用户名: 密码: 验证码:
软弱围岩斜井转正洞工法动态施工力学行为分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在长隧道、特长隧道工程的建设中,基于多方面的原因,常需增设斜井。然而,在斜井进入正洞施工过程中,由于斜井转正洞交叉段空间结构与施工过程复杂,结构受力转换频繁,围岩应力分布,支护结构变形,隧道施工对围岩的扰动情况等尚不十分清楚,施工方案多以经验设计为主。本文以八苏木隧道土卜子斜井工程为依托,总结“小导洞扩挖法”、“大包法”、“小包法”三种常用斜井转正洞工法施工技术,采用有限差分软件FLAC3D对三种工法的施工全过程进行三维数值模拟分析,得出主要结论如下:
     1、综合分析动态施工过程中围岩应力场、塑性区、位移场的分布及演变规律,得出三种工法斜井与交叉段施工对正洞的主要不利影响区域。
     2、讨论了三种工法在斜井与正洞交叉段周边围岩应力重分布叠加模式的差异性,以围岩压力拱为切入点,分别探讨了三种工法在不同区域围岩的成拱效应。
     3、隧道交叉段围岩变形特征不同于一般隧道,各工法在局部范围内,其正洞右侧拱腰横向变形表现出外扩的变形特征,正洞整体向斜井一侧偏移,应力分布明显不对称,产生偏压现象。
     4、中隔墙在整个施工过程中存在着很大的不稳定因素。三种工法中隔墙应力分布极为复杂,局部范围塑性区完全贯通,横向位移变化剧烈且有外扩的变形特征,支护结构产生应力集中现象。
In the construction of long and extremely long tunnels, owing to plenty of factors, usually the inclined shaft should be added. Because of the complicated structure of the joining section of inclined shaft and the main tunnel and the complex construction process, the construction of this section, however, are undergone frequent switch of structure stress. The distribution of stress of the surrounding rock, the deformation situation of the supporting structure, and disturbance caused by the construction are all unknown to us. Therefore, the construction normally directed by experience. Taking Tubozi inclined shaft project of Basumu tunnel as instance, this paper will adopt finite difference software FLAC3D to conduct a three dimensional numerical simulation analysis of the construction process of the three methods after the summation of the three main construction technology (expanding excavation of small guide hole, full and part-envelope construction method) of the joining section. Three conclusion are achieved as follows:
     1. The main unfavorable affected zones cauesd respectively by the construction of the joining section employing three different methods are pointed out after the integrated analysis of the distribution and developing rules of the sress field of the surrounding rock, plastic zone and displacement field in the construction process.
     2. The distinction of the superposition mode of the redistributing stress of the surrounding rock caused by the construction by the the three methods. At the same time, arching effects of different surrrounding rocks caused by various methods are discussed with stressing arch as the point.
     3. Different with the deforming feature of the joining section of normal tunnels, construction by the three methods demonsrate the following features in limited ranges:the right side arch of the main tunnel experiences expanding deformation transversely and the main tunnel undergoes excursion on the whole to the inclined shaft resulting unsymmetrical pressure with evident asymmetry of the stress distribution.
     4. The partition walls are unstable in the construction. Stress distribution in the partition walls by the three methods is quite complicated with transfixion of the plastic zone in limited ranges, severe transverse displacement with expanding deforming features and concentration of the supporting structure.
引文
[1]崔玖江.隧道与地下工程修建技术[M].北京市:科学出版社,2004.
    [2]高速铁路隧道[M].北京:中国铁道出版社,2006.
    [3]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [4]中国铁路隧道史[M].北京:中国铁道出版社,2003.
    [5]中华人民共和国行业标准.TB10003—2005铁路隧道设计规范[S].北京:中国铁道出版社,2005.
    [6]张丕界,林振球,熊安详.斜井在长大隧道施工中的作用探讨[J].现代隧道技术,2003(04):8-14.
    [7]付国宏.7号斜井进正洞挑顶施工技术[J].铁道标准设计,2005(09):77-79.
    [8]薛模美,胡恒福.客运专线隧道斜井转正洞施工技术研究[J].铁道标准设计,2008(04):90-93.
    [9]穆秀明.六盘山隧道1号斜井与正洞交叉口段施工技术[J].科技创新与生产力,2011(04):94-96.
    [10]李晓斌.石林隧道斜井转正洞交叉口施工技术[J].现代隧道技术,2011(05):129-133.
    [11]杨延勇.软弱围岩隧道斜井转正洞设计与施工技术[J].铁道标准设计,2013(01):90-91.
    [12]马栋,黄立新.铁路长大隧道斜井与正洞交叉段软弱层状围岩开挖支护施工方法浅析:第九届全国结构工程学术会议,中国成都,2000[C].
    [13]张有生.古迹坪隧道雪沟斜井喇叭口施工技术[J].现代隧道技术,2011(02):132-136.
    [14]窦忠孝,苟彪,彭万平.对乌鞘岭特长隧道斜井施工的思考[J].铁道工程学报,2006(02):59-63.
    [15]云建平.公路隧道斜井参数研究与施工技术[D].长安大学,2010.
    [16]李智溢.公路隧道利用斜井快速施工组织研究[D].长安大学,2009.
    [17]Takino K, Kimura H, Takeda N, et al. Three-dimensional behaviour of tunnel intersection:Proceedings of Fifth International Conference on Numerical Methods in Geomechanics, Nagoya,1985[C].
    [18]靳晓光,李晓红.深埋交叉隧道动态施工力学行为研究[J].重庆建筑大学学报,2008(02):32-36.
    [19]张志强,许江,万晓燕.公路长隧道与横通道空间斜交结构施工力学研究[J].岩土力学,2007(02):247-252.
    [20]张志强,苏江川,姜元俊.马王槽主隧道与横通道交叉部施工受力特征数值模拟分析[J].公路交通科技,2007(01):109-113.
    [21]罗彦斌,陈建勋,王梦恕.隧道斜交横通道施工对主隧道衬砌结构的影响研究[J].岩石力学与工程学报,2010(S2):3792-3798.
    [22]Soliman E, Duddeck H, Ahrens H. Two-and three-dimensional analysis of closely spaced double-tube tunnels[J]. Tunnelling and Underground Space Technology,1993,8(1):13-18.
    [23]JUNICA M I, AOKI K, IWAI K, et al. The assessment of influences on ground due to 2nd tunnel excavation based on 1st tunnel excavation[J]. Tunnelling and Underground Space Technology,2004,19:442.
    [24]仇文革.地下工程近接施工力学原理与对策的研究[D].西南交通大学,2003.
    [25]李云鹏,王芝银,韩常领,等.不同围岩类别小间距隧道施工过程模拟研究[J].岩土力学,2006(01):11-16.
    [26]李本.大断面黄土隧道斜井进入正洞的挑顶施工技术[J].铁道建筑技术,2008(03):34-37.
    [27]高福才.大断面隧道斜井V级围岩挑顶施工[J].山西建筑,2009(16):338-339.
    [28]原郭兵.函谷关隧道斜井进入正洞施工方案[J].铁道标准设计,2006(09):73-75.
    [29]戴文革.施工隧道斜井与正洞交叉段施工技术探讨[J].水利与建筑工程学报,2008(03):82-84.
    [30]姜飞.金沙洲隧道斜井转正洞施工方案比选[J].黑龙江科技信息,2007(14):226.
    [31]郑颖人等著.岩土塑性力学原理[M].北京市:中国建筑工业出版社,2002.
    [32]俞涛.地铁盾构隧道近接施工影响的数值模拟及模型试验研究[D].西南交通大学,2005.
    [33]王玉锁,唐建辉.大坡度隧道斜井施工力学的数值模拟研究[J].铁道建筑,2011(01):20-23.
    [34]杜晓丽.采矿岩石压力拱演化规律及其应用的研究[D].中国矿业大学,2011.
    [35]吴张中,徐光黎,吴立,等.超大断面隧道侧向扩挖施工围岩力学特征研究[J].岩土工程学报,2009(02):172-177.
    [36]鲁建邦.大断面隧道挑顶施工三维数值计算分析[J].铁道标准设计,2012(01):77-80.
    [37]杜菊红,黄宏伟.偏压小间距公路隧道施工的三维数值模拟[J].岩土力学,2007(S1):531-535.
    [38]杨峥.偏压双连拱隧道施工力学行为研究[D].西南交通大学,2005.
    [39]Hage Chehade F, Shahrour I. Numerical analysis of the interaction between twin-tunnels:Influence of the relative position and construction procedure[J]. Tunnelling and Underground Space Technology, 2008,23(2):210-214.
    [40]Chen S L, Lee S C, Gui M W. Effects of rock pillar width on the excavation behavior of parallel tunnels[J]. Tunnelling and underground space technology,2009,24(2):148-154.
    [41]Tonon F, Amadei B. Effect of Elastic Anisotropy on Tunnel Wall Displacements Behind a Tunnel Face[J]. Rock Mechanics and Rock Engineering,2002,3 (35):141-160.
    [42]郭子红.地下立交近接隧道稳定性的理论分析与模拟研究[D].重庆大学,2010.
    [43]郑余朝.三孔并行盾构隧道近接施工的影响度研究[D].西南交通大学,2007.
    [44]Rabcewicz L V. The New Austrian Tunnelling Methodd,part one[J]. WaterPower,1964,16(11):453-457.
    [45]Rabcewicz L V. The New Austrian Tunnelling Methodd,part two[J]. Water Power,1964,16(12):511-515.
    [46]Rabcewicz L V. The New Austrian Tunnelling Methodd,part three[J]. Water Power,1965,17(1):19-24.
    [47]Li C C. Rock support design based on the concept of pressure arch[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1083-1090.
    [48]Huang Z, Broch E, Lu M. Cavern roof stability—mechanism of arching and stabilization by rockbolting[J]. Tunnelling and underground space technology,2002,17(3):249-261.
    [49]Kovari K. Erroneous concepts behind the new austrian tunnelling method,1995[C].
    [50]邹熹正.对压力拱假说的新解释[J].矿山压力,1989(01):67-68.
    [51]喻波,王呼佳.压力拱理论及隧道埋深划分方法研究[M].北京市:中国铁道出版社,2008.
    [52]梁晓丹,刘刚,赵坚.地下工程压力拱拱体的确定与成拱分析[J].河海大学学报(自然科学版),2005(03):314-317.
    [53]李奎.水平层状隧道围岩压力拱理论研究[D].西南交通大学,2010.
    [54]梁晓丹,宋宏伟,赵坚.隧道压力拱与围岩变形关系[J].西安科技大学学报,2008(04):647-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700