用户名: 密码: 验证码:
含过渡金属配合物有机—无机杂化材料的制备及催化环氧化反应性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧化合物是一类用途极广的有机合成中间体,可以通过选择性开环或者官能团的转化,生成一系列有价值的化合物,在医药,农药,香料等精细化学品的合成上具有非常重要的意义。目前工业上合成环氧化合物的方法主要有Ag/Al2O3/O2 (EO)体系,氯醇法(PO)和Halcon法(PO)。Ag/Al2O3/O2 (EO)体系对乙烯环氧化具有高的效率,但是催化高级烯烃环氧化效果则不理想;氯醇法工艺虽然投资少,产率高,但是在生产过程中产生大量含卤污水,环境污染严重;Halcon法虽然克服氯醇法污染严重问题,但是也存在工艺流程长,联产物多,对设备腐蚀严重等缺点。所以开发高效低污染的环氧化新工艺是具有非常意义的工作。
     研究发现一些仿生类金属配合物,如手性金属卟啉、手性席夫碱金属配合物、金属肽睛、邻菲罗啉金属配合物、联吡啶金属配合物等,在烯烃环氧化反应和烯烃不对称环氧化中表现出高的活性及立体选择性,且同时具有烯烃底物适用范围广、反应条件温和等优点。然而,这类金属配合物作为均相催化剂使用时通常存在回收困难、成本高,且在反应过程中易形成惰性的二聚(低聚)体等问题,从而限制了其发展和实际应用。相比之下,多相催化剂可以克服上述缺点,易于回收和循环使用。近年来,人们围绕均相配合物催化剂的多相化研究开展了大量研究工作,即把金属配合物(或有机金属化合物)和固体载体(如含硅的无机介孔材料)相结合构筑出即具有高的催化活性又易于回收和循环使用的有机-无机杂化材料催化剂。针对烯烃环氧化反应,目前已经有多种性能较为优异的有机-无机杂化材料催化剂体系被相继报道出来,显示出良好的发展前景。在这一领域,研究和开发出性能更加优异、环境友好的新型有机-无机杂化材料多相环氧化催化体系仍是备受关注的课题。
     基于上述情况,本论文开展了不同类型金属配合物功能化的有机-无机杂化材料的合成、表征及催化环氧化反应性能研究工作。通过选择适当的金属阳离子和有机配体,结合一些无机载体的使用,合成出多种新型高效多相环氧化催化剂体系。在反应评价过程中系统地考察了烯烃种类,氧化剂类型,反应介质等因素对催化剂性能的影响,同时结合各种表征对催化剂结构、表面性质进行了研究,探讨了催化剂活性中心性质和催化作用机制等问题。主要研究内容和结果概述如下:
     1.MnⅡ吡啶联吡唑配合物功能化的SBA-15杂化材料的制备及催化性能
     通过共价键嫁接的方法将[MnⅡ(l)2](OAc)2 (l=3-(2-吡啶基)-1-吡哗))固载到介孔SBA-15表面上制成杂化材料。催化反应结果表明:这类杂化材料在以间氯过氧苯甲酸(m-CPBA)为氧化剂时,对多种烯烃(包括一些难氧化的端基类烯烃,如1-辛烯)表现出非常高的低温催化活性、选择性及稳定性。氧化剂类型和溶剂类型的选择也会显著影响催化剂的性能。当分别以叔丁基过氧化氢和间氯过氧苯甲酸为氧化剂时,由于m-CPBA的氯苯基的吸电子能力要比t-BuOOH的叔丁基强,使两种氧化剂在催化剂上的活化方式和途径产生差异。当t-BuOOH作为氧化剂时,所形成t-BuOO-MnⅡ加合物中O-O键容易均裂产生HO-MnⅢ中间体和自由基(RO·),使得反应产生大量副产物(如醛);而当m-CPBA作为氧化剂时,形成的加合物中的O-O键容易发生异裂而产生高价O=MnⅣ中间体,从而有利于环氧化物的生成。此外,相对于质子型溶剂(如乙醇),在非质子型溶剂(如乙腈)中,催化剂通常会表现出更高的活性和选择性。原位UV-vis光谱等表征结果证实在乙腈为溶剂时,MnⅡ-更易于与氧化剂(m-CPBA)作用生成高价的O=MnⅣ中间体,这应该是催化剂表现出高活性和高的环氧化物选择性的主要原因。
     2.过氧化钨配合物功能化的介孔材料的制备及催化性能
     通过后嫁接法合成了过氧化钨配合物WO(O2)2L(L=3-(2-吡啶基)-1-吡唑(1);3-(2-氨乙基)-氨丙基(2)、咪唑(3)或4.4’-联吡啶(4))功能化的介孔SBA-15材料(记为WO5(n)-SBA-15)。这几种有机-无机杂化材料催化剂在以双氧水为氧化剂时,均对环辛烯环氧化反应中表现出较高的活性及选择性。然而,由配体2-4合成的催化剂的稳定性较差,在循环使用过程中催化活性明显下降,推测主要原因是由于活性钨物种的配位环境发生一定变化而导致的。而WO5(l)-SBA-15催化剂在六次循环反应中活性基本保持不变,且中断实验结果也证实该反应确实是多相催化反应,显示出很高的稳定性:另外该催化剂还具有很高的双氧水利用率(99.5%以上),性能明显优于其它类型金属配合物催化剂。WO5(l)-SBA-15表现出高稳定性可主要归结于两方面因素:一是由于配体和SBA-15的表面有很强的共价键连接,二是由于含氮双齿配体具有很强的配位能力,可以和过氧化钨物种形成稳定的配合物。此外,通过对比不同类型的无机载体还发现载体上存在大的孔道有利于反应活性的提高,并且载体中存在适量的路易斯酸中心也会提高催化剂的反应活性。
     3.过氧化钨吡啶基吡唑配合物功能化的炭材料的制备及催化性能
     通过共价键嫁接的方法将WO5(1)配合物固载到炭化蔗糖(SC)和介孔炭材料(NC-2)得多相环氧化催化剂(记为WO5(l)-SC和WO5(l)-NC-2),并考察了其对以双氧水为氧化剂的烯丙基醇环氧化反应的催化性能。结果表明:WO5(l)-SC和WO5(l)-NC-2催化剂的性能受溶剂影响很大。当一些常用的有机溶剂(如乙腈)为反应介质时,两种催化剂的均表现出非常低的反应活性;而当水为反应介质时,两种催化剂的反应活性均显著提高。结合一些表征结果,可以认为炭载体表面存在的大量含氧官能团使催化剂表面具有一定的极性(亲水性)从而使其在水体系中为表现出较高的催化活性。相比之下,WO5(l)-NC-2的催化活性要高于WO5(l)-SC,一方面可能是由于两种载体的表面性质(极性)有一定的差异所致,另一方面也可能是由于NC-2具有更高的比表面积,使活性中心能够更加均匀的高分散在载体表面上。值得一提的是,在不添加其它任何溶剂的条件下,WO5(l)-NC-2对一些烯丙基醇环氧化表现出非常高的催化活性(TOF,10125h-1per W site)和环氧化物选择性,且催化剂在反应过程中没有发生活性物种流失、可多次循环使用,显示出良好的稳定性。
     4. MnⅢ(salen)配合物功能化的介孔磷酸铝材料的制备及其在烯烃不对称环氧化反应中的应用
     通过氨丙基轴向嫁接的方法将手性MnⅢ(salen)配合物固载到介孔磷酸铝材料上,通过调变磷/铝比可以得到不同孔道结构的多相手性MnⅢ(salen)催化剂(分别记为Salen-Mn-AP-AlP0.9O,Salen-Mn-AP-AlP1.0O和Salen-Mn-AP-AlP1.1O)。并分别考察了其在次氯酸钠/4-苯基氧化吡啶(NaClO/PPNO)和间氯过氧苯甲酸/N-甲基吗啉氮氧化物(m-CPBA/NMO)体系下对烯烃(如:苯乙烯和α-甲基苯乙烯,反式-1,2-二苯乙烯)不对称环氧化的催化性能。实验结果表明通过调变磷/铝比增大载体的纳米孔径可以提高催化剂的手性选择性(ee%),在苯乙烯和α-甲基苯乙烯的不对称环氧化反应中可以得到与均相催化剂相近的ee%。
Synthesis and Catalytic Properties in Alkene Epoxidation
     Epoxides are a class of highly versatile intermediates in organic synthesis, which can be converted to other valuable compounds by selective ring opening or functional groups transformation, it is very important in medicine, pesticides, fragrances and other fine chemicals synthesis. The current industry methods for the synthesis of epoxides are Ag/Al2O3/O2 (Ethylene oxide). Halcon (Propylene oxide) and halogenohydrin (Propylene oxide). However, Ag/Al2O3/O2 (EO) systems showed lower efficiency for other alkenes. For the halogenohydrin process, the production of large amounts of chlorine-containing waste water leads to severely environmental pollution. In Halcon process, many side-products are produced, which suffers from the costly material consumption and equipment cauterization. Therefore, the development of high efficiency and low pollution epoxidation process is very meaningful work.
     Some biomimetic catalysts (such as chiral metalloporphyrin, chiral Schiff base metal complexes, metal peptide eye, phenanthroline metal complexes, bipyridyl metal complexes and other multi-nitrogen, nitrogen-oxygen organic metal complexes and so on) were found as efficient homogeneous catalysts for the epoxidation of alkenes. However, it is difficult to recover and reuse those homogeneous metal complexes, and the catalytic activity of these homogeneous catalysts decreases due to the formation of inactive dimericμ-oxo species, which has restricted their wide applications in industrial and laboratory synthesis. One way to overcome this problem is to immobilize them on solid supports to synhesis organic-inorganic hybrid materials. In comparison with the homogeneous counterparts, heterogeneous systems show many advantages such as easy separation and recovery of the catalyst from reaction media, higher stability of catalytic species and catalyst protection against destruction. For olefin epoxidation. many good performance of the organic-inorganic hybrid materials have been reported. In this area, it is still an interesting and significant subject to develop more excellent performance and environmentally friendly organic-inorganic hybrid heterogeneous epoxidation catalyst systems.
     Based on the above, in this thesis, we try to prepare and characterization novel transition metal complexes functionalized organic-inorganic hybrid materials, and study their catalytic properties in alkene epoxidation. By selecting appropriate metal ions and organic ligands, combined with the use of certain inorganic supports, we synthesis a variety of new highly efficient hetergeneous epoxidation catalysts. In the epoxidation reaction text, the influence of different reaction parameters-such as the alkenes. oxidants and solvents-on the catalytic performance of the hybrid materials has been studied and discussed, and combined with a variety of characterization of the catalyst structure and surface properties to study the nature of catalyst active center and catalytic mechanism. The main contents and results are summarized as follows:
     1. Mesoporous SBA-15 Modified with Manganese Pyrazolylpyridine Complexes: preparation and catalytic properties
     A manganese-based hybrid mesoporous material was synthesized by covalent grafting of [MnⅡ(1)2](OAc)2 (1=[3-(2-pyridyl) pyrazol-1-yl]aceticacid amide) onto the surface of SBA-15. Catalytic tests showed that the hybrid material could act as an efficient heterogeneous catalyst for the epoxidation of a wide range of alkenes (including terminal ones) under mild reaction conditions when peracids (e.g.. meta-chloroperbenzoic acid) are used as oxidants. Moreover, the catalytic performance of the hybrid materal is oxidant-dependent, these contrasting mechanistic behaviors can be rationalized on the basis of the physical parameters of the substitutes on O-O bond in these two oxidants (t-BuOOH and m-CPBA). The chlorophenyl group of m-CPBA has a stronger ability to withdraw electron density from the peroxo unit alkyl group in t-BuOOH. This feature may result in an easy homolytic cleavage of the O-O bond (radical pathway) after the formation of a t-BuOO-MnⅡfragment, while a heterolytic cleavage of the O-O bond is dominant in the m-CPBA case. It exhibits higher catalytic activity and selectivity towards epoxides in the presence of an aprotic solvent (e.g.. CH3CN). UV-vis measurements revealed that high-valent O=MnⅣ-species are easily formed during the reaction course, when meta-chloroperbenzoic acid is used as oxidant and CH3CN is used as solvent, being probably the reason for the high activity of the hybrid material and its selectivity towards epoxide formation.
     2. Mesoporous materials modified with oxodiperoxo tungsten complexes: preparation and catalytic properties
     A hybrid mesoporous SBA-15 material containing an oxodiperoxo tungsten complex of the type [WO(O2)21] (1=[3-(2-pyridyl) pyrazol-1-yl] aceticacid amide) was synthesized by a post-grafting route (WO5(I)-SBA-15). The catalytic property of the heterogeneous oxodiperoxo tungsten complex catalyst in the epoxidation of cyclooctene with H2O2 as the oxidant was investigated in comparison with other three kinds of hybrid tungsten containing SBA-15 materials bearing ethylenediamine (2), imidazole (3) or 4,4'-bipyridine (4) ligands. It was found that all oxodiperoxo tungsten catalysts were active at the reaction temperature of 55℃with CH3CN as solvent. However, only the catalyst with the pyrazolylpyridine ligand showed good recoverability and relatively high stability against leaching of active tungsten species. Moreover, this catalyst showed very high efficiency for H2O2 utilization (>99.5%). The high stability of WO5(1)-SBA-15 can be attributed to two factors:First, there is strong covalent grafting between the organic ligand system and the inorganic mesoporous material; second, the nitrogen-containing bidentate ligand has strong coordination ability, can form strong binding between the WO(O2)2 unit and the chelating ligand. In addition, by comparing with different types of inorganic supports it was found that the presence of large the pores on the support are favoring the increase of catalytic activity, and the existence of appropriate Lewis acid in supports can also increase the catalytic activity.
     3. Carbon-supported oxodiperoxo tungsten Pyrazolylpyridine Complexes: preparation and catalytic properties
     Carbon materials SC and NC-2 supported oxodiperoxo tungsten complex of the type [WO(O2)21] (1=[3-(2-pyridyl) pyrazol-1-yl] aceticacid amide) was synthesized by a post-grafting route (WO5(1)-SC and WO5(1)-NC-2). The catalytic property of the two catalysts in the epoxidation of allylic alcohols with H2O2 as the oxidant was investigated. The catalytic performance of the catalysts are solvent-dependent. When using common organic solvents (such as acetonitrile) as reaction medium, the two catalysts showed very low reactivity, when water was used as the reaction medium, the activity of the catalysts can be significantly improved. Combined with some characterization results, the oxygen groups presence on the surface of the carbon supports making the catalysts show high catalytic activity in the water system. In contrast. WO5(1)-NC-2 catalytic activity is higher than WO5(1)-SC. on the one hand, it may be due to the differences of surface properties (polar) of the two carbon supports; On the other hand. NC-2 has higher surface (>800m2/g) and active species can be uniform, highly dispersed on the support surface. These catalysts can efficiently catalyze allylic alcohols with high yields under mild solvent-free conditions without any additives. Of significant practical importance. WO5(1)-NC-2 shows excellent activity (TOF up to 10125 h-1 per W site). Furthermore. WO5(1)-SC and WO5(1)-NC-2 can be easily separated by simple filtration and reused for at least six times with no apparent loss of activity.
     4. Chiral MnⅢ(salen) complex Modified mesoporous aluminum phosphate: preparation and catalytic properties of asymmetric epoxidation of alkenes.
     Through the method of grafting, the aminopropyl axial chiral MnⅢ(salen) complexes was immobilized on the mesoporous aluminum phosphate, hetergeneous chiral MnⅢ(salen) catalyst with different pore structure (Salen-Mn-AP-AlP0.9O, Salen-Mn-AP-AlP1.0O and Salen-Mn-AP-AlP1.1O) can be obtained through the modulation of P/Al ratio. Catalytic tests showed that the hybrid materials could act as efficient heterogeneous catalysts for the asymmetric epoxidation olefins (such as: styrene andα-methyl styrene. trans-1.2-styrene) with NaClO/PPNO (or m-CPBA/NMO). Moreover, the catalyst with large pore size favoring the improved selectivity of the chiral catalyst (ee%). Salen-Mn-AP-AlP1.1O catalyst can give similar ee value with the homogeneous catalysts for asymmetric epoxidation of styrene (orα-methyl styrene).
引文
[1]J. Lacson. Ethylene oxide, in:Chemical Economics Handbook [M]. SRI International, Menlo Park, CA, Oct.2003.
    [2]D. L. Trent. Propylene oxide, in:Kirk Othmer Encyclopedia of Chemical Technology, on-line edition [N]. John Wiley & Sons, New York,2001.
    [3]Hazardous Substance Data Bank, Online database produced by the National Library of Medicine,1,2-Propylene Oxide Profile last updated [N]. October 10, 2001.
    [4]M. Ishino, J. Yamamoto. Propylene oxide manufacturing processes [J]. Shokubai,2006,48:511-515.
    [5]J. R. Monnier. The direct epoxidation of higher olefins using molecular oxygen [J]. Appl. Catal. A:Gen.2001.221:73.
    [6]J. R. Monnier. The selective epoxidation of non-allylic olefins over supported silver catalysts, in:R. K. Grasselli, S. T. Oyama, A. M. Gaffney, J. E. Lyons (Eds.),3rd World Congress on Oxidation Catalysis [C]. Elsevier, Amsterdam, 1997, Stud. Surf. Sci. Catal.,1997,110:135.
    [7]A. Ansmann. R. Kawa. M. Neuss. Cosmetic composition containing hydroxyethers, US Patent.7,083,780 B2 [P].2006-08-1. To Cognis Deutschland, Gmbh & Co. KG.
    [8]M. Servais, R. Crochet. Stabilised composition of 1,1,1,-trichloroethane, European Patent EP 62.952 [P].1982-10-20. To Solvay (BE).
    [9]C. Anaya de Parrodi, E. Juaristi. Chiral 1.2-amino alcohols and 1.2-diamines derived from cyclohexene oxide:Recent applications in asymmetric synthesis[M]. Synlett 2006,2699.
    [10]Q. Guo, K. Nakajima, T. Takahashi. Formation of 8-membered ring compounds by the reaction of styrene oxide with Mocl 5 [J]. Chem. Lett., 2003,32:1044-1045.
    [11]M. E. Jung. D. Sun. Stereoselective production of b-amino alcohols and b-thioacyl alcohols via an application of the non-aldol aldol process [J]. Tetrahedron Lett.,1999,40:8343-8346.
    [12]M. E. Jung, A. van den Heuvel. Diastereoselectivity in non-aldol aldol reactions:Silyl triflatepromoted Payne rearrangements [J]. Tetrahedron Lett., 2002.43:8169-8172.
    [13]D. M. Hodgson, R. Wisedale. Enantioselective rearrangement of exo-norbornene oxide to nortricyclanol [J]. Tetrahedron Asymm.,1996.7: 1275-1276.
    [14]Z. K. Liao. C. J. Boriack. Epoxidation process for aryl allyl ethers. US Patent 6.087.513 [P].2000-7-11. To the Dow Chemical Company.
    [15]H. Wu, L. Wang, H. Zhang, Y. Liu. P. Wu. M. He. Highly efficient and clean synthesis of 3.4-epoxytetrahydrofuran over a novel titanosilicate catalyst. Ti-MWW [J]. Green Chem.,2006,8:78-81.
    [16]A. L. Slitt, N. J. Cherrington, M. Z. Dieter, L. M. Aleksunes. G. L. Scheffer, W. Huang, D. D. Moore, C. D. Klaassen. Trans-stilbene oxide induces expression of genes involved in metabolism and transport in mouse liver via CAR and Nrf2 transcription factors [J]. Mol. Pharmacol.,2005,69: 1554-1556.
    [17]A. L. Slitt. N. J. Cherrington, C. D. Fisher. M. Negishi, C. D. Klaassen. Induction of genes for metabolism and transport by trans-stilbene oxide in livers of Sprague-Dawley and Wistar-Kyoto rats [J]. Drug Metab. Dispos., 2006.34:1190-1197.
    [18]H. Batzer. Epoxides synthesis and properties [J]. Chemistry and industry. 1964.5:179-189.
    [19]D. Swern (Ed.). Organic Peroxides [M].vol.1. J Wiley & Sons. Inc.,1970, p. 654.
    [20]B. Meunier. Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage [J]. Chem. Rev.1992.92: 1411-1456.
    [21]E.M. McGarrigle. D.G. Gilheany. Chromium and Manganese-salen Promoted Epoxidation of Alkenes [J]. Chem. Rev.2005,105:1565-1602.
    [22]H. Sakurai, Y. Hayata, T. Goromaru, H. Matsuura. A model system for drug metabolism in isolated hepatocytes; oxidation of cyclohexene by metalloporphyrin complexes [J]. J. Mol. Catal. A,1985,29:153-156.
    [23]M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, H. Kargar, N. Zeini-Isfahani. Manganese(Ⅲ) porphyrin supported on multi-wall carbon nanotubes:A highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate [J]. Polyhedron, 2009.28:3816-3822.
    [24]S. Tangestaninejad, M. Moghadam. V. Mirkhani, I. Mohammad poor-Baltork, Mohammad Saleh Saeedi. Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese(Ⅲ) salophen supported on multi-wall carbon nanotubes [J]. Appl. Catal. A,2010,381:233-241.
    [25]J. Kollar. Epoxidation process, US Patent 3,351,635 [P].1967-11-7. To Halcon International, Inc.
    [26]H. P. Wulff, F. Wattimena. Olefin epoxidation, US Patent 4,021,454 [P]. 1977-3-3. To the Shell Oil Co.
    [27]W. E. Evans, P. I. Chipman. Process for operating the epoxidation of ethylene. US Patent 6,717,001 B2 [P].2004-4-6. To Shell Oil Company.
    [28]M. G. Clerici, G. Bellussi, U. Romano. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite [J]. J. Catal., 1991.129:159-167.
    [29]M. G. Clerici. P. Ingallina. Epoxidation of lower olefins with hydrogen eroxide and titanium silicalite [J]. J. Catal.,1993,140:71-83.
    [30]G. Thiele. Process for the preparation of epoxides from olefins. US Patent 6,372,924 B2 [P].2002-4-16. To Degussa-Huls AG.
    [31]J. R. Monnier. The direct epoxidation of higher olefins using molecular oxygen [J]. Appl. Catal. A:Gen.,2001.221:73.
    [32]B.S. Lane. K. Burgess. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide [J]. Chem. Rev.,2003,103:2457-2473.
    [33]Z. Xi, N. Zhou, Y. Sun. K. Li, Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide [J]. Science,2001,292: 1139-1141.
    [34]K. Kamata, K. Yonehara, Y. Sumida. K. Yamaguchi. S. Hikichi, N. Mizuno, Efficient Epoxidation of Olefins with>99% Selectivity and Use of Hydrogen Peroxide [J]. Science,2003,300:964-966.
    [35]Q. Tang, Q. Zhang. H. Wu, Y. Wang. Epoxidation of styrene with molecular oxygen catalyzed by cobaltⅡ-containing molecular sieves [J]. J. Catal., 2005, 230:384-397.
    [36]J. Sebastian. K.M. Jinka. R.V. Jasra. Effect of alkali and alkaline earth metal ions on the catalytic epoxidation of styrene with molecular oxygen using cobaltⅡ-exchanged zeolite X [J]. J. Catal.,2006,244:208-218.
    [37]J. Liang. Q. Zhang. H. Wu. G. Meng. Q. Tang. Y. Wang. Iron-based heterogeneous catalysts for epoxidation of alkenes using molecular oxygen [J]. Catal. Commun,2004,5:665-669.
    [38]G.Xu, Q. Xia, X. Lu, Q. Zhang, H. Zhan. Selectively catalytic epoxidation of styrene with dry air over the composite catalysts of Co-ZSM-5 coordinated with ligands [J]. J. Mol. Catal. A.,2007,266:180-187.
    [39]R. Chimentao, F. Medina, J. Fierro. J.E. Sueiras. Y.Cesteros, P.Salagre. Styrene epoxidation over cesium promoted silver nanowires catalysts [J]. J. Mol. Catal. A.,2006,258:346-354.
    [40]I. J. Higgins. D. J. Best. R. C. Hammond. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential [J]. Nature.1980,286:561.
    [41]E. G. Ankudey. H. F. Olivo. T. L. Peeples. Lipase-mediated epoxidation utilizing urea-hydrogen peroxide in ethyl acetate [J]. Green Chem.,2006,8:923.
    [42]S. Panke, M. Held. M. G. Wubbolts, B. Witholt. A. Schmid. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase [J]. Biotechnol. Bioeng.,2002.80:33.
    [43]T. Kubo. M. W. Peters. P. Meinhold. F. H. Arnold. Enantiomeric epoxidation of terminal alkenes to (R)-and (S)-epoxides by engineered cytochromes P-450 BM-3 [J]. Chem. Eur. J.,2006,12:1216.
    [44]C. A. Martinez, J. D. Stewart. Cytochrome P450's:Potential catalysts for asymmetric olefin epoxidations [J]. Curr. Org. Chem.2000,4:263.
    [45]S. J. Elliot, M. Zhu, L. Tso, H. H. T. Nguyen, J. H. K. Yip, S. I. Chan. Regio-and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath) [J]. J. Am. Chem. Soc.,1997,119:9949.
    [46]K. McClay, B. G. Fox, R. J. Steffan. Toluene monooxygenase-catalyzed epoxidation of alkenes [J]. Appl. Environ. Microbiol.,2000,66:1877.
    [47]A. Schmid, K. Hofstetter, H. J. Feiten, F. Hollmann, B. Witholt. Integrated biocatalytic synthesis on gram scale:The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase [J]. Adv. Synth. Catal.,2001, 343:732.
    [48]A. F. Dexter, F. J. Lakner, R. A. Campbell. L. P. Hager. Highly enantioselective epoxidation of 1,1-disubstituted alkenes catalyzed by chloroperoxidase [J]. J. Am. Chem. Soc.,1995,117:6412.
    [49]K. Furuhashi, (Ed.), Biological Routes to Optically Active Epoxides [M]. Wiley, New York,1992, pp.167-186.
    [50]A. Archelas, R. Furstoss. Synthesis of enantiopure epoxides through biocatalytic approaches [J]. Annu. Rev. Microbiol.,1997.51:491.
    [51]E. T. Farinas, M. Alcalde, F. Arnold. Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3 [J]. Tetrahedron,2004,60:525.
    [52]F. Bigi, B. Franca, L. Moroni, R, Maggi, G. Sartori. Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(Ⅲ) complexes supported on amorphous or MCM-41 silica through a new triazine-based linker [J]. J. Chem. Soc. Chem. Commun.2002:716-717.
    [53]S. B. Ogunwumi. T. Bein. Intrazeolite assembly of a chiral manganese salen epoxidation catalyst. Chem. Commun.,1997:901-902.
    [54]M. J. Sabatier. A. Corma. A. Domenech. V. Fornes. H. Garcia. Chiral salen manganese complex encapsulated within zeolite Y a heterogeneous enantioselective catalyst for the epoxidation of alkenes. Chem. Commun., 1997:1285-1286.
    [55]#12
    [56]P.-P. Knops-Gerrits, D. De Vos, F. Thibault-Starzyk, P. A. Jacobs. Zeolite-encapsulated Mn(Ⅱ) complexes as catalysts for selective alkene oxidation [J]. Nature,1994,369:543-546.
    [57]H. Yang, J. Li, J. Yang, Z. Liu, Q. Yang, C. Li. Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage [J]. Chem. Commun., 2007:1086-1088.
    [58]H. Yang, L. Zhang, L. Zhong. Q. Yang, C. Li. Enhanced Cooperative Activation Effect in the Hydrolytic Kinetic Resolution of Epoxides on [Co(salen)] Catalysts Confined in Nanocages [J]. Angew. Chem. Int. Ed.2007. 46:6861-6865.
    [59]R. Kureshy. N. Khan. S. Abdi. I. Ahmad, S. Singh, R. Jasra. Dicationic chiral Mn(Ⅲ) salen complex exchanged in the interlayers of montmorillonite clay:a heterogeneous enantioselective catalyst for epoxidation of nonfunctionalized alkenes [J]. J. Catal.,2004,221:234-240.
    [60]Baleizao C, Gigante B, Das D, Alvaro M, Garcia H and Corma A. Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO) [J]. Chem. Commun.,2003:1860-1861.
    [61]P. Piaggio. C. Langham. P. McMorn. D. Bathell. P. Page. F. Hancock, C. Sly J. Hutchings. Catalytic asymmetric epoxidation of stilbene using a chiral salen complex immobilized in Mn-exchanged Al-MCM-41 [J]. J. Chem. Soc. Perkin Trans.,2000,2(1):143-148.
    [62]P. Piaggio. D. McMorn. P. Murphy. D. Bethell. B. Page. F. Hancock. C. Sly. O. Kerton. G. Hutchings. Enantioselective epoxidation of (Z)-stilbene using a chiral Mn(Ⅲ)-salen complex:effect of immobilisation on MCM-41 on product selectivity [J]. J. Chem. Soc. Perkin 2,2000:2008-2015.
    [63]G. Kim, S. Kim. Immobilization of new Mn(salen) complex over MCM-41 and its activity in asymmetric epoxidation of styrene [J]. Catal. Lett.,1999,57: 139-143.
    [64]G. Kim, J. Shin. Application of new unsymmetrical chiral Mn(III), Co(Ⅱ,Ⅲ) and Ti(Ⅳ) salen complexes in enantioselective catalytic reactions. Catal. Lett., 1999,63:83-90.
    [65]T.P. Yoon, E.N. Jacobsen. Privileged Chiral Catalysts [J]. Science,2003,299: 1691-1693.
    [66]R. Tan, D.Yin, N. Yu, H. Zhao, D.Yin. Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn(Ⅲ) complex for enantioselective epoxidation of styrene [J]. J. Catal.,2009,263:284-291.
    [67]T. K. Maishal. J. Alauzun. J.-M. Basset. C. Coperet, R. J. P. Corriu. E. Jeanneau, A. Mehdi, C. Reye, L. Veyre, C. Thieuleux. A Tailored Organometallic Inorganic Hybrid Mesostructured Material:A Route to a Well-Defined, Active, and Reusable Heterogeneous Iridium-NHC Catalyst for H/D Exchange [J]. Angew. Chem., Int. Ed.,2008.47:8654-8656.
    [68]E. Murphy, L.Schmid, T. Burgi, M. Maciejewski, A. Baiker. Nondestructive Sol-Gel Immobilization of Metal(salen) Catalysts in Silica Aerogels and Xerogels [J]. Chem. Mater.,2001,13:1296-1304.
    [69]R. Corriu, E. Lancelle-Beltran, A. Mehdi, C. Reye, S. Brandes. R. Guilard. Hybrid Materials Containing Metal(II)Schiff Base Complex Covalently Linked to the Silica Matrix by Two Si-C Bonds:Reaction with Dioxygen [J]. Chem. Mater.,2003,15:3152-3160.
    [70]M Jia, A. Seifert, W. Thiel. Sol-gel synthesis of oxodiperoxo molybdenum-modified organic-inorganic materials for the catalytic epoxidation of cyclooctene [J]. J. Catal.,2004,221:319-324.
    [71]L. Chen, F. Mei,G. Li. Co(Ⅱ) Schiff base complexes on silica by sol-gel method as heterogeneous catalysts for oxidative carbonylation of aniline [J]. Catal. Commun.,2009.10:981-985.
    [72]T. Asefa. M. Maclachlan, N. Coombs. Periodic mesoporous organosilicas with organic groups inside the channel walls [J]. Nature,1999,402:867-871.
    [73]S. Inagaki, S. GUAN. Y. Fukushima. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks [J]. J. Am. Chem. Soc.,1999,121:9611-9614.
    [74]B. Melde. B. Holland. C. Blanford. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks [J]. Chem. Mater.,1999,11:3302-3308.
    [75]N. Bion. P. Ferreira. V. Anabela. J. Rocha. Ordered benzene-silica hybrids with molecular-scale periodicity in the walls and different mesopore sizes [J]. J. Mater. Chem.,2003,13:1910-1913.
    [76]M. C. Burleigh, M. Markowitz. E. Wong. J. Lin, B. Gaber. Synthesis of Periodic Mesoporous Organosilicas with Block Copolymer Templates [J]. Chem. Mater.,2001,13:4411-4412.
    [77]A. Sayari, S. Hamoudi. Y. Yang. I. Moudrakovski. J. Ripmeester. New Insights into the Synthesis. Morphology, and Growth of Periodic Mesoporous Organosilicas [J]. Chem. Mater.,2000,12:3857-3863.
    [78]W. Guo, I. Kim, C. Ha. Highly ordered three-dimensional large-pore periodic mesoporous organosilica with lm3m symmetry [J]. Chem. Commun.,2003.3: 2692-2693.
    [79]J. R. Matos, M. Kruk. L. Mercuri. M. Jaroniec, L. Zhao. T. Kamiyama. O. Terasaki, T. Pinnavaia. Y. Liu. Ordered Mesoporous Silica with Large Cage-Like Pores:Structural Identification and Pore Connectivity Design by Controlling the Synthesis Temperature and Time [J]. J. Am. Chem. Soc.,2003, 125:821-829.
    [80]S. Guan. S. Inagaki. T. Oshuna. O. Terasaki. Cubic Hybrid Organic-Inorganic Mesoporous Crystal with a Decaoctahedral Shape [J]. J. Am. Chem. Soc.,2000,122:5660-5661.
    [81]E. Cho. K. Kwon. K. Char. Mesoporous Organosilicas Prepared with PEO-Containing Triblock Copolymers with Different Hydrophobic Moieties [J]. Chem. Mater.,2001,13:3837-3839.
    [82]B. Melde. B. Holland. C. Blanford. A. Stein. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks [J]. Chem. Mater.,1999,11: 3302-3308.
    [83]C. Yoshina-Ishii, T. Asefa, N. Coombs, M. MacLachlan. G. Ozin. Periodic mesoporous organosilicas,PMOs:fusion of organic and inorganic chemistry 'inside'the channel walls of hexagonal mesoporous silica [J]. Chem. Commun., 1999,999:2539-2540.
    [84]T. Asefa, H. Grondey, N. Coombs, G. Ozin. Metamorphic Channels in Periodic Mesoporous Methylenesilica [J]. Angew. Chem. Int. Ed.,2000,39: 1808-1811.
    [85]Q. Yang, M. Kapoor, S. Inagaki. Sulfuric Acid-Functionalized Mesoporous Benzene-Silica with a Molecular-Scale Periodicity in the Walls [J]. J. Am. Chem. Soc.,2002,124:9694-9695.
    [86]Y. Goto, S. Inagaki. Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant [J]. Chem. Commun.,2002,2: 2410-2411.
    [87]G. Temtsin, T. Asefa, S. Bittner, G. Ozin. Aromatic PMOs:tolyl, xylyl and dimethoxyphenyl groups integrated within the channel walls of hexagonal mesoporous silicas [J]. J. Mater. Chem.,2001,11:3202-3206.
    [88]M. Kapoor, Q. Yang, S. Inagaki. Self-Assembly of Biphenylene-Bridged Hybrid Mesoporous Solid with Molecular-Scale Periodicity in the Pore Walls [J]. J. Am. Chem. Soc.,2002,124:15176-15177.
    [89]C. Baleizao, B. Gigante, D. Das, M. Alvaro, H. Garcia, A. Corma. Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO). [J]. Chem. Commun.,2003:1860-1861.
    [90]C. Baleizao, B. Gigante, D. Das, M. Alvaro, H. Garcia, A. Corma. Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework [J]. J. Catal.,2004,223:106-113.
    [91]A. Corma, D. Das, H. Garcia, A. Leyva. A periodic mesoporous organosilica containing a carbapalladacycle complex as heterogeneous catalyst for Suzuki cross-coupling [J]. J. Catal.,2005.229:322-331.
    [92]V. Dufaud, F. Beauchesne, L. Bonneviot. Organometallic Chemistry Inside the Pore Walls of Mesostructured Silica Materials [J]. Angew. Chem. Int. Ed., 2005.44:3475-3477.
    [93]J. Huang, F. Zhu, W. He, F. Zhang, W. Wang, H. Li. Periodic Mesoporous Organometallic Silicas with Unary or Binary Organometals inside the Channel Walls as Active and Reusable Catalysts in Aqueous Organic Reactions [J]. J. Am. Chem. Soc.,2010,132:1492-1493.
    [94]D.A. Annis. EN Jacobsen. Polymer-Supported Chiral Co(Salen) Complexes: Synthetic Applications and Mechanistic Investigations in the Hydrolytic Kinetic Resolution of Terminal Epoxides [J]. J. Am. Chem. Soc.,1999,121: 4147-4154.
    [95]C. Baleizao, B. Gigante, M.J. Sbaater, H. Garcia, A. Corma. On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening [J]. Appl. Catal. A,2002,228:279-288
    [96]M. Jia, W.R. Thiel. Oxodiperoxo molybdenum modified mesoporous MCM-41 materials for the catalytic epoxidation of cyclooctene [J]. Chem. Commun,2002,2392-2393
    [97]H. Zhang, S. Xiang, C. Li. Enantioselective epoxidation of unfunctionalised olefins catalyzed by Mn(salen)complexes immobilized in porous materials via phenyl sulfonic group [J]. Chem. Commun.,2005:1209-1211.
    [98]H. Zhang, Y. Zhang, C. Li. Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn(salen)catalysts immobilized in the nanopores of mesoporous materials [J]. J. Catal.2006.238:369-381.
    [99]G. Kim, J. Shin. The catalytic activity of new chiral salen complexes immobilized on MCM-41 by multi-step grafting in the asymmetric epoxidation [J].Tetrahedron Lett.,1999.40:6827-6830.
    [100]G. Kim, J. Shin. The synthesis of new chiral salen complexes immobilized on MCM-41 by grafting and their catalytic activity in the asymmetric borohydride reduction of ketones [J]. Catal Lett,1999,63:205-212.
    [101]A. Silva. C. Freire. B. Castro. Jacobsen catalyst anchored onto an activated carbon as an enantioselective heterogeneous catalyst for the epoxidation of alkenes [J]. Carbon,2004,42:3027-3030.
    [102]A. Silva, V. Budarin, J.H. Clark, C. Freire. B. Castro. Organo-functionalized activated carbons as supports for the covalent attachment of a chiral manganese(Ⅲ) salen complex [J]. Carbon,2007 45:1951-1964.
    [103]M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, H. Kargar, N. Zeini-Isfahani. Manganese(Ⅲ) porphyrin supported on multi-wall carbon nanotubes:A highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate [J]. Polyhedron, 2009.28:3816-3822.
    [104]S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammad poor-Baltork, Mohammad Saleh Saeedi. Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese(Ⅲ) salophen supported on multi-wall carbon nanotubes [J]. Appl. Catal. A,2010,381:233-241.
    [105]D. Annis, E.N. Jacobsen. Polymer-supported chiral Co(Salen) complexes: synthetic applications and mechanistic investigations in the hydrolytic kinetic resolution of terminal epoxides [J]. J. Am. Chem. Soc.,1999,121:4147-4154.
    [106]J.-M. Bregeault, C. Lepetit, F. Ziani-Derdar. O. Mohammedi. L. Salles. A. Deloffre, Epoxidation of tertiary allylic alcohols and subsequent isomerization of tertiary epoxy-alcohols:A comparison of some catalytic systems for demanding ketonization processes, in:R. K. Grasselli, S. T. Oyama, A. M. Gaffney, J. E. Lyons (Eds.),3rd World Congress on Oxidation Catalysis. Elsevier, Amsterdam, Stud. Surf. Sci. Catal.,1997,110:545.
    [107]J.-M. Bregeault. Transition-metal complexes for liquid-phase catalytic oxidation:Some aspects of industrial reactions and of emerging technologies [J].Dalton Trans.2003:3289.
    [108]C. Li. Chiral Synthesis on Catalysts Immobilized in Microporous and Mesoporous Materials [J]. Catal. Rev.Sci. Eng.2004,46:419-492.
    [109]K. Sharma. T. Asefa. Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials [J]. Angew. Chem. Int. Ed.,2007,46:2879-2882.
    [110]T.J. Terry, T.D.P. Stack. Covalent Heterogenization of a Discrete Mn(II) Bis-Phen Complex by a Metal-Template/Metal-Exchange Method:An Epoxidation Catalyst with Enhanced Reactivity [J]. J. Am. Chem. Soc.,2008, 130:3945-4953.
    [1]Z. Xi, N. Zhou, Y. Sun. K. Li, Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide [J]. Science 2001,292: 1139-1141.
    [2]G. Sienel, R. Rieth, K.T. Rowbottom, Epoxides, in:Ulmann's Encyclopedia of Industrial Chemistry,6th ed., Verlag Chemie, Weinheim,2003, p.269.
    [3]A. Ansmann, R. Kawa. M. Neuss, Cosmetic composition containing hydroxyethers, US Patent 7,083,780 B2, Aug.1,2006, To Cognis Deutschland, Gmbh & Co. KG.
    [4]A.H. Hoveyda, Substrate-Directable Chemical Reactions [J]. Chem. Rev. 1993,93:1307-1370.
    [5]D. Swern (Ed.), Organic Peroxides, vol.1, J Wiley & Sons. Inc.,1970, p. 654.
    [6]W. Ye, R. Sangaiah, D.E. Degen, A. Gold, K. Jayaraj, K.M. Koshlap, G. Boysen, J. Williams, K.B. Tomer, V. M°Canu, N.Dicheva, C.E. Parker, R.M. Schaaper, L.M. Ball, Iminohydantoin Lesion Induced in DNA by Peracids and Other Epoxidizing Oxidants [J]. J. Am. Chem. Soc.2009,131: 6114-6123.
    [7]S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat, A. Chenede, Asymmetric Hydroxylative Phenol Dearomatization through In Situ Generation of Iodanes from Chiral Iodoarenes and m-CPBA [J]. Angew. Chem. Int. Ed.2009.48:4605-4609.
    [8]B. Meunier. Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage [J]. Chem. Rev.1992,92: 1411-1456.
    [9]J.T. Groves, M.K. Stern, Olefin Epoxidation by Manganese (Ⅳ) Porphyrins: Evidence for Two Reaction Pathways [J]. J. Am. Chem. Soc.1987.109: 3812-3814.
    [10]M. Palucki, P.J. Pospisil, W. Zhang, E.N. Jacobsen, Highly Enantioselective, Low-Temperature Epoxidation of Styrene [J]. J. Am. Chem. Soc.1994,116: 9333-9334.
    [11]E.M. McGarrigle, D.G. Gilheany, Chromium- and Manganese-salen Promoted Epoxidation of Alkenes [J]. Chem. Rev.2005,105:1565-1602.
    [12]K.P. Ho, W.L. Wong, K.M. Lam. C.P. Lai, T.H. Chan. K.Y. Wong. A Simple and Effective Catalytic System for Epoxidation of Aliphatic Terminal Alkenes with Manganese(Ⅱ) as the Catalyst [J]. Chem. Eur. J.2008.14: 7988-7996.
    [13]S.H. Lee, L. Xu, B.K. Park, Y.V. Mironov, S.H. Kim, Y.J. Song, C. Kim, Y. Kim, S. Kim, Efficient Olefin Epoxidation by Robust Re4 Cluster-Supported MnⅢ Complexes with Peracids:Evidence of Simultaneous Operation of Multiple Active Oxidant Species. MnV=O, MnIV=O, and MnⅢ-OOC(O)R [J]. Chem. Eur. J.2010.16:4678-4685.
    [14]A. Murphy, A. Pace, T.D.P. Stack, Ligand and pH Influence on Manganese-Mediated Peracetic Acid Epoxidation of Terminal Olefins [J]. Org. Lett.2004,6:3119-3122.
    [15]A. Murphy, T.D.P. Stack. Discovery and optimization of rapid manganese catalysts for the epoxidation of terminal olefins [J]. J. Mol. Catal. A,2006. 251:78-88.
    [16]M. Moghadam. I. Mohammadpoor-Baltork, S. Tangestaninejad, V. Mirkhani, H. Kargar, N. Zeini-Isfahani. Manganese(Ⅲ) porphyrin supported on multi-wall carbon nanotubes:A highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate [J]. Polyhedron, 2009,28:3816-3822.
    [17]S. Tangestaninejad, M. Moghadam. V. Mirkhani, I. Mohammad poor-Baltork, Mohammad Saleh Saeedi. Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese(Ⅲ) salophen supported on multi-wall carbon nanotubes [J]. Appl. Catal. A.2010,381: 233-241.
    [18]T.C.O. Mac Leod, V. Palaretti, V.P. Barros, A.L. Faria, T.A. Silva, Marilda D. Assis. Jacobsen catalyst immobilized on chitosan membrane as interface catalyst in organic/aqueous system for alkene oxidation [J]. Appl. Catal. A, 2009,361:152-159.
    [19]T.J. Terry, T.D.P. Stack. Covalent Heterogenization of a Discrete Mn(Ⅱ) Bis-Phen Complex by a Metal-Template/Metal-Exchange Method:An Epoxidation Catalyst with Enhanced Reactivity [J]. J. Am. Chem. Soc.,2008. 130:3945-4953.
    [20]M. Jia, A. Seifert, W.R. Thiel. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes:Efficient Catalysts for the Epoxidation of Cyclo°Ctene [J]. Chem. Mater.,2003,15:2174-2180.
    [21]M. Jia, A. Seifert, W.R. Thiel. Sol-gel synthesis of oxodiperoxo molybdenum-modified organic-inorganic materials for the catalytic epoxidation of cyclooctene [J]. J. Catal.,2004,221:319-324.
    [22]J. Tang, L. Wang, G. Liu, Y. Liu, Y. Hou, W. Zhang, M. Jia, W. R. Thiel. Mesoporous SBA-15 materials modified with oxodiperoxo tungsten complexes as efficient catalysts for the epoxidation of olefins with hydrogen peroxide [J]. J. Mol. Catal. A,2009,313:31-37.
    [23]D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered. Hydrothermally Stable, Mesoporous Silica Structures [J]. J. Am. Chem. Soc.,1998,120:6024-6036.
    [24]W. R. Thiel. M. Angstl. T. Priermeier. [J]. Chem. Ber.1994,127: 2373-2379.
    [25]P. Li, L. Wang, [J]. Adv. Synth. Catal.348 (2006) 681-685.
    [26]X.Y. Shi, J. F. Wei. Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide [J]. J. Mol. Catal. A,2008,280:142-147.
    [27]L. Lou, K. Yu, F. Ding. X. Peng, M. Dong.C. Zhang. S. Liu. Covalently anchored chiral Mn(Ⅲ) salen-containing ionic species on mesoporous materials as effective catalysts for asymmetric epoxidation of unfunctionalized olefins [J]. J. Catal.,2007.249:102-110.
    [28]A. Stein, M.H. Lim, [J]. Chem. Mater.,1999,11:3285-3295.
    [29]H. Zhang. Y. Wang, L. Zhang, G. Gerritsen. H.C.L. Abbenhuis Rutger A. van Santen, C. Li, [J]. J. Catal.,2008.256:226-236.
    [30]C. Hureau, G. Blondin, M. Charlot. C. Philouze, M. Nierlich, M. Cesario. E. Anxolabehere-Mallart. Synthesis, Structure, and Characterization of New Mononuclear Mn(Ⅱ) Complexes. Electrochemical Conversion into New Oxo-Bridged Mn2(Ⅲ,Ⅳ) Complexes. Role of Chloride Ions [J]. Inorg. Chem.,2005.44:3669-3683.
    [31]S. Groni. P. Dorlet. G. Blain. S. Bourcier. R. Guillot, E. Anxo-labehere-Mallart. [J]. Inorg. Chem.,2008,47:3166-3172.
    [32]T. Kurahashi, A. Kikuchi, Y. Shiro, M. Hada, H. Fujii. Unique Properties and Reactivity of High-Valent Manganese-Oxo versus Manganese-Hydroxo in the Salen Platform [J]. Inorg. Chem.,2010,49:6664-6672.
    [33]J. Shen, M.E. Ojaimi, M. Chkounda. C.P. Gros. Jean-Michel Barbe. J. Shao. R. Guilard, K.M. Kadish. Reactivity of an Aminopyridine [LMnⅡ]2+ Complex with H2O2. Detection of Intermediates at Low Temperature [J]. Inorg. Chem.,2008,47:7717-7727.
    [34]R. Tan, N. Yu, H. Zhao, D.Yin. Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn(Ⅲ) complex for enantioselective epoxidation of styrene [J]. J. Catal.,2009,263:284-291.
    [35]S. Rothbart. E. Ember. Rudi van Eldik. Comparative study of the catalytic activity of [MnⅡ(bpy)2Cl2] and [Mn2Ⅲ/Ⅳ(μ-O)2(bpy)4](ClO4)3 in the H2O2 induced oxidation of organic dyes in carbonate buffered aqueous solution [J]. Dalton Trans.,2010.39:3264-3272.
    [36]R. Giovannetti, L. Alibabaei, F.Pucciarelli. Spectral and kinetic investigation on oxidation and reduction of water soluble porphyrin-manganese(Ⅲ) complex [J]. Inorg. Chim. A,2010.363:1561-1567.
    [37]D. Feichtinger. D. A. Plattner. Direct Proof for O=MnⅡ(salen) Complexe [J]. Angew. Chem. Int. Ed. Engl.,1997,36:1718-1719.
    [38]J. T. Groves, M. K. Stern. Synthesis, Characterization, and Reactivity of Oxomanganese(Ⅳ) Porphyrin Complexes [J]. J. Am. Chem. Soc.,1988,110: 8628-8638.
    [39]W. Adam, K.J. Roschmann, C.R. Saha-Moller. D. Seebach. (1r,2r,3r)-(2-Ethenyl-3-methoxycyclopropyl)benzene as Mechanistic Probes in the MnⅢ(salen)-Catalyzed Epoxidation:Influence of the Oxygen Source and the Counterion on the Diastereoselectivity of the Competitive Concerted and Radical-Type Oxygen Transfer [J]. J. Am. Chem. Soc.,2002,124: 5068-5073.
    [40]K. P. Bryliakov. D. E. Babushkin. E. P. Talsi.1H NMR and EPR spectroscopic monitoring of the reactive intermediates of_Salen/MnⅢ catalyzed olefin epoxidation [J]. J. Mol. Catal. A,2000,158:19-35.
    [1]G. Grigoropoulou, J.H. Clark, J.A. Elings. Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant [J]. Green Chem., 2003,5:1-7.
    [2]B.S. Lane, K. Burgess. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide [J]. Chem. Rev.,2003,103:2457-2473.
    [3]N. Gharah, S. Chakraborty. A.K. Mukherjeeb, R. Bhattacharyya. Highly efficient epoxidation method of olefins with hydrogen peroxide as terminal oxidant. bicarbonate as a co-catalyst and oxodiperoxo molybdenum(Ⅵ) complex as catalyst [J]. Chem. Commun.2004:2630.
    [4]B. Monteiro. S.S. Balula. S. Gago. C. Grosso, S. Figueiredo. A.D. Lopes. A.A. Valente. M. Pillinger. J.P. Lourenco, I.S. Goncalves. Comparison of liquid-phase olefin epoxidation catalysed by dichlorobis-(dimethylformamide) dioxo-molybdenum(Ⅵ) in homogeneous phase and grafted onto MCM-41 [J]. J. Mol. Catal. A:Chem.,2009,297:110.
    [5]Z. Xi, N. Zhou, Y. Sun, K. Li, Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide [J]. Science,2001.292:1139.
    [6]K. Kamata, K. Yonehara. Y. Sumida, K. Yamaguchi. S. Hikichi. N. Mizuno. Efficient Epoxidation of Olefins with>99% Selectivity and Use of Hydrogen Peroxide [J]. Science.2003.300:964.
    [7]K. Yamaguchi. C. Yoshida. S. Uchida, N. Mizuno. Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide [J]. J. Am.Chem. Soc.,2005,127:530.
    [8]R. Mas-Balleste. L.Q. Jr. Iron-Catalyzed Olefin Epoxidation in the Presence of Acetic Acid:Insights into the Nature of the Metal-Based Oxidant [J]. J. Am. Chem. Soc.,2007,129:15964.
    [9]H.D. Zhang. Y.M. Wang. L. Zhang. G. Gerritsen. C.L.A. Hendrikus. A.S. Rutger. C. Li. Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn(salen) catalysts in different mesoporous silica support [J]. J. Catal.,2008,256:226.
    [10]T.J. Terry and T.D.P. Stack, Covalent Heterogenization of a Discrete Mn() Bis-Phen Complex by a Metal-Template/Metal-Exchange Method:An Epoxidation Catalyst with Enhanced Reactivity [J]. J. Am. Chem. Soc.,2008.130: 4945-4953.
    [11]D. Chatterjee. Chiral oxoperoxomolybdenum(VI) complexes for enantio-selective olefin epoxidation:Some mechanistic and stere°Chemical reflections [J]. Coord. Chem. Rev.,2008.252:176.
    [12]I.C.M.S. Santos, F.A.A. Paz, M.M.Q. Simoes. M.G.P.M.S. Neves. J.A.S. Cavaleiro, J. Klinowski, A.M.V. Cavaleiro. Catalytic homogeneous oxy-functionalization with hydrogen peroxide in the presence of a peroxotungstate [J]. Appl. Catal. A:Gen.,2008.351:166.
    [13]R.H. Gao, X.L. Yang, W.L. Daia, Y.Y. Le, H.X. Li, K.N. Fan. High-activity. single-site mesoporous WO3-MCF materials for the catalytic epoxidation of cycloocta-1.5-diene with aqueous hydrogen peroxide [J]. J. Catal.,2008.256: 259.
    [14]T. Kovalchuk. H. Sfihi, V. Zaitsev, J. Fraissard. Recyclable solid catalysts for epoxidation of alkenes:Amino- and oniumsilica-immobilized [HPO4{W2O2-(μ-O2)2(O2)2}]2- anion [J]. J. Catal.,2007,249:1.
    [15]S. Tangestaninejad, M.H. Habibi, V. Mirkhani, M. Moghadam, G. Grivani, Simple preparation of some reusable and efficient polymer-supported tungsten carbonyl catalysts and clean epoxidation of cis-cyclooctene in the presence of H2O2 [J]. J. Mol. Catal. A.,2006,255:249.
    [16]M. Jia. A. Seifert, W.R. Thiel. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes:EfficientCatalysts for the Epoxidation of Cyclooctene [J]. Chem. Mater.,2003.15:2174.
    [17]M. Jia, A. Seifert. W.R. Thiel. Sol-gel synthesis of oxodiperoxo molybdenum modified organic-inorganic materials for the catalytic epoxidation of cyclooctene [J].J. Catal.,2004,221:319.
    [18]D. Zhao. Q. Huo. J. Feng, B.F. Chmelka, G.D. Stucky. Nonionic Triblock. Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J]. J. Am. Chem. Soc., 1998,120:6024.
    [19]W. R. Thiel, M. Angstl, T. Priermeier.[J]. Chem. Ber.,1994,127:2373.
    [20]A.-K. Pleier. H. Glas. M. Grosche. P.Sirsch. W. R. Thiel. [J]. Synthesis.2001: 55.
    [21]P. Li. L. Wang. An Amine-, Copper- and Phosphine-Free Sonogashira Coupling Reaction Catalyzed by Immobilization of Palladium in Organic-Inorganic Hybrid Materials [J]. Adv. Synth. Catal.,2006.348:681.
    [22]M.L. Linares, N. Sanchez, R. Alajarin. J.J. Vaquero, J. Alvarez-Builla. [J]. Synthesis,2001,3:382.
    [23]L. Lou. K. Yu, F. Ding. X. Peng. M. Dong. C. Zhang. S. Liu. Covalently anchored chiral Mn(Ⅲ) salen-containing ionic species on mesoporous materials as effective catalysts for asymmetric epoxidation of unfunctionalized olefins [J]. J. Catal.,2007,249:102.
    [24]X.-Y. Shi, J.-F. Wei, Selective oxidation of sulfide catalyzed by peroxotungstate immobilized on ionic liquid-modified silica with aqueous hydrogen peroxide [J]. J. Mol. Catal. A:Chem.,2008,280:142.
    [25]A. Arcoria, F. P. Ballistreri, G. A. Tomaselli, F. D. Furia. G. Modena, Opposite Regioselectivity in the Epoxidation of Geraniol and Linalool with Molybdenum and Tungsten Peroxo Complexes [J]. J. Org. Chem.,1986.51:2375.
    [26]H. Mimoun. I. Seree de Roch. L. Sajus. EPOXYDATION DES OLEFINES PAR LES COMPLEXES PEROXYDIQUES COVALENTS DU MOLYBD-ENE-VI [J]. Tetrahedron,1970,26:37.
    [27]M.H. Dickman and M.T. Pope, Peroxo and Superoxo Complexes of Chromium. Molybdenum, and Tungsten [J]. Chem. Rev.,1994,94:569.
    [28]S.K. Maiti, S. Dinda, N. Gharah and R. Bhattacharyya. Highly facile homogeneous epoxidation of olefins using oxo-diperoxo tungstate(Ⅵ) complex as catalyst, bicarbonate as co-catalyst and hydrogen peroxide as a terminal oxidantNew [J]. J. Chem.,2006,30:479.
    [29]A. Stein, M.H. Lim. Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials [J]. Chem. Mater.,1999,11: 3285.
    [30]K. Chen, A.T. Bell, E. Iglesia. Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides [J]. J. Phys. Chem. B.,2000,104:1292
    [31]A. Jimtaisong, R.L. Luck. Synthesis and Catalytic Epoxidation Activity with TBHP and H2O2 of Dioxo-, Oxoperoxo-, and Oxodiperoxo Molybdenum(Ⅵ) and Tungsten(Ⅵ) Compounds Containing Monodentate or'Bidentate Phosphine Oxide Ligands:Crystal Structures of WCl2(O)2(OPMePh2)2, WCl2(O)(O2)-(OPMePh2)2, MoCl2(O)2dppmO2C4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 [J]. Inorg. Chem.,2006.45:10391.
    [32]M.C. White, A.G. Doyle, E.N. Jacobsen. A Synthetically Useful. Self-Assembling MMO Mimic System for Catalytic Alkene Epoxidation with Aqueous H2O2 [J]. J. Am. Chem. Soc.,2001,123:7194.
    [33]C.C. Romao, F.E. Kuhn, W.A. Herrmann. Rhenium (Ⅶ) Oxo and Imido Complexes:Synthesis, Structures, and Applications [J]. Chem. Rev.,1997,97: 3197.
    [34]S.G. Casuscelli, G.A. Eimer, A. Canepa, A.C. Heredia, C.E. Poncio, M.E. Crivello, C.F. Perez, A. Aguilar, E.R. Herrero, Ti-MCM-41 as catalyst for a-pinene oxidation:Study of the effect of Ti content and H2O2 addition on activity and selectivity [J]. Catal. Today,2008.133-135:678.
    [35]N. Mizuno and K. Yamaguchi. Polyoxometalate catalysts:toward the development of green H2O2-based epoxidation systems [J]. The Chemical Record, 2006,12
    [1]R.M. Hanson. The Synthetic Methodology of Nonracemic Glycidol and Related 2,3-Epoxy Alcohols [J]. Chem. Rev.,1991,92:437-475.
    [2]C.D. Valentin, R. Gandolfi, P. Gisdakis, N. Rosch. Allylic Alcohol Epoxidation by Methyltrioxorhenium:A Density Functional Study on the Mechanism and the Role of Hydrogen Bonding [J]. J. Am. Chem. Soc.,2001,123:2365-2376.
    [3]Z. Li, W. Zhang, H. Yamamoto. Vanadium-Catalyzed Enantioselective Desymmetrization of meso Secondary Allylic Alcohols and Homoallylic Alcohols [J]. Angew. Chem. Int. Ed.,2008,47:7520-75
    [4]G. Grigoropoulou, J.H. Clark, J.A. Elings. Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant [J]. Green Chem., 2003.5:1-7.
    [5]B.S. Lane. K. Burgess. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide [J]. Chem. Rev.,2003,103:2457-2473.
    [6]C. Venturello, R. D'Aloisio, J. C. Bart. M. Ricci. [J]. J. Mol. Catal.,1985,32. 107-110;
    [7]C. Venturello, R. D'Aloisio. Quaternary Ammonium Tetrakis(diperoxotungsto) phosphates(3-) as a New Class of Catalysts for Efficient Alkene Epoxidation with Hydrogen Peroxide [J]. J. Org. Chem.,1988.53:1553-1557.
    [8]C. Venturello, M. Gambaro. Selective Oxidation of Alcohols and Aldehydes with Hydrogen Peroxide Catalyzed by Methyltrioctylammonium Tetrakis-(oxodiperoxotungsto)phosphate(3-) under Two-Phase Conditions [J]. J. Org. Chem.,1991,56:5924-5931.
    [9]Y. Ding, W. Zhao. H. Hua, B. Ma. [π-C5H5N(CH2)15CH3]3[PW4O32]/H2O2/ethyl acetate/alkenes:a recyclable and environmentally benign alkenes epoxidation catalytic system [J]. Green Chem.,2008,10:910-913.
    [10]K. Kamata, K. Yonehara, Y. Sumida, K. Yamaguchi, S. Hikichi and N. Mizuno. Efficient Epoxidation of Olefins with>99% Selectivity and Use of Hydrogen Peroxide [J]. Science,2003,300,964-966.
    [11]K. Kamata, Y. Nakagawa, K. Yamaguchi, N. Mizuno. Efficient, regioselective epoxidation of dienes with hydrogen peroxide catalyzed by [γ-SiW10O34(H2O)2]4-[J]. J. Catal.,2004,224:224.
    [12]K. Kamata, K. Yamaguchi, S. Hikichi, N. Mizuno. [{W(=O)(O2)2(H2O)}2 (μ-O)]2--Catalyzed Epoxidation of Allylic Alcohols in Waterwith High Selectivity and Utilization of Hydrogen Peroxide [J]. Adv. Synth. Catal.,2003, 345:1193.;
    [13]K. Kamata,; K. Yamaguchi.; N. Mizuno. Highly Selective, Recyclable Epoxidation of Allylic Alcohols with Hydrogen Peroxide in Water Catalyzed by Dinuclear Peroxotungstate [J]. Chem. Eur. J.,2004,10:4728-4734.
    [14]I.C.M.S. Santos. F.A.A. Paz. M.M.Q. Simoes, M. Grac, P.M.S. Neves. J.A.S. Cavaleiro. J. Klinowski, A.M.V. Cavaleiro. Catalytic homogeneous oxy-functionalization with hydrogen peroxide in the presence of a peroxotungstate [J]. Appl. Catal. A,2008,351:166-173.
    [15]K. Kamata, T. Hirano, S. Kuzuya, N. Mizuno. Hydrogen-Bond-Assisted Epoxidation of Homoallylic and Allylic Alcohols with Hydrogen Peroxide Catalyzed by Selenium-Containing Dinuclear Peroxotungstate [J]. J. Am. Chem. Soc.,2009.131:6997-7004.
    [16]E. Poli, J. Clacens, J.I. Barrault. Y. Pouilloux. Solvent-free selective epoxidation of fatty esters over a tungsten-based catalyst [J]. Catal. Today,2009,140:19-22.
    [17]S.K. Maiti, S. Dinda. N. Gharah. R. Bhattacharyya. Highly facile homogeneous epoxidation of olefins using oxo-diperoxo tungstate(VI) complex as catalyst, bicarbonate as co-catalyst and hydrogen peroxide as a terminal oxidant [J]. New J. Chem.,2006,30:479-489.
    [18]N. Gharah, S. Chakraborty. A.K. Mukherjee. R. Bhattacharyya. Oxoperoxo molybdenum(Ⅵ) and tungsten(Ⅵ) complexes with 1-(2'-hydroxyphenyl) ethanone oxime:Synthesis, structure and catalytic uses in the oxidation of olefins. alcohols, sulfides and amines using H2O2 as a terminal oxidant [J]. Inorg. Chim. A.,2009,362:1089-1100.
    [19]F. Somma, G. Strukul. Oxidation of geraniol and other substituted olefins with hydrogen peroxide using mesoporous. sol-gel-made tungsten oxide-silica mixed oxide catalysts [J]. J. Catal.,2004,227:344-351.
    [20]K. Yamaguchi, C. Yoshida, S. Uchida, N. Mizuno. Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide [J]. J. Am. Chem. Soc.2005.127:530-531.
    [21]N. Mizuno, K. Kamata, K. Yamaguchi. Green Oxidation Reactions by Polyoxometalate-Based Catalysts:From Molecular to Solid Catalysts [J]. Top. Catal.,2010,53:876-893.
    [22]B.F. Sels, D.E. De Vos, M. Buntinx, F. Pierard. A. K.-D. Mesmaeker, P.A. Jacobs. Layered double hydroxides exchangedwith tungstate as biomimetic catalysts for mild oxidative bromination [J]. Nature,1999,400:855-857.
    [23]B.F. Sels, D.E. De Vos. P.A. Jacobs. Use of WO42- on Layered Double Hydroxides for Mild Oxidative Bromination and Bromide-Assisted Epoxidation with H2O2 [J]. J. Am. Chem. Soc.,2001,123:8350-8359.
    [24]P. Liu, H. Wang, Z. Feng, P. Ying, C. Li. Direct immobilization of self-assembled polyoxometalate catalyst in layered double hydroxide for heterogeneous epoxidation of olefins [J]. J. Catal.,2008.256:345-348.
    [25]P. Liu, C. Wang, C. Li. Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant [J]. J. Catal.,2009,262:159-168.
    [26]Y. Uozumi. R. Nakao. Catalytic Oxidation of Alcohols in Water under Atmospheric Oxygen by Use of an Amphiphilic Resin-Dispersion of a Nanopalladium Catalyst [J]. Angew. Chem.,Int. Ed.2003.42:194-197.
    [27]N. E. Leadbeater. M. Marco Introduction:Recoverable Catalysts and ReagentssPerspective and Prospective. [J]. Chem. ReV.2002,102,3215-3216.
    [28]C. A. McNamara. M. J. Dixon. M. Bradley. Recoverable Catalysts and Reagents Using Recyclable Polystyrene-Based Supports [J]. Chem. Rev.2002,102: 3275-3300.
    [29]D. E. Bergbreiter. Using Soluble Polymers To Recover Catalysts and Ligands [J]. Chem. Rev.2002,102:3345-3384.
    [30]M. Hara, T. Yoshida, A. Takagaki, T.i Takata, J.N. Kondo, S.Hayashi, K. Domen. A Carbon Material as a Strong Protonic Acid [J]. Angew. Chem. Int. Ed., 2004,43:2955-2958.
    [31]M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen, M. Hara. Biodiesel made with sugar catalyst [J]. Nature,2005,438,178.
    [32]M. Okamura, A. Takagaki, M. Toda, J. N. Kondo, T. Tatsumi, K. Domen, M. Hara, S. Hayashi. Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon [J]. Chem. Mater.,2006.18:3039-3045.
    [33]S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara. Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups [J]. J. Am. Chem. Soc.,2008,130:12787-12793.
    [34]G. Liu, Y. Liu, Z. Wang, X. Liao, S. Wu, W. Zhang, M. Jia. Direct synthesis of porous carbon via carbonizing precursors of aluminum phosphate containing citric acid [J]. Micro. Meso. Mater.,2008,116:439-444.
    [35]M. Jia, A. Seifert, W.R. Thiel. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes:Efficient Catalysts for the Epoxidation of Cyclooctene [J]. Chem. Mater.,2003,15:2174-2180.
    [36]M. Jia, A. Seifert, W.R. Thiel. Sol-gel synthesis of oxodiperoxo molybdenum-modified organic-inorganic materials for the catalytic epoxidation of cyclooctene [J]. J. Catal.,2004,221:319-324.
    [37]J. Tang, L. Wang, G. Liu, Y. Liu, Y. Hou, W. Zhang, M. Jia, W. R. Thiel. Mesoporous SBA-15 materials modified with oxodiperoxo tungsten complexes as efficient catalysts for the epoxidation of olefins with hydrogen peroxide [J]. J. Mol. Catal. A,2009,313:31-37.
    [1]W. Zhang, J.L. Loebach, S.R. Wilson, E.N. Jacobsen. Enantioselective Epoxidation of Unfunctionalized Olefins Catalyzed by (Salen) manganese Complexes [J]. J. Am. Chem. Soc.,1990,112:2801-2803.
    [2]R. Irie, K. Noda, Y. Ito, N. Matsumoto, T. Katsuki. Catalytic asymmetric epoxidation of unfunctionalized olefins [J]. Tetrahedron Lett.,1990,31 (50): 7345-7348.
    [3]E.N. Jacobsen. Catalytic Asymmetric Synthesis [M]. VCH Publishers Inc.,1993.
    [4]K. Srinivasan, P. Michaud, J.K. Kochi. Epoxidation of Olefins with Cationic (salen)MnⅢ Complexes the Modulation of Catalytic Activity by Substituents[J]. J. Am. Chem. Soc.,1986,108 (9):2309-2320.
    [5]H. Zhang, Y. Wang, L. Zhang, G. Gerritsen, H.C.L. Abbenhuis Rutger A. van Santen, C. Li. Enantioselective epoxidation of β-methylstyrene catalyzed by immobilized Mn(salen) catalysts in different mesoporous silica supports [J]. J. Catal.,2008.256:226-236.
    [6]B. Gong, X. Fu, J. Chen, Y. Li, X. Zou, X. Tu, P. Ding, L. Ma. Synthesis of a new type of immobilized chiral salen Mn(Ⅲ) complex as effective catalysts for asymmetric epoxidation of unfunctionalized olefins [J]. J. Catal.,2009,262: 9-17.
    [7]G. Liu, M. Jia, Z. Zhou, W. Zhang, T. Wu. D. Jiang. Synthesis of amorphous mesoporous alminophosphates materials with high thermal stability using citric acid route [J]. Chem. Commun.,2004:1660-1661.
    [8]L.-L. Lou, K. Yu, F. Ding, X. Peng, M. Dong, C. Zhang, S. Liu. Covalently anchored chiral Mn(Ⅲ)salen-containing ionic species on mesoporous materials as effective catalysts for asymmetric epoxidation of unfunctionalized olefins [J]. J. Catal.,2007.249:102-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700