用户名: 密码: 验证码:
船舶动力定位系统的自抗扰控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对船舶动力定位控制系统展开了仿真建模与自抗扰控制的研究,主要的研究工作包括以下四个方面:
     1.基于实船数据建立了动力定位控制系统的仿真模型,包括系统动力学模型、实时推力分配逻辑、推进器模型以及传感器噪声模型,使得控制器的输出量能实时转化为实际工程中的控制量——螺距角和舵角,并对所建立的系统模型进行了仿真验证。
     2.作者从自抗扰控制应用研究的核心问题——扰动估计切入,首先详细分析了船舶动力定位系统中所面临的各种扰动,并将其分为低频扰动和高频扰动两类。针对低频扰动,分别对速度矢量可测量和速度矢量不可测量的情况给出了相应的抗扰控制方法;针对高频扰动,探索应用了两种自抗扰的滤波方法,然后对所提出的控制和滤波方法进行了仿真验证。最后对动力定位自抗扰控制方案效果的影响因素进行了讨论分析,为后续研究奠定了基础。
     3.提高扩张状态观测器的扰动估计精度是提高自抗扰控制性能的重要途径,针对工程实际中可能存在的情况:1)可实现观测器带宽较小;2)采样间隔大,分别给出了相应的扰动估计模型的改进方法:1)基于双ESO的扰动估计模型;2)基于高阶扰动信息的扰动估计模型,并以锚泊辅助动力定位问题为例,仿真验证了上述改进方法的有效性。
     4.针对船舶动力定位控制系统中由执行机构引起的时滞问题,本文提出一种基于预估器的采用高阶扰动信息扰动估计模型的自抗扰控制器,并以动力定位系统中第三个回路为例,分别对不考虑与其它回路耦合影响和考虑与其它回路耦合影响的情形进行了仿真计算,验证了上述自抗扰控制器对于系统含有时滞的船舶动力定位控制的有效性。
This paper focused on simulation modeling and Active Disturbance Rejection Control (ADRC) of ship Dynamic Position System (DPS), the related four research tasks are listed as follows:
     1. Simulation model of DPS was established according to the data of a real ship, including system dynamic model, real-time thrust allocation logic, thrust model and noise model of sensors, which helped transform controller outputs to engineering controlled variables, pitch angle and rudder angle, online. Simulation tests of the established system were also conducted.
     2. As the key point of ADRC is disturbance estimation, all kinds of disturbance being exerted on the ship were analyzed firstly and classified into low-frequency disturbance and high-frequency disturbance. To counteract the low-frequency part, two different disturbance rejection control methods were proposed according to different conditions-(a) when the speed is measurable and (b) when the speed is immeasurable; to cancel the high-frequency part, two kinds of filters of Active Disturbance Rejection control were introduced. Simulation tests of the above solutions were also carried out. Thereafter, discussions on the influential factors of the ADRC's performance were carried out, which provided a solid foundation for the following study.
     3. An important way to improve ADRC's performance is to enhance the disturbance estimation accuracy of Extended State Observer (ESO), so two methods,1) Double-ESO based disturbance estimation model and2) Disturbance estimation model based on higher order information of disturbance, were proposed separately to solve two engineering problems in DPS,1) The achievable bandwidth of ESO is relatively low and2) The sampling interval is relatively large. Simulation tests on the problem of thruster-assisted position mooring control verified the proposed methods.
     4. Concerning the delay produced by the thruster system of the DPS, an ADR controller based on a model-free predictor was proposed, the third loop of the DPS was taken as an example for simulation test. The impact of the coupling influences with other loops was covered in the simulation tests which helped verify the proposed method for DPS with delay.
引文
[1]赵志高,杨建民,王磊,等.动力定位系统发展状况及研究方法.海洋工程,2002,20(1):91-97.
    [2]何崇德.船舶动力定位系统的应用与实践.中国造船,2005,45(B12):279-299.
    [3]孙武.动力定位系统规范介绍.上海造船,2003,1:54-59.
    [4]Holvik J. Basics of dynamic positioning. Dynamic Positioning Conference, Houston, 1998.
    [5]余培文,陈辉,刘芙蓉.船舶动力定位系统控制技术的发展与展望.中国水运,2009,2:44-45.
    [6]S(?)rensen A J. A survey of dynamic positioning control systems. Annual reviews in control,2011,35(1):123-136.
    [7]Balchen J G, Jenssen N A, Saelid S. Dynamic positioning using Kalman filtering and optimal control theory. IFAC/IFIP symposium on automation in offshore oil field operation, 1976.
    [8]Balchen J G, Jenssen N A, Mathisen E, et al. A dynamic positioning system based on Kalman filtering and optimal control,1980,1(3):135-163.
    [9]S(?)rensen A J, Sagatun S I, Fossen T I. Design of a dynamic positioning system using model-based control. Control Engineering Practice,1996,4(3):359-368.
    [10]Bj(?)rnstad S. Shipshaped:Kongsberg industry and innovations in deepwater technology, 1975-2007,2009.
    [11]Tannuri E A, Agostinho A C, Morishita H M, et al. Dynamic positioning systems:An experimental analysis of sliding mode control. Control engineering practice,2010,18(10): 1121-1132.
    [12]Katebi M R, Grimble M J, Zhang Y. H∞ robust control design for dynamic ship positioning. Control Theory and Applications, IEE Proceedings,1997.
    [13]Nakmura M, Kajiwara H, Koterayama W, et al. Control system design and model experiments on thruster assisted mooring system. The Proceedings of the International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA,1997.
    [14]Tannuri E A, Donha D C. H∞ controller design for dynamic positioning of turret moored FPSO. Proceedings of the fifth IFAC conference on manoeuvring and control of marine crafts (MCMC2000),2000.
    [15]Munoz-Mansilla R, Aranda J, Diaz J M, et al. Robust control for high-speed crafts using QFT and eigenstructure assignment. IET Control Theory & Applications,2010,4(7): 1265-1276.
    [16]Liu F, Chen H. Robust receding horizon control of dynamic positioning ship. ASCE copyright Proceedings of the First International Conference on Transportation Information and Safety, Wuhan,2011.
    [17]Derensis T P. A robust linear dynamic positioning controller for a marine surface vehicle:[Master dissertation]. RHODE ISLAND:UNIVERSITY OF RHODE ISLAND,2013.
    [18]Wang X H, Wang X H, Xiao J M. Robust Controller for Ship Dynamic Positioning Based on H∞. Advanced Materials Research,2012,503:1668-1671.
    [19]Han S I, Lee J M. Precise Positioning of Nonsmooth Dynamic Systems Using Fuzzy Wavelet Echo State Networks and Dynamic Surface Sliding Mode Control. IEEE Transactions on Industrial Electronics,2013,60(11).:5124-5136.
    [20]Lin X, Xie Y, Zhao D, et al. Estimation of Observer Parameters for Dynamic Positioning Ships. Mathematical Problems in Engineering,2013,2013. http://dx.doi.org/10.1155/2013/173603.
    [2l]Vladic V, Miskovic N, Vukic Z. Quick identification and dynamic positioning controller design for a small-scale ship model. Control & Automation (MED),2012 20th Mediterranean Conference on, Barcelona,2012.
    [22]Stephens R I, Burnham K J, Reeve P J. A practical approach to the design of fuzzy controllers with application to dynamic ship positioning. Proceedings of IFAC Conference on Control Applications in Marine Systems, Trondheim, Norway,1995.
    [23]Strand J P, Fossen T I. Nonlinear output feedback and locally optimal control of dynamically positioned ships:Experimental results. Proc. of the IFAC Conf. on Control Applications in Marine Systems (CAMS'98),1998.
    [24]Fossen T I, Grovlen A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. Control Systems Technology, IEEE Transactions on,1998,6(1):121-128.
    [25]Aarset M F, Strand J P, Fossen T I. Nonlinear vectorial observer backstepping with integral action and wave filtering for ships. Proceedings of the IFAC Conference on Control Applications in Marine Systems (CAMS'98),1998.
    [26]Bertin D, Bittani S, Meroni S, et al. Dynamic positioning of a single-thruster vessel by feedback linearization. Proceedings of the 5th IFAC conference on manoeuvring and control of marine craft, Aalborg, Denmark,2000.
    [27]Strand J P, Fossen T I. Nonlinear passive observer design for ships with adaptive wave filtering:New Directions in nonlinear observer design Springer,1999,113-134.
    [28]Fossen T I, Strand J P. Passive nonlinear observer design for ships using Lyapunov methods:full-scale experiments with a supply vessel. Automatica,1999,35(1):3-16.
    [29]Loria A, Fossen T I, Panteley E. A separation principle for dynamic positioning of ships:theoretical and experimental results. Control Systems Technology, IEEE Transactions on,2000,8(2):332-343.
    [30]孙俊,石岩峰,郑晶晶.2000t海缆作业船动力定位系统控制器的仿真设计及优化.船舶工程,2011,33(3):61-64.
    [31]Xia G, Pang C, Wang H, et al. Adaptive neural network controller applied to dynamic positioning of a remotely operated vehicle. OCEANS-Bergen,2013 MTS/IEEE, Bergen,2013.
    [32]How B V E, Ge S S, Choo Y S. Dynamic load positioning for subsea installation via adaptive neural control. Oceanic Engineering, IEEE Journal of,2010,35(2):366-375.
    [33]Li Y, Gu Y. Dynamic Positioning System of Semisubmersible Drilling Platform with a TS Fuzzy Neural Network Controller. Proceedings of the 2012 International Conference on Electronics, Communications and Control,2012.
    [34]Yuhua Z, Dengke J J G. Novel disturbance compensating dynamic positioning of dredgers based on adaptive backstepping.东南大学学报(英文版),2011,27(1):36-39.
    [35]杜佳璐,张显库,汪思源,等.船舶动力定位系统的自适应非线性控制器设计.第二十九届中国控制会议论文集:2010.
    [36]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [37]Bessa W M, Dutra M S, Kreuzer E. Dynamic Positioning of Underwater Robotic Vehicles with Thruster Dynamics Compensation. International Journal of Advanced Robotic Systems, 2013,10:1-8.
    [38]Kongsberg M. Dynamic positioning-DP systems. http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/14E17775E088ADC2C1256A4700319B 04?0penDocument.
    [39]王元慧.模型预测控制在动力定位系统中的应用:(硕士学位论文).哈尔滨:哈尔滨工程大学,2006.
    [40]席裕庚,耿晓军,陈虹.预测控制性能研究的新进展.控制理论与应用,2000,17(4):469-475.
    [41]史斌杰,吴喆莹.动力定位系统的最新技术进展分析.上海造船,2011,3:43-45.
    [42]刘江.显式模型预测控制及其在非线性控制中的应用:(硕士学位论文).杭州:浙江工业大学,2010.
    [43]Qin S J, Badgwell T A. A survey of industrial model predictive control technology. Control engineering practice,2003,11(7):733-764.
    [44]Bemporad A. Model predictive control design:New trends and tools. Decision and Control,2006 45th IEEE Conference on, San Diego, CA,2006.
    [45]Sakizlis V, Perkins J D, Pistikopoulos E N. Recent advances in optimization-based simultaneous process and control design. Computers & Chemical Engineering,2004,28(10): 2069-2086.
    [46]Morari M, Baric M. Recent developments in the control of constrained hybrid systems. Computers & chemical engineering,2006,30(10):1619-1631.
    [47]Kjerstad 0 K, Skjetne R, Jenssen N A. Disturbance rejection by acceleration feedforward:Application to dynamic positioning.18th IFAC World Congress, Milano, Italy, 2011.
    [48]Proefschrift. Dynamic Positioning of Ships A nonlinear control design study:[Doctoral dissertation]. Bahawalpur:Islamia University,2012.
    [49]高志强.控制工程的抗扰范式Proceedings of the 29th Chinese Control Conference: 2010.
    [50]韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术.北京:国防工业出版社,2008.
    [51]Han J. From PID to active disturbance rejection control. Industrial Electronics, IEEE transactions on,2009,56(3):900-906.
    [52]Gao Z. Scaling and bandwidth-parameterization based controller tuning. Proceedings of the American Control Conference,2003.
    [53]Qing Z, Zhiqiang G. On practical applications of active disturbance rejection control. Control Conference (CCC),2010 29th Chinese, Beijing,2010.
    [54]Zheng Q, Gao L Q, Gao Z. On validation of extended state observer through analysis and experimentation. Journal of dynamic systems, measurement, and control,2012,134(2): 1-6.
    [55]黄一,薛文超.自抗扰控制:思想,应用及理论分析.系统科学与数学,2012,32(10):1287-1307.
    [56]Guo B, Zhao Z. On convergence of tracking differentiator. International Journal of Control,2011,84(4):693-701.
    [57]Guo B, Zhao Z. On the convergence of an extended state observer for nonlinear systems with uncertainty. Systems & Control Letters,2011,60(6):420-430.
    [58]Guo B, Zhao Z. On convergence of nonlinear active disturbance rejection for SISO systems. Control and Decision Conference (CCDC),2012 24th Chinese, Taiyuan,2012.
    [59]Guo B, Zhao Z. On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty. IET Control Theory & Applications,2012,6(15): 2375-2386.
    [60]Guo B, Zhao Z. On Convergence of the Nonlinear Active Disturbance Rejection Control for MIMO Systems. SIAM Journal on Control and Optimization,2013,51(2):1727-1757.
    [61]Achieve improved motion and efficiency for advanced motor control designs in minutes with TI's new InstaSPIN(TM)-MOTION technology. The Wall Street Journal.2013. http://online.wsj.com/article/PR-CO-20130418-907338.html?mod=googlenews_wsj.
    [62]Herbst G. A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners. Electronics,2013,2(3):246-279.
    [63]Ti. TMS320F28069M,TMS320F28068MInstaSPIN(TM)-MOTION Software Technical Reference Manual:TEXAS INSTRUMENTS,2013.
    [64]黄健.船舶航行自抗扰控制器的研究与实现:(硕士学位论文).广州:华南理工大学,2010.
    [65]陈文文.船舶航向非线性系统自抗扰控制器的仿真研究:(硕士学位论文).济南:山东大学,2008.
    [66]王先洲.船舶及潜艇操纵中的鲁棒控制研究:(博士学位论文).武汉:华中科技大学,2006.
    [67]于萍,刘胜.非线性自抗扰控制器在船舶减摇鳍系统中的应用.哈尔滨工程大学学报,2002,23(5):7-11.
    [68]邱琦.基于自抗扰控制技术的自动操舵仪的设计与实现:(硕士学位论文).大连:大连海事大学,2012.
    [69]李荣辉.欠驱动水面船舶航迹自抗扰控制研究:(博士学位论文).大连:大连海事大学,2013.
    [70]刘文江.欠驱动水面船舶航向,航迹非线性鲁棒控制研究:(博士学位论文).济南:山东大学,2012.
    [71]刘振业.全垫升气垫船安全航行自抗扰控制策略研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2013.
    [72]谢洪艳,谈世哲.基于ADRC的水面船舶动力定位控制技术及仿真研究.自动化技术与应用,2010,(003):5-7.
    [73]赵大威,边信黔,丁福光.非线性船舶动力定位控制器设计.哈尔滨工程大学学报,2011,32(1):57-61.
    [74]岳华.基于自抗扰的船舶动力定位控制方法研究:(硕士学位论文).哈尔滨:哈尔滨工程大学,2012.
    [75]王丽娜.船舶动力定位系统控制器的设计与仿真:(硕士学位论文).大连:大连海事大学,2012.
    [76]高峰.船舶动力定位自抗扰控制及仿真的研究:(硕士学位论文).大连:大连海事大学,2013.
    [77]郝立飞.多模块船协调动力定位控制方法研究:(硕士学位论文).哈尔滨:哈尔滨工程大学,2011.
    [78]彭建.救助船舶动力定位控制系统及其仿真的研究:(硕士学位论文).大连:大连海事大学,2012.
    [79]雷正玲.救助船动力定位智能控制及仿真的研究:(硕士学位论文).大连:大连海事大学,2011.
    [80]摩根,耿惠彬.近海船舶的动力定位.北京:国防工业出版社,1984.
    [81]astrom K J, Hagglund T. The future of PID control. Control engineering practice,2001, 9(11):1163-1175.
    [82]Bissell C C. The'First All-Union Conference on Automatic Control', Moscow, December 1940. IEEE Control Systems Magazine,2002,22(1):15-21.
    [83]Xue W, Huang Y. Comparison of the DOB based control, A special kind of PID control and ADRC. American Control Conference (ACC),2011,2011.
    [84]Xue W, Huang Y. On frequency-domain analysis of ADRC for uncertain system. American Control Conference (ACC), Washington, DC,2013.
    [85]S(?)rensen A J. Structural issues in the design and operation of marine control systems. Annual Reviews in Control,2005,29(1):125-149.
    [86]Lindegaard K. Acceleration feedback in dynamic positioning:[Doctoral dissertation]. Trondheim:Norwegian University of Science and Technology,2003.
    [87]李立国.基于SQP算法的动力定位推力分配的研究:(硕士学位论文).哈尔滨:哈尔滨工 程大学,2011.
    [88]贾欣乐,杨盐生.船舶运动数学模型一机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [89]杨盐生,于晓利.低速域船体流体动力的实用估算法.大连海事大学学报:自然科学版,1998,24(2):6-10.
    [90]Fossen T I, Strand J P. Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs:experimental results. Automatica,2001,37(5):701-715.
    [91]刘胜.现代船舶控制工程.北京:科学出版社,2010.32-33.
    [92]Kalman R E. A new approach to linear filtering and prediction problems. Journal of basic Engineering,1960,82(1):35-45.
    [93]徐荣华,王钦若,宋亚男.半潜式海洋平台动力定位控制系统研究现状与进展.南京信息工程大学学报:自然科学版,2009,1(4):323-328.
    [94]Mathworks. Stateflow and stateflow coder user's guide version 5.
    [95]Fossen T I, Johansen T A. A survey of control allocation methods for ships and underwater vehicles. Control and Automation,2006. MED'06.14th Mediterranean Conference on, Ancona,2006.
    [96]顾楠.船舶动力定位仿真技术研究:(硕士学位论文).北京:中国舰船研究院,2011.
    [97]张光澄.非线性最优化计算方法.北京:高等教育出版社,2005.
    [98]沈定安,马向能,毛海斌.大型船舶侧推器操纵效能计算.船舶力学,2004,8(2):34-41.
    [99]邵世明,赵连恩,朱念昌,等.船舶阻力.北京:国防工业出版社,1995.
    [100]Akers R. Optimal Propeller Design For Given Hull and Speed (ME 555 student):University of Michigan,1994.
    [101]钱学森,宋健.工程控制论(修订版).北京:科学出版社,1980.
    [103]Preminger J, Rootenberg J. Some considerations relating to control systems employing the invariance principle. Automatic Control, IEEE Transactions on,1964,9(3):209-215.
    [104]Ohishi K, Nakao M, Ohnishi K, et al. Microprocessor-controlled DC motor for load-insensitive position servo system. Industrial Electronics, IEEE Transactions on, 1987 (1):44-49.
    [105]Tesfaye A, Lee H S, Tomizuka M. A sensitivity optimization approach to design of a disturbance observer in digital motion control systems. Mechatronics, IEEE/ASME Transactions on,2000,5(1):32-38.
    [106]韩京清.控制理论——模型论还是控制论.系统科学与数学,1989,9(4):328-335.
    [107]任俊生.船舶运动与控制(研究生讲义):大连海事大学航海技术研究所,2008.
    [108]Fossen T I. Guidance and control of ocean vehicles. Wiley,1994.
    [109]Newman J N. Marine Hydrodynam. Cambridge,1977.
    [110]Faltinsen 0. Sea loads on ships and offshore structures. Cambridge university press, 1993.
    [111]边信黔,付明玉,王元慧.船舶动力定位.北京:科学出版社,2011.
    [112]Saelid S, Jenssen N, Balchen J. Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control. Automatic Control, IEEE Transactions on, 1983,28(3):331-339.
    [113]Gao Z. On the centrality of disturbance rejection in automatic control. ISA transactions,2013. http://dx.doi.org/10.1016/j.isatra.2013.09.012.
    [114]韩京清.一类不确定对象的扩张状态观测器.控制与决策,1995,10(1):85-88.
    [115]韩京清.扩张状态观测器参数与菲波纳奇数列.控制工程,2008,15(S1):1-3.
    [116]邵立伟,廖晓钟,夏元清,等.三阶离散扩张状态观测器的稳定性分析及其综合.信息与控制,2008,37(2):135-139.
    [117]韩京清,张荣.二阶扩张状态观测器的误差分析.系统科学与数学,1999,19(4):465-471.
    [118]冯亮,马晓军,李华.基于扩张状态观测器滤波的坦克炮控系统模型参考自适应控制.兵工学报,2009,(10):1375-1381.
    [119]王丽君,苍黄林,李擎,等.基于数据的二阶线性扩张状态观测滤波器.北京理工大学学报,2012,32(005):488-491.
    [120]林飞,孙湖,郑琼林,等.用于带有量测噪声系统的新型扩张状态观测器.控制理论与应用,2005,22(6):995-998.
    [121]宋金来,甘作新,韩京清.自抗扰控制技术滤波特性的研究.控制与决策,2003,18(1):110-112.
    [122]武利强,林浩,韩京清.跟踪微分器滤波性能研究.系统仿真学报,2004,16(4):651-653.
    [123]朱建鸿,张兆靖,杨慧中.基于跟踪-微分器的扩张状态观测器.第25届中国控制会议论文集(上册):2006.
    [124]韩京清.从PID技术到“自抗扰控制”技术.控制工程,2002,9(3):13-18.
    [125]韩京清.自抗扰控制技术.前沿科学,2007,1(1):24-31.
    [126]韩京清,王伟.非线性跟踪一微分器.系统科学与数学,1994,14(2):177-183.
    [127]韩京清.最速反馈控制的不变性.系统科学与数学,2005,25(4):498-506.
    [128]韩京清,袁露林.跟踪微分器的离散形式.系统科学与数学,1999,19(3):268-273.
    [129]Wenchao X, Yi H, Xiaoxia Y. What kinds of system can be used as tracking-differentiator. Control Conference (CCC),2010 29th Chinese, Beijing,2010.
    [130]Guo B, Zhao Z. Weak convergence of nonlinear high-gain tracking differentiator. Automatic Control, IEEE Transactions on,2013,58(4):1074-1080.
    [131]徐勇,钟秋海.非线性跟踪-微分器的工程应用.1994年中国控制会议论文集:1994.
    [132]王新华,陈增强,袁著祉.非线性跟踪-微分器的性能分析及其改进.控制与决策,2002,17(1):112-114.
    [133]史永丽,侯朝桢.改进的非线性跟踪微分器设计.控制与决策,2008,23(6):647-650.
    [134]王宇航,姚郁,马克茂.Fal函数滤波器的分析及应用.电机与控制学报,2010,14(011):88-91.
    [135]Lv Y, Zhang H, Wu Y, et al. Realization of improvement active disturbance rejection technology based on fal function filter. Electronic Design Engineering,2011,19(8):74-77.
    [136]段慧达.一类不确定高阶非线性系统的级联自抗扰控制策略研究:(博士学位论文).长春:吉林大学,2012.
    [137]王海强,黄海.扩张状态观测器的性能与应用.控制与决策,2013,28(7):1078-1082.
    [138]Tatsumi J, Gao Z. On the enhanced ADRC design with a low observer bandwidth. Control Conference (CCC), Xi'an,2013.
    [139]王兴成,姜晓红.非线性船舶航向控制器Backstepping设计.控制工程,2002,9(5):63-65.
    [140]Trinks W. Governors and the governing of prime movers. D. Van Nostrand Company,1919.
    [141]洪碧光,王逢辰,胡玉琦,等.风流作用下锚泊船低频振荡分析及走锚预报.大连海事大学学报,1989,15(2):1-9.
    [142]杨欢,王磊,李欣.锚泊辅助动力定位研究与进展.实验室研究与探索,2012,31(4):88-92.
    [143]Barltrop N D. Floating Structures:a guide for design and analysis. Oilfield Pubns Inc,1998.
    [144]Nguyen D T, Sorensen A J. Setpoint chasing for thruster-assisted position mooring. Oceanic Engineering, IEEE Journal of,2009,34(4):548-558.
    [145]Yang Y, Zhou C, Ren J. Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems. Applied Soft Computing,2003,3(4):305-316.
    [146]Brockett R W. New issues in the mathematics of control. Mathematics unlimited-2001 and beyond,2001:189-220.
    [147]Marintek. RIFLEX(User's Manual). Trondheim,2003.
    [148]Marintek. MIMOSA(User's Documentation). Trondheim,1995.
    [149]Nguyen D T, S(?)rensen A J. Switching control for thruster-assisted position mooring. Control Engineering Practice,2009,17(9):985-994.
    [150]Walton T S, Polachek H. Calculation of transient motion of submerged cables. Mathematics of computation,1960,14(69):27-46.
    [151]Thomas D, Hearn G. Deepwater mooring line dynamics with emphasis on seabed interference effects. Offshore Technology Conference, Houston, Texas,1994.
    [152]方育平,董传杨.锚系静力计算的悬链线法.水运工程,1990,9:10-22.
    [153]侯建军,东昉,石爱国,等.锚泊状态下锚链作用力的计算方法.大连海事大学学报,2005,31(4):10-14.
    [154]王飞.船舶锚泊操纵运动预报与分析.上海交通大学学报,2012,46(008):1210-1217.
    [155]韩崇昭,张爱民,刘晓风.多变量反馈控制——分析与设计.西安:西安交通大学出版社,2011.
    [156]Zurita-Bustamante E W, Linares-Flores J, Guzman-Ramirez E, et al. A Comparison Between the GPI and PID Controllers for the Stabilization of a DC-DC "Buck" Converter:A Field Programmable Gate Array Implementation. Industrial Electronics, IEEE Transactions on,2011, 58(11):5251-5262.
    [157]Sira-Ramirez H, Matamoros-Sanchez A, Goodall R M. Flatness Based Control of a Suspension System:A GPI Observer Approach. Preprints of the 18th IFAC World congress, Milano,2011.
    [158]Luviano-Juarez A, Cortes-Romero J, Sira-Ramirez H. Synchronization of chaotic oscillators by means of Generalized Proportional Integral observers. International Journal of Bifurcation and Chaos,2010,20(05):1509-1517.
    [159]Morales R, Sira-Ramirez H. Trajectory tracking for the magnetic ball levitation system via exact feedforward linearisation and GPI control. International Journal of Control,2010, 83(6):1155-1166.
    [160]Fossen T I, Sagatun S I, S(?)rensen A J. Identification of dynamically positioned ships. Control Engineering Practice,1996,4(3):369-376.
    [161]astrom K J, Kallstrom C G. Identification of ship steering dynamics. Automatica,1976, 12(1):9-22.
    [162]Chung J C, Bien Z, Kim Y S. A note on ship-motion prediction based on wave-excitation input estimation. Oceanic Engineering, IEEE Journal of,1990,15(3):244-250.
    [163]Smith 0 J. Posicast control of damped oscillatory systems. Proceedings of the IRE, 1957,45(9):1249-1255.
    [164]Smith 0 J. A controller to overcome dead time. ISA Journal,1959,6(2):28-33.
    [165]Al-Amer S H, Al-Sunni F M. Approximation of time-delay systems. American Control Conference,2000. Proceedings of the 2000, Chicago, IL,2000.
    [166]Makila P M, Partington J R. Shift operator induced approximations of delay systems. SIAM Journal on Control and Optimization,1999,37(6):1897-1912.
    [167]Blanchini F, Ryan E P. A Razumikhin-type lemma for functional differential equations with application to adaptive control. Automatica,1999,35(5):809-818.
    [168]Foda S G, Mahmoud M S. Adaptive stabilization of delay differential systems with unknown uncertainty bounds. International Journal of control,1998,71(2):259-275.
    [169]Verriest E I. Robust stability and adaptive control of time-varying neutral systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ,1999.
    [170]Sename 0. New trends in design of observers for time-delay systems. Kybernetika,2001, 37(4):427-458.
    [171]Normey-Rico J E, Camacho E F. Dead-time compensators:A survey. Control Engineering Practice,2008,16(4):407-428.
    [172]Sira-Ramirez H, Velasco-Villa M, Rodriguez-Angeles A. Trajectory tracking control of an input delayed monocycle. American Control Conference (ACC),2010, Baltimore, MD,2010.
    [173]Gouaisbaut F, Perruquetti W, Richard J P. A sliding mode control for linear systems with input and state delays. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ,1999.
    [174]Choi S B, Hedrick J K. An observer-based controller design method for improving air/fuel characteristics of spark ignition engines. Control Systems Technology, IEEE Transactions on,1998,6(3):325-334.
    [175]Richard J. Time-delay systems:an overview of some recent advances and open problems. automatica,2003,39(10):1667-1694.
    [176]Xia Y, Shi P, Liu G P, et al. Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory & Applications,2007,1(1): 75-81.
    [177]Zhao S, Gao Z. Modified active disturbance rejection control for time-delay systems. ISA transactions,2013.http://dx.doi.org/10.1016/j.isatra.2013.09.013.
    [178]Zheng Q, Gao Z. Predictive active disturbance rejection control for processes with time delay. ISA transactions,2013. http://dx.doi.org/10.1016/j.isatra.2013.09.021.
    [179]Zheng Q, Chedella K K, Xu W, et al. Reduced-order active disturbance rejection control for induction motors. Control Applications (CCA),2011 IEEE International Conference on, Denver, CO,2011.
    [180]Gao Z. Active disturbance rejection control:a paradigm shift in feedback control system design. American Control Conference, Minneapolis, MN,2006.
    [181]Newton G C, Gould L A, Kaiser J F. Analytical design of linear feedback controls. Wiley New York,1957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700