用户名: 密码: 验证码:
高速铁路无砟轨道结构受力及轮轨动力作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无砟轨道是以混凝土、沥青等材料代替碎石道床层的轨道结构,具有少维修、轨道稳定性好、平顺性好和耐久性好的显著优点,减少了线路养护维修工作,提高了线路使用率,还提高了曲线通过速度和安全性,减少了道砟这种不可再生资源的消耗,更为环保。长远来看,其经济性优于有砟轨道。当前世界各国大力发展高速铁路,应用现代高新技术建设高速铁路,无砟轨道成为高速铁路轨道结构的重要选择。为了缓解国民经济快速增长与铁路运输能力紧张的矛盾,我国大规模建设高速铁路客运专线。无砟轨道结构受力状况与轨道结构的安全性密切相关,而无砟轨道的动力性能则影响到行车安全性和旅客乘坐的舒适性。因此,开展无砟轨道结构受力和高速动车作用下无砟轨道动力学性能研究具有很强的理论意义和工程应用背景。
     本文首先简要回顾了国内外无砟轨道发展和无砟轨道力学研究的历史与现状。然后,以车辆—轨道耦合动力学理论为基础,以目前国内应用效果良好的板式轨道和双块式无砟轨道为研究对象,采用我国自主研发的CRH2、CRH3型高速动车组,对高速铁路无砟轨道结构受力和动力学问题进行研究。开展的研究工作主要包括以下几方面:
     建立了板式轨道和双块式无砟轨道三维实体有限元模型,主要分析了在设计荷载作用下板式轨道和双块式无砟轨道受力特性,包括轨道结构型式、轨道结构参数、路基关键参数对无砟轨道结构受力的影响。
     基于车辆—轨道耦合动力学理论,采用多刚体动力学理论建立了车辆系统动力学方程,采用梁—板—板有限元模型模拟板式轨道,采用梁—板有限元模型模拟双块式无砟轨道,通过轮轨关系将车辆系统和无砟轨道系统联系在一起,建立了车辆—无砟轨道耦合动力学模型。采用德国高速低干扰谱作为轮轨激励进行无砟轨道动力学仿真计算,并与遂渝线无砟轨道综合试验段动力学测试结果对比,仿真计算结果与试验数据吻合较好,验证了模型的可靠性。
     应用所建立的无砟轨道轮轨动力作用分析模型,对高速行车条件下,冲击型激扰、谐波型激扰和随机不平顺激扰引起的板式无砟轨道结构振动特性进行了分析。研究了不同弦长的车轮扁疤不平顺、不同凸起高度的凸起焊缝不平顺和不同长波和短波组合的凹陷焊缝不平顺、德国高速低干扰谱激扰下,板式无砟轨道结构动力响应,验证了现行铁路技术管理规程对高速铁路车辆车轮扁疤管理和钢轨焊缝打磨要求的合理性。并研究了车速在200~350 km/h范围板式轨道和双块式无砟轨道结构随机振动响应受车速影响规律,研究结果对高速铁路无砟轨道结构参数优化设计具有指导参考意义。
     应用所建立的无砟轨道轮轨动力作用分析模型,研究了轨下胶垫刚度和阻尼、基床表层弹性模量、板式轨道CAM层弹性模量和双块式无砟轨道道床板厚度等参数对板式轨道和双块式无砟轨道结构动力性能的影响。
Ballastless track is a new kind of track which uses concrete or asphalt track bed instead of ballast bed. It has the remarkable characteristics of low maintenance, high stability, high smoothness and good durability. Railway line maintenance is reduced and its utilization rate is improved by using ballastless track. The safety and speed of train negotiation are both improved. Ballast is a kind of non-renewable resources. Ballastless track is beneficial to environmental protection because the use of ballast is reduced. Ballastless track is more economic than ballast track in long run. High-speed railway is energetically developed in many countries at present. More and more new technology is used to build high-speed railway. Ballastless track is a new important choice of high-speed railway track structure. To alleviate the contradiction between the fast growth of the national economic and shortage of the railway transport capacity, the speed passenger dedicated line in Chinese railway is fast developed. The structure mechanical conditions of ballastless track are closely related to the safety of track structure, and the dynamic performances of ballastless track have influence on vehicle running safety and ride comfort. Therefore studies on the structure mechanics and wheel/rail dynamic interaction of ballastless track are very important from the practical and cognitive points of view.
     The history and the studies of the structure and mechanics of ballastless track in the past and now in the world are reviewed. On the basis of track structural mechanics and vehicle-track coupled dynamics theory, the structure mechanics and wheel/rail dynamic interaction problem of ballastless track are solved with finite element method. The analysis objects of ballastless track are the slab track and the twin-block ballastless track because these two kinds of ballastless track are found well application in China. The vehicle parameters are come from CRH2 and CRH3 which were independently developed in China.The main research work in the present dissertation involves:
     Three-dimensional finite element models of slab track and twin-block ballastless track are established. Mechanics characteristics under design load of ballastless track are studied, including the influence of the track structure form and parameters, key parameters of subgrade. A vehicle-ballastless track dynamic model is established on the basis of vehicle-track coupled dynamics theory. In this model, multi-body system (MBS) modelling techniques are combined with the techniques based on the finite-element method (FEM). MBS modelling is used for modelling the vehicle and FEM for simulating the ballastless track. Dynamic responses of ballastless track are simulated with German railway spectrum of low irregularity as the irregularities of rail. The simulation results are compared with the experiment results measured on comprehensive experimental section of ballastless track on Sui-Yu Railway Line. The numerical results are in good agreement with the test ones, and the dependability of the vehicle-ballastless track dynamic model is verified at the same time.
     The established vehicle-ballastless track dynamic model is used to analyze the dynamic response of slab track caused by impulse, harmonic and random track irregularity. The influence of the flat length, the height of high weld and dipped weld composed by difference long or short wavelength are analyzed. The rationality about the limited value of wheel flat and weld in Railway Technical and Managemental Regulations is verified. Vibration characteristics of ballastless track of the high speed passenger dedicated railway line under excitations from the stochastical track irregularities are analysed. While the vehicle velocity is in the range 200~350km/h, the influence of velocity on the dynamic responses of slab track and twin-block ballastless track is studied.
     At last, the influence of the ballastless track structure parameters on dynamic performance is studied. These structure parameters include the stiffness and damping of rail pad, resilient modulus of the surface layer of subgrade, elastic modulus of cement asphalt mortar of slab track and the bed slab thickness of the twin-block ballastless track.
引文
1.钱仲侯.高速铁路概论.第二版.北京:中国铁道出版社,1999
    2.童大埙.铁路轨道.北京:中国铁道出版社,1995
    3.郝瀛.铁道工程.成都:西南交通大学出版社,2000
    4.C.Esveld.Modern Railway Track(2nd ed).MRT Publication,Zaltbommel,2001
    5.De Man AP.DYNATRACK:a survey of dynamic railway track properties and their quality.PhD Dissertation,Delft University of Technology,Delft,The Netherlands,2002
    6.赵国堂.高速铁路无砟轨道结构.北京:中围铁道出版社,2006
    7.何华武.无碴轨道技术.北京:中国铁道出版社,2005
    8.佐佐木直树著.王其昌译.板式轨道.北京:中国铁道出版社,1983
    9.K.Ando.Twenty Years' Experience on Slab Track.Quarterly Report of RTRI,1994,35(1):7-14
    10.Y.Satoh,Y.Higuchi,T.Saito.Development of the Concrete Slab Track on Flexible Pavement.Quarterly Report of RTRI,1973,14(1):25-28
    11.Y.Sato,F.Ohishi,K.Ando.Development of Vibration-Decreasing Slab Track of Type G and Its Pratical Use.Quarterly Report of RTRI,1988,29(2):51-55
    12.N.Akio.Shinkansen Slab Track to be Laid on Earthworks.Railway Gazette International,1996,152(3):3-10
    13.K.Ando,M.Sunaga,H.Aoki,O.Haga.Development of Slab Tracks for Hokuriku Shinkansen Line.Quarterly Report of RTRI,2001,42(1):35-41
    14.Y.Harada,S.Tottori,N.Itai,T.Noto.Development of Cement-asphalt Mortar for Slab Tracks in Cold Climate.Quarterly Report of RTRI,1983,24(2):62-67
    15.T.Takahashi,E.Sekine,T.Horiike,S.Matsuoka,H.Hoshiro.Study on the Applicability of Short Fiber Reinforced Concrete to Precast Concrete Slabs for Slab Track.Quarterly Report of RTRI,2008,49(1):40-46
    16.R.Bastin.Development of German non-Ballasted Track Forms.Proceedings of the Institution of Civil Engineers:Transport,2006,159(1):25-39
    17.J.Eisenmann.Trial Lengths on DB of Ballastless Track.Rail Engineer,1976,1(1):18-20
    18.K.Gerlich.Ballastless track on Bridges,RTR.1995(2)
    19.G.Leykau,L.Mattner.Slab Track with Asphalt Subbase.Eisenbahningenieur,1998,49(8)
    20.J.Eisenmann.Support Bearing Elasticity for Non-ballasted Track.Journal for Railway and Transport,1999,123(11)
    21.G.Leykau.Trends for future permanent-say systems.Journal for Railway and Transport,2000,124(8):445-454
    22.Rheda2000 the monofithic slab tlack system without concrete through systems design and construction technology,中德无碴轨道技术交流会,北京,2001
    23.S.D.Tayabji,D.Bilow.Concrete Slab Track State of the Practice.Transportation Research Record,2001,1742:87-96
    24.王具昌,蔡成标,张雷,罗震.高速铁路土路基上无碴轨道的应用.铁道标准设计,2003,12:1-4
    25.王其昌,罗震,钱振地.长枕埋入式无碴轨道轨下基础施工技术.建筑机械化,2004,1:24-26
    26.佐藤裕.軌道への車軸落下試驗.鐵道技術研究資料.14-14(1958.2)
    27.佐藤裕.軌道に加わゐ垂直衝擊壓力.鐵研報告.16(1958.7)
    28.佐藤裕,豐田昌羲.高速列車にょゐ軌道の變形.鐵研報告。492(1965.8)
    29.T.Saito.Design of Concrete Track Slab on Elastic Foundation Using the Finite Element Method.Proceedings of the Japan Society of Civil Engineers,1973,219:83-93
    30.T.Saito.Stress Analysis of Concrete Track Slabs on an Elastic Foundation by the Finite Element Method.Quarterly Report of RTRI,1974,15(4):186-190,196
    31.K.Okada.Dynamic Response of RC Slab Bridge to Passage of Vehicles.Quarterly Report of RTRI,1973,14(1):14-15
    32.R.Sugihara.Maintance of Slab Track in Tunnel.Permanent Way,1982,24(2):15-22
    33.N.Ito,T.Kageyama.Shinkansen Structures and Railway Track Maintenance.Permanent Way,1983,25(4):25-33
    34.E.Winkler.Die Lehre von der Elaastizitat und Festigkeit.Verlag H.Dominikus,Prag,1867
    35.佐藤裕著,卢肇英译.轨道力学.北京:中国铁道出版社,1981
    36.佐藤吉彦著,徐涌等译.新轨道力学.北京:中国铁道出版社,2001
    37. H. Sakamoto, R. Ishikawa, M. Yamamoto. Nonlinear Analysis of Railway Vehicle Dynamics for Advanced Shinkansen. American Society of Mechanical Engineers,1985:1-8
    
    38. M. Yamamoto, M. Nakata. Dynamic Analysis of High Speed Railway Trucks for the Shinkansen. Sumitomo Metals, 1987, 39(3): 234-244
    
    39. K. Ando, T. Horiike, K. Kubomura, etc. Present status on slab track and environmental countermeasure. Quarterly Report of RTRI, 1996, 37(4): 204-209
    
    40. M. Tanabe, H. Wakui, N. Matsumoto. Efficient numerical method for dynamic interaction analysis of high-speed Shinkansen vehicles, rail, and bridge. Computers in Engineering, Proceedings of the International Conference and Exhibit, 1994, 2:567-572
    
    41. M. Tanabe, H. Wakui, H. Okuda, etc. Dynamic interaction analysis of an unlimited number of Shinkansen cars running on the railway track. Vehicle System Dynamics,2004, 40(Suppl.):91-106
    
    42. T. Makino, M. Yamamoto, K. Yomoda. Evaluation of fatigue property under variable loading on axle assemblies for Shinkansen. Sumitomo Metals, 1998, 50(3): 9-15
    
    43. J. Eisenmann. Ballastless Track as an Alternative to Ballasted Track. Rail International,1995,11:19-28
    
    44. J. Eisenmann. Redundancy of Rheda-type Slab Track. Eisenbahningenieur, 2002,53(10):13-18
    
    45. J. Eisenmann. Cross-country Comparison of High-speed Railway Lines.Eisenbahningenieur, 2006, 57(7): 6-9
    
    46. B. Verbic, G. Schmid, H. Koepper, H. Best. Investigating the Dynamic Behaviour of Rigid Track. Railway Gazette International, 1997, 153(9): 583, 585-586
    
    47. B. Verbic, G. Schmid, H. Koepper. Dynamic slab track calculation using the boundary element method. Eisenbahningenieur, 1997, 48(2): 34-38
    
    48. E. Rehfeld. Subsoil composition - requirements for the use of slab track. Eisenbahningenieur, 1995, 46(4):258-264
    
    49. E. Rehfeld. Impact of trains runs on the permanent way, subgrade and subsoil.Eisenbahningenieur, 2000, 51(12): 30-33
    
    50. L. Auersch. Vehicle-track-interaction and soil dynamics. Vehicle System Dynamics, 1998, 28(Suppl.): 553-558
    
    51. L. Auersch. Dynamics of the railway track and the underlying soil: The boundary-element solution, theoretical results and their experimental verification. Vehicle System Dynamics, 2005, 43 (9): 671-695
    
    52. L. Auersch. Vehicle/track dynamics and vibration levels of ballast track and slab track. Eisenbahningenieur, 2006, 57(4): 8-18
    
    53. H. L. Hasslinger, P. Mittermayr, G. Presle. Dynamic behaviour of various track constructions due to travelling loads. Eisenbahningenieur, 1999, 50(7): 44-48
    
    54. K. Friedrich, W.Hubert, G. Pflanz, etc. Dynamic behavior of slab track for high speed trains. Eisenbahningenieur, 2001, 52(1): 13-16
    
    55. M. Brenschede. Parameter Studies on the Dynamic Behavior of Slab Track System.Technische Universitat Munchen, August 2000
    
    56. M. Spengler, H. Duda, C. A. Graubner. Stress on railway bridges by high speed rail traffic: Influence of the type of "Solid Track" superstructure on the structural dynamic properties and the dynamic load bearing truss reaction. VDI Berichte, 2006,1941:731-746
    
    57. W. Habel, D. Hofmann, F. Basedau, etc. Static and dynamic measurements on a newly developed precast concrete track for high speed railway traffic using embedded fiber-optic sensors. VDI Berichte, 2002, 1685:147-152
    
    58. S. Crail, W. Habel, D. Reichel, etc. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber-optic sensors.Proceedings of SPIE - The International Society for Optical Engineering, 2002,4694:259-264
    
    59. C. Esveld. Requirement for Rail Fastenings on Slab Track. Rail Engineering International, 2001, 30(2): 9-12
    
    60. De Man AP, C. Esveld. Recording, Estimating and Managing the Dynamic Behaviour of Railway Structures. Proceedings of the 25th International Conference on Noise and Vibration Engineering, ISMA, 2000:771-776
    
    61. A. S. J. Suiker, R. Borst, C. Esveld. Critical Behaviour of a Timoshenko Beam-half Plane System under a Moving Load. Archive of Applied Mechanics, Springer Verlag, Germany, 1998, 68:158-168
    
    62. V. L. Markine, De Man AP, S. Jovanovic, C. Esveld. Modelling and optimisation of an embedded rail design. Rail International/Schienen der Welt, 2000:15-23
    
    63. V. L. Markine, De Man AP, C. Esveld. Use of a Numerical Methode for Identification of Dynamic Properties of a Railway Track, European Conference on Computational Mechanics, Cracow, Poland, 2001:26-29
    
    64. M. Shamalta, A. V. Metrikine. Comparison of the dynamic response of one- and two-dimensional models for an embedded railway track to a moving load. Heron,2003, 47(4): 243-262
    
    65. M. Shamalta, A. V. Metrikine. Analytical study of the dynamic response of an embedded railway track to a moving load. Archive of Applied Mechanics, 2003, 73(1, 2): 131-146
    
    66. M. J. M. M. Steenbergen, A. V. Metrikine. The effect of the interface conditions on the dynamic response of a beam on a half-space to a moving load. European Journal of Mechanics, A/Solids, 2007, 26(1): 33-54
    
    67. M. J. M. M. Steenbergen, A. V. Metrikine, C. Esveld. Assessment of design parameters of a slab track railway system from a dynamic viewpoint. Journal of Sound and Vibration, 2007, 306:361-371
    
    68. L. Girardi, P. Recchia. Use of a computational model for assessing dynamical behaviour of a railway structure. Vehicle System Dynamics, 1991, 20(Suppl.): 185-194
    
    69. J. H. Zicha. High-Speed Rail Track Design. Journal of Transportation Engineering, 1989,115(1):68-83
    
    70. D. D. Davis, D. Otter, D. Li, etc. Bridge approach performance in revenue service.Railway Track and Structures, 2003, 99(12): 18-20
    
    71. E. K. Bender. Noise and Vibration of Resiliently Supported Track Slabs. Journal of the Acoustical Society of America, 1974, 55(2): 259-268
    
    72. T. Balendra, K. /H. Chua, K. W. Lo, etc. Steady-state vibration of subway-soil-building system. Journal of Engineering Mechanics, 1989, 115(1): 145-162
    
    73. K. H. Chua, T. Balendra, K. W. Lo, etc. Groundborne vibrations due to trains in tunnels.Earthquake Engineering & Structural Dynamics, 1992, 21(5): 445-460
    
    74. X. Sheng, C. J. C. Jones, D. J. Thompson. A theoretical model for ground vibration from trains generated by vertical track irregularities.Journal of Sound and Vibration,2004,272(3-5):937-965
    75.G.Lombaert,G.Degrande,B.Vanhauwere,etc.The control of ground-borne vibrations from railway traffic by means of continuous floating slabs.Journal of Sound and Vibration,2006,297(3-5):946-961
    76.H.Saurenman,J.Phillips.In-service tests of the effectiveness of vibration control measures on the BART rail transit system.Journal of Sound and Vibration,2006,293(3-5):888-900
    77.M.F.M.Hussein,H.E.M.Hunt.A numerical model for calculating vibration from a railway tunnel embedded in a full-space.Journal of Sound and Vibration,2007,305(3):401-431
    78.K.Watanabe,Y.Sato,K.Takahara,etc.Features of Elastic Rail Fastening Device for High Speed Railways and Improvement of It Based on the Results of Its Use.Engl,1985:191-198
    79.N.Takaharu.Durability design of rail fastening system.Quarterly Report of RTRI,1994,35(4):229-234
    80.K.Okada.Dynamic Response of RC Slab Bridge to Passage of Vehicles.Quarterly Report of RTRI,1973,14(1):14-15
    81.姚明初,邵力新.铁路新型轨下基础.北京:中国铁道出版社,1986
    82.王其昌.板式轨道计算法.铁道标准设计通讯,整体道床资料汇编专刊,1987
    83.王其昌,陆银根.铁路新型轨下基础应力计算,1987
    84.翟婉明.车辆-轨道垂向耦合动力学.成都:西南交通大学博士学位论文,1991
    85.翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理.铁道学报,1992,14(3):10-21
    86.翟婉明,孙翔,詹斐生.机车车辆与轨道垂向相互作用的计算机仿真研究.中国铁道科学,1993,14(1):42-50
    87.W.M.Zhai,X.Sun.A Detailed Model for Investigating Vertieal Interaction between Railway Vehiele and Traek.Vehicle System Dynamics,1994,23(Supplement):603-615
    88.W.M.Zhai,C.B.Cai,S.Z.Guo.Coupling Model of Vertical and Lateral Vehiele/track Interactions.Vehicle System Dynamics,1996,26(1):61-79
    89.翟婉明.非线性结构动力分析的Newmark预测-校正积分模式.计算结构力学及其应用,1990,7(2):51-58
    90.W.M.Zhai.Two simple fast integration methods for large-scale dynamic problem in engineering.International Journal for Numerical Methods in Engineering,1996,39(24):4199-4214
    91.W.M.Zhai,Z.Cai.Dynamic Interaction between a Lumped Mass Vehiele and a Discretely Supported Continuous Rail Track.Computers&Struetures,1997,63(5):987-997
    92.翟婉明,王其昌.轮轨动力分析模型研究.铁道学报,1994,16(1):64-72
    93.翟婉明,机车-轨道耦合动力学理论及其应用.中国铁道科学,1996,17(2):58-73
    94.翟婉明著.车辆-轨道耦合动力学.第一版,北京:中国铁道出版社,1997
    95.翟婉明,蔡成标,王开云.轨道刚度对列车走行性能的影响.铁道学报,2000,22(6):80-83
    96.翟婉明,蔡成标,王其昌等.列车提速对线路的动力影响研究与对策.中国铁道科学,2000,21(3):11-20
    97.翟婉明.车辆-轨道耦合动力学(第三版).北京:中国铁道出版社,2007
    98.翟婉明,韩卫军,蔡成标.高速铁路板式轨道动力特性研究.铁道学报,1999,21(6):65-69
    99.韩卫军.高速铁路板式轨道动力特性研究.成都:西南交通大学硕士学位论文,1999
    100.刘成轩,翟婉明.轨道板强度问题的有限元分析初探.铁道工程学报,2001,69(1):24-26
    101.赵坪锐.板式无碴轨道动力学性能分析与参数研究.成都:西南交通大学硕士学位论文,2004
    102.范佳,林之珉,赵曦等.高速铁路减振型无碴轨道减振技术的研究.中国铁道科学,1998,19(4):41-58
    103.范佳.有轨交通减振降噪型无碴轨道结构分析.铁道建筑,2000,7:2-5
    104.江成,林之珉.高速铁路无碴轨道结构的试验研究.中国铁路,2000,7:22-24
    105.江成,范佳,王继军.高速铁路无碴轨道设计关键技术.中国铁道科学,2004,25(2):42-47
    106.蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究.成都:西南交通大学博士学位论文,2004
    107.蔡成标,翟婉明,王开云.高速列车与桥上板式轨道动力学仿真分析.中国铁道科学,2004,25(5):57-60
    108.蔡成标,翟婉明,王开云.遂渝线路基上板式轨道动力性能计算及评估分析.中国铁道科学,2006,27(4):17-21
    109.蔡成标,颜华,姚力.遂渝线无砟轨道动力性能研究.铁道工程学报,2007,107(8):39-43,57
    110.蔡成标.无砟轨道动力学理论及应用.西南交通大学学报,2007,42(3):255-261
    111.曾庆元.弹性系统动力学总势能不变值原理.华中理工大学学报,2000,28(1):1-14
    112.娄平,曾庆元.移动荷载作用下板式轨道的有限元分析.交通运输工程学报,2004,4(1):29-33
    113.向俊,赫丹,曾庆元.横向有限条与无砟轨道板段单元的车轨系统竖向振动分析法.铁道学报.2007,29(4):64-69
    114.向俊,赫丹.高速列车与博格板式轨道系统竖向振动分析模型.交通运输工程学报.2007,7(3):1-5
    115.向俊,曹晔,刘保钢等.客运专线板式无碴轨道动力设计参数.中南大学学报(自然科学版),2007,38(5):981-986
    116.高江宁.整体道床计算方法与设计参数研究.成都:西南交通大学硕士学位论文,2004
    117.宣言.客运专线曲线线路车线耦合系统动力学性能与无碴轨道结构振动响应的仿真研究.北京:铁道科学研究院博士学位论文,2005
    118.万家.高速列车-无碴轨道-桥梁耦合系统动力学性能仿真研究.北京:铁道科学研究院博士学位论文,2005
    119.李春霞.土路基上板式轨道力学分析.成都:西南交通大学硕士学位论文,2005
    120.毛建红.Rheda2000无碴轨道结构竖向动力分析.长沙:中南大学硕士学位论文,2005
    121.刘亚敏.博格板式无碴轨道的竖向动力分析.长沙:中南大学硕士学位论文,2006
    122.刘玉祥.铁路板式无碴轨道结构分析方法的研究.长沙:中南大学硕士学位论文,2006
    123.王森荣.板式无砟轨道温度力研究.成都:西南交通大学硕士学位论文,2007
    124.张群.路基不均匀沉降对双块式无砟轨道的影响研究.成都:西南交通大学硕士学位论文,2007
    125.肖骁骐.客运专线土质路基无砟轨道动力特性研究.北京:北京交通大学硕士学位论文,2007
    126.中华人民共和国铁道部.遂渝线无碴轨道综合试验段无碴轨道设计技术条件.北京:中华人民共和国铁道部,2004
    127.中华人民共和国铁道部.京沪高速铁路设计暂行规定.北京:中国铁道出版社,2004
    128.王其昌.高速铁路土木工程.成都:西南交通大学出版社,1999
    129.王其昌,韩启孟.板式轨道设计及施工.成都:西南交通大学出版社,2002
    130.雷晓燕.铁路轨道结构数值分析方法.北京:中国铁道出版社,1998
    131.范俊杰.现代铁路轨道(第二版).北京:中国铁道出版社,2004
    132.罗震,翟婉明,蔡成标.土路基上无碴轨道结构受力分析.铁路客运专线建设技术交流会议论文集,武汉,2005:96-99
    133.罗震,翟婉明,颜华,姚力.土路基上板式轨道结构受力的有限元分析.西南交通大学学报,2007,42(6):711-714,725
    134.王勖成.有限单元法.北京:清华大学出版社,2003
    135.西南交通大学列车与线路研究所.遂渝线路基地段无砟轨道动力性能测试研究报告,成都,西南交通大学,2007
    136.陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟.西南交通大学学报,1999,34(2):138-142
    137.R.Dong.Vertical Dynamics of Railway Vehicle-track System.PhD Dissertation,Concordia University,Quebec,Canada,1994
    138.Effeet of Flat Wheels on Track and Equipment.Proc.of AREA,53(1952)
    139.D.Lyon.The calculation of track forces due to dipped rail joints,wheel flats and rail welds.The Second ORE Colloquium on Technical Computer Programs,1972
    140.S.G.Newton,R.A.Clark.An Investigation into the Dynamic Effects on the Track of Wheel Flats on Railway Vehicles.Journal of Mechanical Engineering Science,1979,21(4):287-297
    141.《铁路工务技术手册》(轨道分册)
    142.王其昌.无砟轨道钢轨扣件.成都:西南交通大学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700