用户名: 密码: 验证码:
医学图像配准算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为医学图像处理与分析中的基础及关键技术,医学图像配准具有重要的临床应用价值,不仅可以用于病症性状的诊断,还可以通过对病灶部位进行跟踪来引导治疗过程以及对治疗效果做出评价。在图像融合、三维图像重建以及外科手术导航中,广泛应用目前医学图像配准方法来定位图像之间的空间位置关系。
     本文以医学图像配准研究为背景,对刚体图像、序列刚体图像和非刚体图像的配准方法进行了研究,并针对序列图像以及非刚体图像配准需要处理的数据量大的问题,着重研究了全局化的参数寻优方法以及多分辨率分析的配准策略。本文的主要内容包括:
     应用非线性相关度量结合下山式单纯形搜索方法对医学图像进行了配准研究,提出了最大化非线性相关系数的刚体图像配准方法。由于非线性相关系数是对互信息的改进,它能够以[0,1]之间的数据量化两个变量之间信息相关的程度,因此比互信息更易于对图像之间的相关程度进行比较和分析,描述更加直观。利用非线性相关系数的极值性对下山式单纯形方法进行改进,应用代价函数的上下门限来限定优化算法对于极值的搜索过程,从而克服非线性相关系数的非线性所引起的局部极值问题。变容许门限的引入可以减少局部极值处的搜索迭代次数进而提高算法的快速性。仿真验证了该方法的性能不受浮动图像和参考图像之间对比度差异的影响,而且可以应用到多种成像模式的配准中。
     针对序列图像不同内部关系的特点,提出了两种新的序列刚体图像配准测度。对于具有已知内部关系的序列刚体图像配准,其配准模型是首先选择序列图像中的第一幅作为浮动图像与参考图像进行配准,然后取第二幅图像作为浮动图像与前两幅已配准的图像同时进行配准,依此类推。针对于该配准模型,提出一种新的相似性测度——链式互信息作为衡量序列图像是否配准的标准。该测度可以在前n? 1幅图像精确配准的基础上,敏感第n幅待配准图像与前n? 1幅图像之间的相关性大小。实验证明,该测度可以很好地配准具有已知内部关系的序列刚体图像,其配准结果具有亚像素的精度。同时,与两幅图像的配准结果相比较,进一步验证了利用最大化链式互信息进行已知内部关系的序列图像配准的性能优势。对于具有未知内部关系的序列刚体图像配准,提出使用非线性相关信息熵作为配准测度。非线性相关信息熵以[0,1]之间的数值具体量化多个变量之间的普遍关系,而且不受序列图像位置顺序的影响。仿真从旋转和平移两个角度对非线性相关信息熵的序列刚体图像配准进行了性能评估,其结果验证了非线性相关信息熵敏感具有未知内部关系的序列图像相关关系的有效性。
     在非刚性图像配准的框架下,提出应用Wendland紧支径向基函数作为参数化的空间变换模型,并针对非刚性配准模型的未知参数量大的问题,提出应用全局化的粒子群优化算法对整个可行性空间进行快速而准确的探索和挖掘,以求得非刚性变形的未知参数。粒子群算法具有快速全局寻优的特性,但是由于粒子容易陷入早熟收敛状态而使其应用受到限制。本文对基本的粒子群算法进行了改进,提出了基于变邻域选择的粒子群算法。该方法在陷入局部最优粒子的邻域内重新选择优于该局部最优粒子的参考粒子来更新早熟粒子,使其能够从早熟收敛的状态跳出,进而继续进行全局最优值搜索。实验证明,改进的粒子群算法结合Wendland紧支径向基函数的非刚性图像配准方法,可以有效地对具有全局以及局部非刚性形变的图像进行配准。
     针对图像配准的速度和质量要求,提出了基于整数提升小波变换的多分辨率配准模型。该配准模型首先对待配准图像进行多分辨率分解,然后取其近似图像进行配准得到变形参数,再将配准后的分解图像重构。由于整数提升小波变换可以实现整数到整数的变换,可以对图像实现无损重构,因此比第一代小波变换更利于对图像进行多分辨率分析。实验中利用正交小波以及双正交小波分别对超声图像进行了多分辨率分析,其结果证明,整数提升小波变换的多分辨率分析,可以使分析后的结果图像保留更多的原始图像信息。同时应用双正交小波的整数提升变换对超声图像进行不同分解层次下的配准,验证了整数提升小波在多分辨率分析配准中可以有效地减少算法的运算迭代次数及计算时间。
     利用本文提出的刚性图像配准方法、非刚性图像配准方法,并结合多分辨率分析对肾部超声造影图像进行了配准。通过对配准后的图像序列进行时间—强度曲线分析,可以得出病灶部位良、恶性的正确结论。该应用同时证明了本文对于医学图像配准算法的研究具有一定的临床诊断意义及实际应用价值。
As a key technology of medical image processing and analysis, image registration is very important in clinical applications. It not only can be applied in the diagnosis of disease, but also can help in clinical operations by tracking the focus part and in accessing the treatment. Nowadays, medical image registration is widely applied in image fusion, three-dimensional image reconstruction and surgical navigation to locate images.
     This dissertation mainly focuses on the registration of medical images, especially the rigid images, series rigid images and non-rigid images. As far as the processing of very large volume data in series and nonrigid image registration applications is concerned, the global optimization method and multi-resolution analysis based registration scheme are also discussesed. The main contents of the dissertation are as follows:
     Applying the nonlinear correlation metrics and downhill simplex searching technique, the dissertation proposes the rigid image registration method based on the maximization of Nonlinear Correlation Coefficient (NCC). As an improved version of Mutual Information (MI), NCC can quantitatively describe the nonlinear correlation degree between two variables using a value in the closed interval [0, 1]. Therefore, it is more intuitionistic and suitable to compare and analyze the correlation degree among images. The extremum of NCC can help us to adopt the upper and lower thresholds of the cost function to revise the downhill searching process for the optimal, and overcome the local minimal problem induced by the nonlinearity of NCC. The introduction of variant accuracy tolerance will reduce the iterations at the local minima in the searching process, and then, enhance the speed of the algorithm. Simulations verify that the proposed method can be applied in multi-modal image registration and its performance will not be affected by the contrast differences between the floating and reference images.
     According to the different characteristics of the inner geometry connection of series image, the dissertation proposes two types of metrics to register the series rigid image. For series image with known inner geometry connection, its registration can be carried out by selecting the first image in the series as the floating image, which will be registered to the reference image. The second image in the series is registered to the reference image and the registered first image simultaneously. The rest of the series image may be deduced by analogy. A new correlation metric, Shared Chain Mutual Information (SCMI), is proposed for this registration model to ensure the series image to be accurately registered. SCMI can quantitatively describe the correlation degree between the nth image with the pre-registered n-1 images. Experiments have shown that SCMI can be used to register series rigid image with known inner geometry connections, and can achieve sub-pixel registration accuracy. Comparisons with the accuracy of two image registrations further prove the advantages of SCMI on registering the series image. For registration of unknown-inner geometry connections, Nonlinear Correlation Information Entropy (NCIE) is proposed as the registration metric, which can use a value in the closed interval [0, 1] to estimate the general relationship among multi-variables, and may not be affected by the order of images. Simulations on the images with rotation and translate transformations have been conducted to verify the performance of NCIE as a registration metric, and the results prove the effectiveness of NCIE to series rigid image with unknown-inner geometry connections.
     Under the nonrigid image registration frame, the dissertation proposes to use Wendland compactly support radial basis function as a parameterized transformation model. As the parameters are numerous in non-rigid registration model, the particle swarm optimization algorithm is selected to achieve exploration and exploitation in the whole feasible space accurately and fleetly for the unknown parameters of nonrigid transformation. Particle swarm optimization algorithm has the characteristic of fast global searching for the optimal, but it is restricted in applications by the inclination of its particles falling into premature convergence. The dissertation improves the basic particle swarm optimization algorithm and proposes the revised Variable-Neighborhood-Selection based Particle Swarm Optimization (VNS-PSO) algorithm. The algorithm updates the premature particles by re-assigning a better reference particle in its neighborhood. This will lead the algorithm out of the premature state and continue its global optimization searching. Experiments show that, the registration method combining the revised VNS-PSO algorithm and Wendland compactly support radial basis function can effectively register the images with global or local nonrigid transformations.
     To meet the speed and quality requirements for series and nonrigid image registration, the dissertation proposes an Integer Lifting Wavelet Transform (ILWT) based multi-resolution analysis registration model. This model decomposes the images firstly, registers the approximate images to obtain the transformation model secondly, and finally, reconstructs the registered image by applying the transformation parameters to the original resolution image. Comparing to the first generation wavelet transformation, ILWT can implement transformation from integer to integer, and lossless reconstruction of image. Therefore it is more suitable for multi-resolution analysis than the first generation wavelet transformation. In the experiment, orthogonal wavelet and biorthogonal wavelet are used to decompose ultrasonic image multi-dimensionally. Results show that ILWT based multi-resolution analysis can keep more original information in the processed images. Moreover, the registration results of the ultrasonic images decomposed at different resolution level by biorthogonal wavelet verify that ILWT can effectively reduce the iteration and the calculation time of the algorithm.
     Using the proposed rigid and non-rigid image registration methods and multi-resolution analysis strategy, the kidney ultrasonic series image is registered. By analyzing the time-intensity curves of the registered series image, we can achieve the correct conclusion about whether the focus is benign or malign. This application further validates that the researches on medical image registration methods in this dissertation are applicable in clinical diagnosis.
引文
1吴国荣,戚飞虎.非线性立体脑图像配准中的机器学习方法.中国医疗器械杂志. 2006, 30(4): 268~270
    2 Y. Caspi, D. Simakov, M. Irani. Feature-Based Sequence-to-Sequence Matching. International Journal of Computer Vision. 2006, 68(1): 53~64
    3袁贞明,吴飞,庄越挺.基于视觉特征的多传感器图像配准.中国图象图形学报. 2005, 10(6): 767~772
    4陈宏,田捷.检验配准模式的指纹匹配算法.软件学报. 2005, 16(6): 1046~1053
    5朱朝杰,王仁礼,童广军. MATLAB环境下遥感影像配准与融合技术研究.测绘技术. 2006, 15(6): 57~59
    6刘宝泉,冯大政,武楠,李军侠.干涉合成孔径雷达复图像自动配准算法.西安电子科技大学学报. 2006, 33(6): 887~891
    7 C. Ali, C. S. Charles, R. Badrinath, L. T. Howard. A Feature-Based, Robust, Hierarchical Algorithm for Registering Pairs of Images of the Curved Human Retina. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2002, 24(3): 347~364
    8 F. F. Alejandro, L. Martin, L. Pablo. A Registration-Based Approach to Quantify Flow-Mediated Dilation (FMD) of the Brachial Artery in Ultrasound Image Sequences. IEEE Trans. on Medical Imaging. 2003, 22(11): 1458~1469
    9 M. Markus, K. Wolfgang, G. Saur. Robust Image Registration for Fusion. Information Fusion. 2007, 8(4): 347~353
    10 D. Skerl, D. Tomazevic, B. Likar, F. Pernus. Evaluation of Similarity Measures for Reconstruction-Based Registration in Image-Guided Radiotherapy and Surgery. International Journal of Radiation Oncology Biology Physics. 2006, 65(3): 943~953
    11 M. Otte. Elastic Registration of fMRI Data Using Bezier-Spline Transformations. IEEE Trans. on Medical Imaging. 2001, 20(3): 193~206
    12李成昆,李永忠. CT与MRI图像配准与融合技术在颅脑肿瘤的初步应用.中国医学影像技术. 2001, 17: 823~825
    13 X. Pennec, P. Cachier, N. Ayache. Tracking Brain Deformations in Time Sequences of 3D US Images. Pattern Recognition Letters. 2003, 24: 801~813
    14罗述谦.医学图像配准技术.国外医学:生物医学工程分册. 1999, 22(1): 1~8
    15 C. Pelizzari, G. Chen, D. Spelbring, et al. Accurate Three Dimensional Registration of CT PET and/or MR Images of the Brain. J. of Computer Assisted Tomography. 1989, 13(1): 20~26
    16邓莹莹,廖庆敏,李永等.一种头部磁共振图像自动配准方法.计算机应用. 2003, 23(5): 47~49
    17 G. Eggers, J. Mühling, R. Marmulla. Image-to-Patient Registration Techniques in Head Surgery. International Journal of Oral and Maxillofacial Surgery. 2006, 35(12): 1081~1095
    18 B. Likar, F. Pernus. A Hierarchical Approach to Elastic Registration Based on Mutual Information. Image and Vision Computing. 2001, 19: 33~44
    19 C. C. Stephen, M. H. Majeed, E. A. Ernest. Projection-Based Image Registration in the Presence of Fixed-Pattern Noise. IEEE Trans. on Image Processing. 2001, 10(12): 1860~1872
    20 C. Olivier, D. Herve, T. Ion-Florin, J. G. Alexandra, et al. Robust Nonrigid Registration to Capture Brain Shift from Intraoperative MRI. IEEE Trans. on Medical Imaging. 2005, 24(11): 1417~1427
    21 C. K. Hoh, M. Dahlbom, G. Harris, Y. Choi, R. A. Hawkins, M. E. Phelps, J. Maddahi. Automated Iterative Three-Dimensional Registration of Positron Emission Tomography Images. J. of Nuclear Medicine. 1993, 34: 2009~2018
    22 K. Jeongtae, A. F. Jeffrey. Intensity-Based Image Registration Using Robust Correlation Coefficients. IEEE Trans. on Medical Imaging. 2004, 23(11): 1430~1444
    23 C. Hua-mei, K. V. Pramod. Mutual Information-Based CT-MR Brain Image Registration Using Generalized Partial Volume Joint Histogram Estimation. IEEE Trans. on Medical Imaging. 2003, 22(9): 1111~1119
    24 Z. F. Knops, J. B. A. Maintz, M. A. Viergever, J. P. W. Pluim. Normalized Mutual Information Based Registration Using K-Means Clustering andShading Correction. Medical Image Analysis. 2006, 10(3): 432~439
    25 T. Buzug, J. Weese. Improving DSA Images with an Automatic Algorithm Based on Template Matching and an Entropy Measure. J. of Computer Assisted Radiology. 1996, 1124: 145~150
    26 L. Lemieux, R. Jagoe. Effect of Fiducial Marker Localization on Stereotactic Target Coordinate Calculation in CT Slices and Radiographs. J. of Physics in Medicine and Biology. 1994, 39: 1915~1928
    27 S. C. Strother, J. R. Anderson, X. Xu, J. Liow, et al. Quantitative Comparisons of Image Registration Techniques Based on High-Resolution MRI of the Brain. J. of Computer Assisted Tomography. 1994, 18: 954~962
    28 A. Savi, M. C. Gilardi, G. Rizzo, M. Pepi, C. Landoni, C. Ross, et al. Spatial Registration of Echocardiographic and Positron Emission Tomographic Heart Studies. European Journal of Nuclear Medicine. 1995, 22(3): 243~247
    29 N. Ryan, C. Heneghan, P. Chazal. Registration of Digital Retinal Images Using Landmark Correspondence by Expectation Maximization. Image and Vision Computing. 2004, 22: 883~898
    30 M. Betke, H. Hong, J. P. Ko. Automatic 3D Registration of Lung Surfaces in Computed Tomography Scans. International Conference of Medical Image Computing and Computer Assisted Intervention, Utrecht, Netherlands, 2001: 725~733
    31 A. C. Evans, S. Marrett, L. Collins, T. M. Peters. Anatomical-Functional Correlative Analysis of the Human Brain Using Three Dimensional Imaging Systems. Proceedings of Medical Imaging: Image Processing, Bellingham, 1989, 1092: 264~274
    32 C. F. Henri, A. Cukiert, D. L. Colliins, et al. Towards Frameless Stereotaxy: Anatomical-Vascular Correlation and Registration. In Visualization in Biomedical Computing. 1992, 1808: 214~224
    33 M. M. Emma, C. Ruben, L. G. Rodriqo, M. F. M. Angel, A. L. Carlos. Image Registration Based on Automatic Detection of Anatomical Landmarks for Bone Age Assessment. WSEAS Transactions on Computers. 2005, 4(11): 1596~1603
    34 H. J. Johnson, G. E. Christensen. Consistent Landmark and Intensity-Based Image Registration. IEEE Trans. on Medical Imaging. 2002, 21(5): 450~461
    35 G. T. Y. Chen, C. A. Pelizzari. Image Correlation Techniques in Radiation Therapy Planning. Computerized Medical Imaging and Graphics. 1989, 13: 235~240
    36 G. Borgefprs. Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1988, 10: 849~865
    37 G. Medioni, R. Nevatia. Matching Images Using Linear Features. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1984, 6: 675~685
    38 Hui Li, B. S. Manjunath, K. M. Sanjit. A Contour-Based Approach to Multisensor Image Registration. IEEE Trans. on Image Processing. 1995, 4(3): 320~334
    39梅跃松,杨树兴,莫波.基于Canny算子的改进的图像边缘检测方法.激光与红外. 2006, 36(6): 501~503
    40 D. Lijun, G. Ardeshir. On the Canny Edge Detector. Pattern Recognition. 2001, 34: 721~725
    41严国萍,何俊峰.高斯-拉普拉斯边缘检测算子的扩展研究.华中科技大学学报. 2006, 34(10): 21~23
    42鲍占阔,杨玉珍,陈阳舟.一种改善高斯拉普拉斯算子零交叉方法的车辆边缘检测.微计算机信息. 2006, 22(10): 252~255
    43贺琳,李晓华,沈兰荪.基于纹理分析和区域增长的人群图像分割.测控技术. 2007, 26(5): 18~20
    44 N. M. Alpert, J. F. Bradshaw, D. Kennedy, J. A. Correia. The Principle Axis Transformation - a Method for Image Registration. J. of Nuclear Medicine. 1990, 31: 1717~1722
    45吴锋,钱宗才,杭恰时等.基于轮廓的力矩主轴法在医学图像配准中的应用.第四军医大学学报. 2001, 22(6): 567~569
    46葛云,舒华忠,罗立民.基于Legendre正交矩的配准方法及其在二值图像配准中的应用.电子学报. 2001, 29(1): 54~57
    47 R. P. Woods, S. R. Cherry, J. C. Mazziotta. Rapid Automated Algorithm for Aligning and Reslicing PET Images. J. of Computer Assisted Tomography. 1992, 16(4): 620~633
    48 R. P. Woods, J. C. Mazziotta, S. R. Cherry. MRI-PET Registration with Automated Algorithm. J. of Computer Assisted Tomography. 1993, 17(4):536~546
    49 D. L. G. Hill, D. J. Hawkes, N. A. Harrison, C. F. Ruff. A Strategy for Automated Multimodality Image Registration Incorporating Anatomical Knowledge and Image Characteristics. Information Processing in Medical Imaging, Lecture Notes in Computer Science, 1993, 687: 182~196
    50 A. Collignon, D. Vandermeulen, P. Suetens, G. Marchal. 3D Multimodality Medical Image Registration using Feature Space Clustering. Computer Vision, Virtual Reality and Robotics in Medicine, Lecture Notes in Computer Science, 1995, 905: 195~204
    51 C. Studholme, D. L. G. Hill, D. J. Hawkes. Multiresolution Voxel Similarity Measures for MR-PET Registration. Proceedings of Information Processing in Medical Imaging, 1995, 287~298
    52 A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, G. Marchal. Automated Multi-Modality Image Registration Based on Information Theory. Proceedings of Information Processing in Medical Imaging, 1995, 263~274
    53 P. Viola, W. M. Wells. Alignment by Maximization of Mutual Information. International Conference on Computer Vision. 1995: 16~23
    54 W. M. Wells, P. Viola, R. Kikinis. Multi-Modal Volume Registration by Maximization of Mutual Information. Medical Robotics and Computer Assisted Surgery. 1995, 55~62
    55江贵平,刘哲星,李树祥.一种新颖的序列图像自动配准方法.中国医学物理学杂志. 2005, 22(2): 441~447
    56王世杰,罗立民.功能磁共振时间序列图像快速配准方法研究.东南大学学报. 2003, 33(2): 211~214
    57 J. Williams, M. Bennamoun. Simultaneous Registration of Multiple Corresponding Point Sets. Computer Vision and Image Understanding. 2001, 81: 117~142
    58 J. L. Boes, C. R. Meyer. Multi-Variate Mutual Information for Registration. Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, 1999, 1678: 606~612
    59 C. Studholme, D. L. G. Hill, D. J. Hawkes. Incorporating Connected Region Labeling into Automated Image Registration Using Mutual Information. Mathematical Methods in Biomedical Image Analysis. 1996, 23~31
    60 C. Broit. Optimal Registration of Deformed Images. PhD thesis, Department of Computer and Information Science, University of Pennsylvania, Philadelphia, 1981: 1~10
    61 R. Bajcsy, R. Lieberson, M. Reivich. A Computerized System for the Elastic Matching of Deformed Radiographic Images to Idealized Atlas Images. J. of Computer Assisted Tomography. 1983, 7: 618~625
    62 M. Moshfeghi. Elastic Matching of Multimodality Medical Images. Graphical Models and Image Processing. 1991, 53(3): 271~282
    63 G. E. Christensen, R. D. Rabbitt, M. Miller. Deformable Templates Using Large Deformation Kinematics. IEEE Trans. on Image Processing. 1996, 5(10): 1435~1447
    64 G. Christensen, S. Joshi, M. Miller. Volumetric Transformation of Brain Anatomy. IEEE Trans. on Medical Imaging. 1997, 16: 864~877
    65 S. Periaswamy, H. Farid. Elastic Registration in the Presence of Intensity Variations. IEEE Trans. on Medical Imaging. 2003, 22(7): 865~874
    66张红颖,张加万,孙济洲.改进Demons算法的非刚性医学图像配准.光学精密工程. 2007, 15(1): 145~150
    67 D. L. Collins, T. M. Peters, A. C. Evans. An Automated 3D Non-Linear Deformation Procedure for Determination of Gross Morphoetric Variability in Human Brain. Visualization in Biomedical Computing, Bellingham, WA, 1994, 2359: 180~190
    68 R. P. Woods, S. T. Grafton, C. J. Holmes, S. R. Cherry, J. C. Mazziotta. Automated Image Registration. I: General Methods and Intrasubject, Intramodality Validation. J. of Computer Assisted Tomography. 1998, 22: 141~154
    69 R. P. Woods, J. C. Mazziotta, S. R. Cherry. MRI-PET Registration with Automated Algorithm. J. of Computer Assisted Tomography. 1993, 17(4): 536~546
    70张红颖,张加万,孙济洲,杨甲东.基于层次B样条的医学图像弹性配准方法.天津大学学报. 2007, 40(1): 35~40
    71张煜,刘哲星,郝立巍,李树祥.用平滑薄板样条实现医学图象的弹性配准.中国图象图形学报. 2003, 8(2): 209~213
    72彭晓明,陈武凡,马茜.基于B样条的快速弹性图像配准方法.计算机工程与应用. 2006, 11: 186~189
    73 N. Arad, D. Reisfeld. Image Warping Using Few Anchor Points and Radial Functions. Computer Graphics Forum. 1995, 14(1): 35~46
    74 J. A. Little, D. L. G. Hill, D. J. Hawkes. Deformations Incorporating Rigid Structures. Computer Vision and Image Understanding. 1997, 66(2): 223~232
    75 K. Rohr, M. Fornefett, H. S. Stiehl. Splines-Based Elastic Image Registration: Integration of Landmark Errors and Orientation Attributes. Computer Vision and Image Understanding. 2003, 90: 153~168
    76 F. L. Bookstein. Principal Warps: Thin-Plate Splines and the Decomposition of Deformations. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1989, 11(6): 567~585
    77 M. B. Asker, H. G. Sabih. Fingerprint Matching by Thin-Plate Spline Modeling of Elastic Deformations. Pattern Recognition. 2003, 36: 1859~1867
    78 K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese, M. H. Kuhn. Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines. IEEE Trans. on Medical Imaging. 2001, 20(6): 526~534
    79 L. Zagorchev, A. Goshtasby. A Comparative Study of Transformation Functions for Nonrigid Image Registration. IEEE Trans. on Image Processing. 2006, 15(3): 529~538
    80吴晓光,谭云兰,柳志新.基于小波多分辨率分解的图像压缩技术及分析.计算机与现代化. 2004, 104(4): 19~21
    81 R. Ashin, A. Morimoto, R. Vaillancourt. Image Compression with Multiresolution Singular Value Decomposition and Other Methods. Mathematical and Computer Modelling. 2005, 41(6-7): 773~790
    82张晓威,朱磊,刘军.多小波图像去噪算法的研究.哈尔滨工程大学学报. 2007, 28(5): 594~598
    83 L. Pasti, B. Walczak, D. L. Massart. P. Reschiglian. Optimization of Signal Denoising in Discrete Wavelet Transform. Chemometrics and Intelligent Laboratory Systems. 1999, 48(1): 21~34
    84 J. L. John, J. O. Robert, G. N. Stavri, R. B. David, C. Nishan. Pixel-and Region-Based Image Fusion with Complex Wavelets. Information Fusion.2007, 8(2): 119~130
    85 S. Wenzhong, Z. Changqing, T. Yan, N. Janet. Wavelet-Based Image Fusion and Quality Assessment. International Journal of Applied Earth Observation and Geoinformation. 2005, 6(3-4): 241~251
    86 R. Y. Wong, E. L. Hall. Sequential Hierarchical Scene Matching. IEEE Trans. on Computers. 1978, 27(4): 359~366
    87 W. H. Wang, Y. C. Chen. Image Registration by Control Points Pairing Using the Invariant Properties of Line Segments. Pattern Recognition Letters. 1997, 18(3): 269~281
    88 R. K. Sharma, M. Pavel. Multisensor Image Registration. Proceedings of the Society for Information Display. 1997, 951~954
    89 R. Kumar, H. S. Sawhney, J. C. Asmuth, A. Pope, S. Hsu. Registration of Video to Geo-Referenced Imagery. Proceedings of the International Conference on Pattern Recognition, Brishane, Australia, 1998: 1393~1399
    90 R. Turcajova, J. Kautsky. A Hierarchical Multiresolution Technique for Image Registration. Proceedings of SPIE Mathematical Imaging: Wavelet Applications in Signal and Image Processing, Colorado. 1996: 686~696
    91 L. Moigne. First Evaluation of Automatic Image Registration Methods. Proceedings of the International Geoscience and Remote Sensing, Symposium, Seattle, Washington, 1998: 315~317
    92杨志杰,于明,张海蜇.归一化互信息配准.计算机与信息技术. 2005, 6: 18~22
    93 Q. Wang, Y. Shen. A Nonlinear Correlation Measure for Multivariable Data Set. PHYSICA D - NONLINEAR PHENOMENA. 2005, 200(3-4): 287~295
    94 P. A. Van Den Elsen, E. J. D. Pol, M. A. Viergever. Medical Image Metching - A Review with Classification. IEEE Engineering in Medicine and Biology Magazine. 1993, 12: 26~39
    95 Z. Barbara, F. Jan. Image Registration Methods: A Survey. Image and Vision Computing. 2003, 21: 977~1000
    96 W. Press, B. Flannery, et al. Numerical Recipes in C: The Art of Scientific Computing Second Edition. Cambridge University Press, Cambridge, England, 1992: 412~419
    97 H. Matsuda. Physical Nature of Higher-Order Mutual Information: IntrinsicCorrelations and Frustration. PHYSICAL REVIEW E. 2000, 62(3): 3096~3102
    98 R. Woods. Automated Global Polynomial Warping. Brain Warping. 1998, 365~376
    99 J. Kybic, M. Unser. Fast Parametric Elastic Image Registration. IEEE Trans. on Image Processing. 2003, 12(11): 1427~1442
    100王卫红,秦绪佳.基于紧支径向基函数内插的图像修复算法.电子与信息学报. 2006, 28(5): 890~894
    101 H. Wendland. Piecewise Polynomial, Positive Defined and Compactly Supported Radial Functions of Minimal Degree. J. of Computational Mathematics. 1995, 4(4): 389~396
    102 L. Cagnina, S. Esquivel, C. Coello. A Particle Swarm Optimizer for Constrained Numerical Optimization. In Procedings of Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 2006, 4139: 910~919
    103 K. Lei, Y. Qiu, X. Wang. High Dimension Complex Functions Optimization Using Adaptive Particle Swarm Optimizer. In Procedings of Rough Sets and Knowledge Technology, Lecture Notes in Artificial Intelligence, 2006, 4062: 321~326
    104 A. Esmin, A. R. Aoki, G. Lambert-Torres. Particle Swarm Optimization for Fuzzy Membership Functions Optimization. IEEE International Conference on Systems Man Cybernetics, 2002, 3: 106~111
    105 M. Ma, L. B. Zhang, J. Ma. Fuzzy Neural Network Optimization by a Particle Swarm Optimization Algorithm. International Symposium on Neural Networks, Chengdu, 2006, 3971: 752~761
    106 P. Yin, J. Wang. A Particle Swarm Optimization Approach to the Nonlinear Resource Allocation Problem. Applied Mathematics and Computation. 2006, 183(1): 232~242
    107 D. Sha, C. Hsu. A Hybrid Particle Swarm Optimization for Job Shop Scheduling Problem. Computers and Industrial Engineering. 2006, 51(4): 791~808
    108 Y. Shi, R. Eberhart. A Modified Particle Swarm Optimizer. International Conference on Evolutionary Computation, Anchorage, Alaska, 1998, 69~73
    109 P. J. Angeline, N. S. Inc, N. Y. Vestal. Using Selection to Improve Particle Swarm Optimization. International Conference on Evolutionary Computation, Anchorage, Alaska. 1998, 84~89
    110 K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, M. N. Vrahatis. Improving Particle Swarm Optimizer by Function“Stretching”. Advances in Convex Analysis and Global Optimization. 2001, 445~457
    111 B. Niu, Y. L. Zhu, X. X. He, H. Wu. MCPSO: A Multi-Swarm Cooperative Particle Swarm Optimizer. Applied Mathematics and Computation. 2007, 185(2): 1050~1062
    112 S. Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1989, 11(7):674~693
    113陈军波,陈心浩,陈亚光.提升小波变换在静态医学图像压缩编码中的应用.计算机工程与应用. 2004, 19: 189~192
    114 K. Andra, C. Chakrabarti, T. Acharya. A VLSI Architecture for Lifting-Based Forward and Inverse Wavelet Transform. IEEE Trans. on Signal Processing. 2002, 50(4): 966~977
    115吴永宏,潘泉,张洪才,张绍武,张云龙.基于提升框架的整数小波变换.电子与信息学报. 2004, 26(4): 659~663
    116 A. R. Calderbank, I. Daubechies, W. Sweldens, et al. Wavelet Transforms that Map Integers to Integers. Applied and Computation Harmonic Analysis. 1998, 5(3): 332~369
    117吕珂,姜玉新,朱庆莉,菜胜,张璟,程铁花.肝局灶性病变超声造影反向脉冲谐波显像的临床研究.中华超声影像学杂志. 2003, 12(6): 351~354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700