用户名: 密码: 验证码:
快速货车橡胶减振元件静、动态特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶元件由于其具有良好的阻尼和吸振作用,在轨道车辆系统中的运用越来越为广泛。在早期橡胶减振元件开始进入轨道车辆系统中时,主要运用在客运车辆转向架上。近年来国内外货物列车速度开始逐渐提升,且随着欧洲对噪声控制政策的不断出台,货车转向架中的橡胶件的使用也开始增多,从横向止挡、轴箱定位橡胶垫、八字橡胶弹簧到具有三向定位作用的锥形橡胶弹簧的使用,橡胶件的使用不断的提升着转向架性能,也在转向架的结构中占有越来越重要的位置。
     上世纪80年代末,德国DRRS转向架双圆环橡胶弹簧形式的轴箱悬挂系统的采用,对转向架性能的改善起到了重要的作用。本文借鉴双圆环橡胶弹簧作用机理,提出了一种锥形橡胶弹簧,以使其适用于我国]60km/h快速货车转向架。设计方法基于橡胶减振件的解析计算方法,采用FORTRAN语言进行编程,程序可计算得出满足尺寸要求及应用要求的径向等值及非等值锥形橡胶弹簧。
     鉴于轴箱悬挂系统对转向架性能的显著影响,有必要对锥形橡胶弹簧的特性进行研究。对锥形橡胶弹簧的特性研究分为静态特性研究及动态特性研究两部分内容,采用有限元软件ABAQUS进行分析。在静态特性的研究部分,由于锥形橡胶弹簧在静挠度下的橡胶材料变形属于大变形范围,若有限元计算仅采用单次网格划分,划分的网格在计算结束后会产生严重的畸变,影响有限元计算结果的精度。因此,在对橡胶弹簧进行静态特性分析时采用了多次网格重划分技术,将载荷分为多步施加,并在每次载荷施加后,对变形单元网格进行重新划分,利用ABAQUS的Map Solution技术将上步计算中产生的应力及应变映射在之后的计算中。计算结果显示多次网格重划分得到的反力较连续,重启动计算前后应力应变承接状态良好,为静态特性中橡胶大变形计算提供了一种可靠的计算方法。
     通过对快速货车轴箱动载荷进行分析发现,轴箱动载荷的振幅变化范围较小,但振动频率分布较广,因此对于锥形橡胶弹簧的动态特性的研究旨在研究其频率相关特性。对频率相关的动态特性的研究主要基于超-粘弹叠加本构模型。对橡胶弹簧模型施加一定的静载荷后,再施加恒幅谐波动载荷,改变动载荷频率,得到不同频率下模型力-位移曲线,即橡胶弹簧的迟滞回线。讨论了静态特性对计算误差造成的影响,提出了动态特性相关参数的计算方法,得出橡胶弹簧的动刚度及阻尼角随动载荷激励频率的变化规律,为橡胶减振器的进一步的动态特性的研究提供了参考。
In the railway vehicle system, the application of rubber isolators tends to be widely used due to the good damping capability and the ability of absorbing vibration energy of rubber material. Rubber isolators was first used on the passenger cars. Recently, with the speed increase of freight cars and the confine codes of railway vehicle products that against noises coming out constantly, the application of rubber isolators on railway freight cars is increasing. Rubber isolators, such as the secondary lateral stop, the axle box rubber pad and the sheer rubber spring, can boost the performance of railway vehicle bogies, thus have a vital role to play in the bogie structure.
     In the late1980s, the double ring rubber spring as the main components of the primary suspension system of the DRRS bogie had played an important role in the performance improvement. A conical rubber, referring to the action mechanism of double ring rubber spring, was designed in this paper and is suitable for the rapid freight car bogies of speed160km/h. The design method was based on analytical calculation theory of rubber components and a programme based on the computer language FORTRAN was written to achieve the result.
     Considering the significant influence of the primary suspension system on the bogie performance, it is necessary to study the characteristics of the conical rubber spring. The characteristic study was divided in two parts, static and dynamic, both were conducted in the finite element software ABAQUS. In the static analysis part if we just mesh the part for one time, elements will have severe distortion after the calculation was finished due to the large deformation of rubber material, and according to FEA theory, the distortion elements may lead to inaccurate result. So while analyzing the static characteristics of conical rubber spring, re-mesh technique was used, the displacement load was split into several parts and the model was re-meshed after every load step, the Map Solution technique can keep the strain and stress continues. The result achieved under re-meshing technique suggested that reaction force had good continuity, the re-meshing technique provides a reliable calculating method for the large deformation problem.
     The dynamic analysis of conical rubber spring was mainly proposed to calculate the properties that frequency depended under constant amplitude displacement excitations. A hyperelastic-viscoelasitic model was established to study the frequency-dependency dynamic properties, and the properties was under vertical pre-load. We can achieve the force-displacement curve, also called hysteresis loop, of the model under harmonic load.
     The error caused by the static pre-load was discussed and the calculating method of parameters that represent dynamic properties rubber isolators was proposed. The analyze on the change rules of dynamic parameters, dynamic stiffness and damping angle, provided references for more in-depth study on rubber isolators.
引文
[1]李芾,傅茂海.国外高速货车转向架发展和运用.铁道车辆,2001,39(6):15-20
    [2]傅茂海,李芾,于明,马志援.160km/h高速货车转向架方案及其动力学性能分析.铁道车辆,2003,41(11):1-7
    [3]潘孝勇.橡胶隔振器动态特性计算与建模方法的研究.浙江工业大学博士学位论文.2009.
    [4]李芾,傅茂海.我国高速货车转向架发展模式.中国铁路,2001,(5):12-15
    [5]严隽耄,傅茂海.车辆工程.第三版.中国铁道出版社.2008.
    [6]刘增华,李芾,黄运华.空气弹簧系统垂向刚度特性的有限元分析.西南交通大学学报,2006,41(6):701-704
    [7]刘增华.铁道车辆空气弹簧动力学特性及其主动控制研究.西南交通大学博士学位论文.2007
    [8]李志强,李亨利,缪惠勇.新型轴箱橡胶弹簧的研制.铁道车辆,2011,49(4):12.14
    [9]户原春彦.防振橡胶及其运用.中国铁道出版社.1982.
    [10]曹金凤,石亦平ABAQUS有限元分析常见问题解答.机械工业出版社.2009.
    [11]傅茂海,李芾,尚军.德国高速货车转向架—-DRRS.国外铁道车辆,2001,(1):22-25
    [12]陈鼎.铁道车辆空气弹簧刚度分析.西南交通大学硕士学位论文.2011.
    [13]Astrell P-E, Olsson A K. A method to analyze the non-linear dynamic behavior of carbon-black-filled rubber components using standard FE-codes. Proceedings of the Second Conference on Constitutive Models for Rubbers, Hannover, Germany,2001:231-235
    [14]Arruda E M, Boyce M C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids,1993,41(2):389-412
    [15]Ogden R W. Recent advances in the phenomenological theory of rubber elasticity. Rubber Chemistry and Technology,1986,59:361-383
    [16]M Hecht. Wear and energy-saving freight bogie designs with rubber primary springs:principles and experiences. Journal of Rail and Rapid Transit,2009:105-110
    [17]S. J. Lee. Development and analysis of an air spring model. International Journal of Automotive Technology,2010, (4):471-479
    [18]KOYANAG I. Influence of non linearities on the air spring vibration absorbing characteristics. Tran.Jpn.Soc.Mech.Eng.1986,52(8):2084-2086
    [19]陈鼎,李芾,黄运华.基于有限元的空气弹簧刚度分析.电力机车与城轨车辆,2010,33(6):8-12
    [20]张继伟.液压悬置橡胶主簧动特性有限元分析.吉林大学硕士学位论文.2007.
    [21]林嵩,张昆,孙磊.橡胶隔振器动态特性的本构研究.振动与冲击,2011,30(3):178.182
    [22]潘孝勇,谢新星,上官文斌.变振幅激励下的液阻橡胶隔振器动态特性分析. 振动与冲击,2012,31(1):144.150
    [23]刘艳,罗雁云.钢扣件减振橡胶动态特性分析.中南大学学报,2011,42(9):2875-2882.
    [24]潘孝勇,上官文斌,柴国忠.橡胶隔振器动态特性计算方法的研究.振动工程学报,2009,22(4):345-352
    [25]叶志雄,李黎,聂肃非.铅芯橡胶支座非线性动态特性的显式有限元分析.工程抗震与加固改造,2006,28(6):53-58
    [26]韩德宝,宋希庚,薛冬新.橡胶减振器非线性动态特性试验研究.振动工程学报,2008,21(1):102-107
    [27]易太连,翁雪涛,朱石坚.不可压缩橡胶体的静态性能分析.海军工程大学学报,2002,14(1):76-81
    [28]王文涛,上官文斌,段小成.超弹性本构模型对橡胶隔振器静态特性预测影响的研究.汽车工程,2012,34(6):544.552
    [29]马艳红,郭宝婷,朱梓根.金属橡胶材料静态特性的研究.航空动力学报,2004,19(3):326-332.
    [30]张平,柴国忠,潘孝勇.橡胶隔振器静态特性计算方法研究.振动、测试与诊断,2009,30(2):105-112
    [31]王进,缪绘勇,彭立群.机车车辆用轴箱弹簧.铁道机车车辆,2008,28(6):40-44
    [32]于建华,魏永涛.不可压缩超弹性材料的有限元应力分析.西南交通大学学报,1998,33(1):42-47
    [33]魏永涛,于建华.橡胶有限元分析之研究.四川联合大学学报,1997,1(5):78-85
    [34]张广世,孔军,宋志强.基于有限元法进行铁道车辆橡胶元件的设计.弹性体,2001,11(6):51-54
    [35]左国兵,王进,林达文.金属-橡胶复合锥形弹簧的试验研究.铁道车辆,2005,43(3): 12-17
    [36]姜建华,胡用生.橡胶复合型弹簧的非线性刚度分析.同济大学学报,2002,30(4):452-456.
    [37]王伟晓,丁智平,黄友剑.锥形橡胶弹簧结构分析.铁道车辆,2009,47(2):4-8
    [38]张玲玲.列车专用锥形橡胶弹簧参数化设计与造型系统.西南交通大学硕士学位论文.2006.
    [39]兰清群,邬平波.机车车辆用橡胶弹簧的静动态性能分析.机械设计与制造,2008,11:43-46
    [40]陈莲,周海亭.计算橡胶隔振器静态特性的数值分析方法.振动与冲击,2005,24(3):120-125.
    [41]L.M. Yang, V.P.W. Shim, C.T. Lim. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber.International Journal of Impact Engineering, 2000,24:545-560
    [42]Johnson AR, Quigley CJ. A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chem Technol,1992,65:137-153
    [43]Johnson AR, Quigley CJ, Freese CE. A viscoplastic finite element model for rubber.Comput Methods Appl Mech Eng,1995,127:163-80.
    [44]Rivlin RS. Proceedings of First Symposium. Naval Structural Mechanics,1960:169-98
    [45]Wang LL, Yang LM. A class of non-linear viscoelastic constitutive relation of solid polymeric materials. The progress in impact dynamics,1992:88-116
    [46]Julie Diani, Mathias Brieu, Pierre Gilormini. Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material [J]. Solids and Structures,2006,43:3044-3056
    [47]H. Pouriayevali, Y.B. Guo, V.P.W. Shim. A visco-hyperelastic constitutive description of elastomer behaviour at high strain rates. Procedia Engineering,2011,10:2274-2279
    [48]Hoo Fatt, M.S. and X. Ouyang. Three-dimensional constitutive equations for Styrene Butadiene Rubber at high strain rates. Mechanics of Materials,2008,40(2):1-16.
    [49]Wineman, A. Nonlinear Viscoelastic Solids-A Review. Mathematics and Mechanics of Solids,2009.14(3):300-366
    [50]Shim, V.P.W., et al.. A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber. Journal of Applied Polymer Science,2004.92(1): 523-531.
    [51]Aidy Ali, M Hosseini. A review and comparison on some rubber elasticity models. Scientific and Industrial Research,2010,7(69):495-500
    [52]Jerrams S J, Kaya M. The effects of strain rate and hardness on the material constants of nitrile rubbers. Material Design,1998,19:157-167.
    [53]李雪冰,王国栋,王黎明.网格重划分技术在锥形橡胶堆大变形计算中的应.铁道车辆,2010,11(48):5.10
    [54]赵娜,刘立胜,郑剑.网格重剖分在大变形分析中的应用.固体力学学报,2008,12(29):53-56
    [55]黄友剑,潘世文,郭红峰.网格重划在汽车用橡胶制品设计中的应用.橡胶科技市场,2008,4:22.25
    [56]潘孝勇,柴国忠,上官文斌.小振幅谐波位移激励下橡胶减振元件动态特新计算方法的研究.振动与冲击,2009,28(2):151-157
    [57]Clemens Beijers, Bram Noordman. Numerical Modeling of Rubber Vibration isol-ators:identification of material parameters. Sound and Vibrtion,2004,7(5):3193-3201
    [58]C.A.J. Beijers, A. de Boer. Numerical modelling of rubber vibration isolators. Proceedings of the eleventh International Congress on Sound and Vibration, Stockholm, July 2003.
    [59]L. Kari. On the dynamic stiffness of preloaded vibration isolators in the audible frequency range:Modeling and experiments. Acoustical Society of America,2003,113(4):1909-1921
    [60]R.L. Willis, L. Wu, Y.H. Berthelot. Determination of the complex young and shear dynamic moduli of viscoelastic materials[J]. Acoustical Society of America,2001,109(2):611-621
    [61]卜继玲,黄友剑.轨道车辆橡胶弹性元件设计计算方法.中国铁道出版社.2010.
    [62]龚积球,龚震震,赵熙雍.橡胶件的工程设计及应用.上海交通大学出版社,2003.
    [63]刘建勋,卜继玲.轨道车辆转向架橡胶弹性元件应用技术.中国铁道出版社.2012.
    [64]郑明军.橡胶件的静、动态特性有限元分析.北方交通大学硕士学位论文.2002.
    [65]韩金刚.快速货车转向架焊接构架性能研究.西南交通大学硕士学位论文.2009.
    [66]邵守钦,龚浩春.国外铁道车辆非金属材料的应用现状及发展趋势.国外铁道车辆,1996,(3):1-7
    [67]徐明.橡胶类超弹性材料本构关系研究及有限元分析.北京航空航天大学博士学位论文.2002.
    [68]谭雅彤.汽车橡胶悬置静态特性计算方法的研究.华南理工大学硕士学位论文.2011.
    [69]庄茁,由小川,廖建辉.基于ABAQUS的有限元分析和应用.清华大学出版社.2009.
    [70]何小静.橡胶隔振器静态特性计算与建模方法的研究.华南理工大学硕士学位论文.2012.
    [71]朱聪玲.橡胶减振元件的非线性力学行为及特性研究.东北林业大学博士学位论文.2012.
    [72]Ouyang Qing, Shi Yin. The Non-Linear Mechanical Properties Of An Air spring. Mechanical Systems and Signal Processing,2003,17(3):705-711
    [73]YEOH O H. Some forms of the strain energy for rubber. Rubber Chemistry and Technology,1993, (5):754-771
    [74]Kennes P, Anthonis J, Clijmans L, et al. Construction Of A Portable TestRig To Perform Experimental Modal Analysis On Mobile Agricultural Machinery. Journal of Sound and Vibration,1999,228(2):421-441
    [75]W. V. Mars, A. Fatemi. A literature survey on fatigue analysis approaches for rubber. International Journal of Fatigue,2002,24:949-961
    [76]MILLER K. Testing elastomers for hyperelastic material models in finite element analysis. Ann Arbor:Axel Products, Inc.,2006:8-12.
    [77]PARK B H, LEE K Y. Bogie frame design in consideration of fatigue strength and weight reduction. Rail & Rapid Transit,2006,220(3):201-206
    [78]Beda T. Modeling hyper-elastic behavior of rubber:A novel invariant based and a review of constitutive models. Journal of Polymer Science:Part B:Polymer Physics,2007, (45):1713~1732
    [79]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用.机械工业出版社.2004.
    [80]卜继玲,王永冠,宋传江.铁道车辆橡胶弹性元件设计仿真与校验.铁道机车车辆,2011,31(1):98-100
    [81]刘建勋,黄友剑,张亚新,侯之超.高铁大变形橡胶止挡非线性刚度特性曲线计算精度分析.计算机辅助工程,2011,20(1):132-134
    [82]庄茁,张帆,岑松ABAQUS非线性有限元分析与实例.科学出版社.2005.
    [83]石亦平,周玉荣ABAQUS有限元分析实例详解.机械工业出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700