(5):383~387
    [137]李海生,朱学峰,自抗扰控制器参数整定与优化方法研究,控制工程,2007,11(5):419~423
    [138]于希宁,尹水红,闫智辉,等,自抗扰控制器的发展及其应用,仪器仪表用户,2007,14(4):1~2
    [139]韩京清,一类不确定对象的扩张状态观测器,控制与决策,1995,10(1):85~88
    [140]冯光,黄立培,朱东起,采用自抗扰控制器的高性能异步电机调速系统,中国电机工程学报,2001,21(10):55~58,120
    [141]刘志刚,李世华,基于永磁同步电机模型辨识与补偿的自抗扰控制器,中国电机工程学报,2008,28(24):118~123
    [142]黄远灿,韩京清,扩张状态观测器用于连续系统辨识,控制与决策,1998,13(4):381~384
    [143]韩京清,非线性系统的状态观测器,控制与决策,1990,5(3):57~60
    [144]韩京清,系统辨识的一种方法-状态反馈法,控制与决策,1990,5(1):13~17
    [145]韩京清,非线性控制系统中状态反馈的实现,控制与决策,1991,6(3):161~167
    [146]刘军峰,李叶松,万淑芸,基于自抗扰控制器的感应电机变频调速系统,华中科技大学学报,2008,36(6):47~49
    [147]白晶,李华德,郝智红,自抗扰控制器ADRC实现的感应电机变频调速系统,电工技术学报,2005,20(6):73~76
    [148]付梦印,邓志红,张继伟,Kalman滤波原理及其在导航系统中的应用,北京:科学出版社,2003,1~2,80~84
    [149]宋文尧,张牙,卡尔曼滤波,北京:科学出版社,1991,66~69,138~145
    [150]王志贤,最优状态估计与系统辨识,西安:西北工业大学出版社,2004,23~31
    [151]陆可,异步电机无速度传感器矢量控制系统转速估计方法的研究,硕士学位论文,西南交通大学,2005
    [152]蔡骊,感应电机无速度传感器矢量控制系统,硕士学位论文,浙江大学,2003
    [153]刘和平,TMS320LF240xDSPC语言开发应用,北京:北京航空航天大学出版社,2005,319~323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700