用户名: 密码: 验证码:
无人飞艇低空摄影测量关键技术研究及大比例尺地形成图实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国实现现代化的建设期间,测图任务繁重,需要采用高效率、高精度的测图方法来完成各比例尺、各种类型的地图。摄影测量必将发挥重要的作用。利用非量测数码相机和一套自动化程度高、适应性强、并能满足高精度测量需求的“低空摄影测量系统”进行工程测量,一直是测绘工作者所追求的目标。
     低空摄影测量具有获取成果快、生产周期短、运作成本低、可操作性强等特点。无人飞艇低空摄影系统是一种以无人飞艇为平台,以数字相机为有效载荷,飞行高度在1000米以下,能够获取规则重叠度影像的航空摄影系统。
     根据目前无人飞艇的特点,针对低空摄影测量的实际要求,本文以自制无人飞艇为基础,研究了无人飞艇低空摄影测量过程中的精密姿态控制、多GPS导航、相机在线标定、影像快速匹配等内容,经工程实践检验,可满足大比例尺地形测量图的要求。
     本文的主要研究内容及创新点如下:
     1、基于双陀螺仪的姿态稳定平台:本研究采用双陀螺系统,使用两个精度为0.5度的陀螺仪,一个安置在平台上测定平台的姿态值,一个安置在相机上测定相机的姿态值。平台陀螺在正常工作时用以测定姿态以控制相机,相机陀螺用以测定相机姿态以获取高精度的POS值。两个陀螺可进行差分校正以消除磁漂影响。当其中某一陀螺发生故障时可根据相应的算法由另一陀螺进行改正。
     针对陀螺仪在测量过程产生的误差,本研究采用了基于时间序列算法的Kalman滤波以消除陀螺的随机漂移误差,并采用分段插值补偿法以消除陀螺仪的标度因数误差。提升了陀螺仪测量的精度及可靠性,使航摄相机的姿态控制理论精度达到1度,由于受机械性能的影响,实测精度达到了3度以内。
     2、多GPS导航定位系统:为提高导航型GPS定位的精度,获取高精度的定位信息,根据无人飞行器载荷低而不能安装太重的GPS的特点,在飞行平台上安置4个导航型GPS。在飞行过程中,根据飞行平台在快速移动,但固定在飞行平台上的4个GPS是相对静止的特点,其相对位置及距离是已知的,将GPS获取的坐标值作为初始值,将相对距离作为边长观测值,组成一个近似等边三角形,三个等腰三角形的共四个三角形构成的三角网,采用自由网平差方法进行平差,获取高精度的坐标值进行导航与定位。并结合陀螺仪所测航向值进行点间内插,可构成一个简易的惯导系统。
     采用本研究的多GPS导航定位系统,可实时测定飞行平台的坐标,实测瞬时定位精度可达到1m左右。
     3、在线相机标定技术:目前的相机标定均设置专门的相机检校场,检校场一般设置在野外或大体型建筑上,检校时相机仍然在地面或高层建筑上进行数据采集。而航拍相机在工作时是安装在飞行平台上的,其工作状态与地面存在着较大差别。本文研究的相机标定技术,是将相机直接安置在飞行平台上,检校时起飞至检校场上空,按正常工作状态进行拍摄采集数据,据此进行相机检校。在此种状态下检校得到的参数,与相机实际工作时的参数才是一致的。
     相机内方位元素定标通过在地面布设大量的地面控制点构成地面试验场,采用全野外方法量测控制点空间坐标。以实验室几何定标数据、像点坐标、控制点空间坐标、摄影时刻的摄站坐标以及相机姿态角作为输入数据,通过数据解算得到最终所需的在轨内方位元素。通过空间后方交会及区域网空中三角测量的方法解算相机在摄影时刻的摄站坐标和姿态,可提高外方位元素精度,最终提高几何定标的精度。
     获取影像的分辨率的主要方法是在航空摄影同时,在野外布设分辨率靶标,然后通过对摄取的试验场靶标影像及相关数据的分析处理,得到影像的分辨率。另外是通过解算影像MTF获得影像分辨率,即对影像获取的MTF检测靶标进行采样,计算得到边扩散函数和点扩散函数,根据刃边法和脉冲法解算得到MTF;提取辐射状靶标在影像中的最大可分辨位置及到靶标中心的距离,结合靶标布设信息解算影像分辨率。
     4、影像快速匹配技术:针对无人飞行器数据量大,照片幅面相对较小,照片数量较多的特点,本文根据前述的多GPS定位与双陀螺姿态控制系统得到的高精度相机中心坐标及姿态数据(POS),采用SIFT算法,编写了基于POS数据及SIFT算法的影像快速匹配程序,对影像进行快速匹配,可在飞行现场进行影像质量检查,并可获取快速的正射影像图。
     首先构建影像序列并利用POS数据确定影像的初始视差,从而可计算出相邻影像的重叠范围。然后利用SIFT算子在相邻影像重叠范围内进行特征点的提取并进行匹配,对匹配的结果根据连续像对相对定向的误差方程进行可靠性判断,以剔除误匹配的点。
During the period of modernization, to complete different measuring scales and types of the highefficiency and high-precision plotting method is needed because the mapping task is heavy. Photographicsurveying surely will play a very import role in it. Surveying and mapping workers always dream to doengineering survey by using non-measurement digital camera and a set of automatic and low altitudephotographic surveying system which could satisfy the need of high-accuracy survey. Quick to obtain theresult, low in operating cost and better to handle are the characteristics of low altitude photographicsurveying. Low altitude photographic surveying system is an aerial photography system. In the system,carrying digital cameras, the unmanned aerial vehicle flies to catch regular overlapping images with theflight altitude lower than1000meters.
     According to the actual requirement, by analyzing the unmanned aerial vehicle made by the writerhimself, this paper deals with the study of the precise attitude control, the multi-GPS navigation, the cameraonline calibration, the quick matching of images, etc. Proven by the practical test, the system could meetthe requirement of large scale topography formation.
     The innovation points of this paper are as follows:
     1. The basic of the system is a stable platform with double gyroscopes. With the precision of0.5, oneof the two gyroscopes is placed on the platform to determine the attitude value of the platform; the otherone is arranged on the camera to determine the attitude value of the camera. The gyroscope on the platformis used to control the camera by determining the attitude value; the gyroscope on the camera is used toobtain high precision POS data. The purpose of using two gyroscopes is to do difference correction toeliminate the impact of the magnetic floating. If one gyroscope breaks down, the other one could amend theresult in accordance with related method of calculation.
     Considering the error the gyroscopes might have during the measuring process, the filter of Kalmanwhich is based on the time series algorithm is adopted to eliminate the random error while usinggyroscopes. Also the subsection interpolation compensation method is used to eliminate the scale factorerror of the gyroscopes. Because of the improvement of the precision and reliability of the gyroscopemeasurement, the precision of the attitude control theory of the aerospace camera reaches1degree.Influenced by the effect of the mechanical behavior, the actual measurement precision achieves to within2degree.
     2. The multi-GPS navigation system. To increase the precision of the location of the navigation GPSto get high-precision location information, only4navigation GPS are located on the flying platformbecause the unmanned aerial vehicle is with low load. During the flight, the flying platform is swiftlymoved, but the4GPS on the platform are relatively static with known relative position and distance.Taking the coordinate value the GPS get as the original value, taking the relative distance as the observationlength, there is an approximate equilateral triangle, which makes a triangulation network with other threeisosceles triangles. By using free net adjustment methods to adjust, the high-precision coordinate value is obtained to navigate and locate. Intersite interpolated with the heading value from the gyroscopes, thesimple intertial navigation system is formed.
     Adopting the multi-GPS navigation system, the coordinate of the flying platform could be real-timedetermined and the precision of the actual measurement instantaneous positioning could reach to about1meter.
     3. Online camera calibration technique. At present in order to do camera calibration there are specialcamera inspection places, which are usually set outdoors or on the top of high building. The numbercollecting is done by the camera while it is outdoors and collecting the data. But the aerial video cameraworks on the flying platform, which is different from working on the floor. The camera calibrationtechnique in this study is placed the camera directly on the flying platform, flying to the camera inspectionplace, shoots, collects data and calibrates. The data got in this condition is in accordance with the data thecamera collects during the work.
     Azimuth element calibration in the camera measures the space coordinates of the large number ofcontrol points which are set on the ground to form the testing ground. By calculating the data including thegeometric calibration laboratory data, photo coordinates, control points space coordinates, shootingposition coordinates while shooting, and the attitude angle of the camera, finally the inside azimuth elementis obtained. By the way of space resection and block aerial triangulation, the shooting position coordinatesand attitudes are calculated when shooting, which could improve the exterior orientation element precisionand the geometric correction precision.
     The main method to get the resolution ratio of images is to place resolution targets in the wild whiledoing aerial photographs; then analyze the resolution target images of the testing ground to obtain theresolution ratio of the images. And by calculating MTF of images to get the resolution ratio of images, thatis to say, by using the MTF from the images to sample the targets, calculate the edge spread function andpoint spread function and calculate MTF according to the edge method and pulse method.
     4. The quick image matching technology. Since the unmanned aerial vehicle’s characteristicsincluding large amount of data, relatively smaller size of the images, large number of the images, this paperuses SIFT to write the quick image matching program based on POS data and SIFT according to thehigh-precision camera central coordinates and attitude data from the multi-GPS location and doublegyroscopes attitude control system. By using the program, the image quality is checked while flying andthe orthograph map could be quickly got.
     Firstly the image sequence is set up and the coverage of the adjacent image can be calculated bydetermining the initial visual difference with the POS data. Then the characteristics of SIFT operators in thecoverage of the adjacent image is picked up and matched. The results from the former process are judged totest its dependability according to the error equation of continuous image pairs of relative orientation.Finally the mismatched points are got rid of.
引文
[1]张祖勋,张剑清.数字摄影测量的发展,思考与对策[J].测绘软科学研究.1999.5(002):15-20.
    [2]张祖勋.数字摄影测量的发展与展望[J].地理信息世界.2004.2(003):1-5.
    [3]柯涛.旋转多基线数字近景摄影测量[D].武汉:武汉大学.2008.
    [4]张强.低空无人直升机航空摄影系统的设计与实现[D].郑州:解放军信息工程大学.2007.
    [5]刘奇志.低空摄影测量与三维建模[D].青岛:山东科技大学.2005.
    [6] R. W. Beard,T. W. McLain.Multiple UAV cooperative search under collision avoidance andlimited range communication constraints[C].2003.25-30Vol.1.
    [7] P. R. Chandler,M. Pachter,S. Rasmussen.UAV cooperative control[C].2001.50-55vol.1.
    [8] P. R. Chandler,M. Pachter,D. Swaroop,等.Complexity in UAV cooperative control[C].2002.1831-1836vol.3.
    [9] P. R. Chandler,S. Rasumussen,M. Pachter.UAV cooperative path planning[C].2000.
    [10] J. Evans,G. Inalhan,J. S. Jang,等.Dragonfly: A versatile UAV platform for theadvancement of aircraft navigation and control[C].2001.1C3/1-1C3/12vol.1.
    [11] D. L. Gu,G. Pei,H. Ly,等.UAV aided intelligent routing for ad-hoc wireless networkin single-area theater[C].2000.1220-1225vol.3.
    [12] J. How,E. King,Y. Kuwata.Flight demonstrations of cooperative control for UAVteams[C].2004.
    [13] S. Hrabar,G. S. Sukhatme.A comparison of two camera configurations for optic-flowbased navigation of a UAV through urban canyons[C].2004.2673-2680vol.3.
    [14] S. Hrabar,G. S. Sukhatme,P. Corke,等.Combined optic-flow and stereo-basednavigation of urban canyons for a UAV[C].2005.3309-3316.
    [15] Y. Jin,A. A. Minai,M. M. Polycarpou.Cooperative real-time search and taskallocation in UAV teams[C].2003.7-12Vol.1.
    [16] E. N. Johnson,S. Mishra.Flight Simulation for the Development of an ExperimentalUAV[C].2002.
    [17] J. Lee,R. Huang,A. Vaughn,等.Strategies of path-planning for a UAV to track aground vehicle[C].2003.
    [18] T. Lemaire,R. Alami,S. Lacroix.A distributed tasks allocation scheme in multi-UAVcontext[C].2004.3622-3627Vol.4.
    [19] T. W. McLain,P. R. Chandler,S. Rasmussen,等.Cooperative control of UAVrendezvous[C].2001.2309-2314vol.3.
    [20] K. Nordberg,P. Doherty,G. Farneb ck,等.Vision for a UAV helicopter[C].2002.
    [21] J. M. Pflimlin,P. Soueres,T. Hamel.Hovering flight stabilization in wind gusts forducted fan UAV[C].2004.3491-3496Vol.4.
    [22] M. Quigley,M. A. Goodrich,R. W. Beard.Semi-autonomous human-UAV interfaces forfixed-wing mini-UAVs[C].2004.2457-2462vol.3.
    [23] M. Quigley,M. A. Goodrich,S. Griffiths,等.Target acquisition, localization, andsurveillance using a fixed-wing mini-UAV and gimbaled camera[C].2005.2600-2605.
    [24] C. Rago,R. Prasanth,R. Mehra,等.Failure detection and identification and faulttolerant control using the IMM-KF with applications to the Eagle-Eye UAV[C].1998.4208-4213vol.4.
    [25] S. J. Rasmussen,P. R. Chandler.MultiUAV: A multiple UAV simulation forinvestigation of cooperative control[C].2002.869-877.
    [26] D. Rathbun,S. Kragelund,A. Pongpunwattana,等.An evolution based path planningalgorithm for autonomous motion of a UAV through uncertain environments[C].2002.8D2-1-8D2-12vol.2.
    [27] A. Ryan,M. Zennaro,A. Howell,等.An overview of emerging results in cooperativeUAV control[C].2004.602-607Vol.1.
    [28] L. Singh,J. Fuller.Trajectory generation for a UAV in urban terrain, usingnonlinear MPC[C].2001.2301-2308vol.3.
    [29] P. Vincent,I. Rubin.A framework and analysis for cooperative search using UAVswarms[C].2004.79-86.
    [30] T. X. Brown,B. Argrow,C. Dixon,等.Ad hoc uav ground network (augnet)[J].wirelessnetworks.2004.38.
    [31] H. Eisenbeiss.A mini unmanned aerial vehicle (UAV): system overview and imageacquisition[J].International Archives of Photogrammetry. Remote Sensing and SpatialInformation Sciences.2004.36(5/W1):
    [32] Y. HONG,J. GONG,S. HU,等.Discussion on UAV Remote Sensing Image Capture andDisposal [J][J].Remote Sensing Technology and Application.2008.23(4):462-466.
    [33] I. Maza,A. Ollero.Multiple UAV cooperative searching operation using polygon areadecomposition and efficient coverage algorithms[J].Distributed Autonomous Robotic Systems6.2007.221-230.
    [34] P. Minnis,W. L. Smith.Cloud and radiative fields derived from GOES-8during SUCCESSand the ARM-UAV Spring1996Flight Series[J].Geophysical research letters.1998.25(8):1113-1116.
    [35] E. W. Justh.A simple control law for UAV formation flying[R]. DTIC Document2002.
    [36]王小平,唐剑,郑团结.微型无人数字航空摄影系统的设计与实践[J].测绘技术装备.2006.8(001):39-42.
    [37]孙杰,林宗坚.无人机低空遥感监测系统[J].遥感信息.2003.(001):49-50.
    [38]王磊,李和军.低空遥感平台摄影测量技术的探索和应用[J].北京测绘.2003.(004):28-30.
    [39]曹立,潘然,田挚.遥控飞艇数字航空摄影系统[J].测绘与空间地理信息.2005.28(005):92-93.
    [40]陈洪滨,马舒庆.基于微型自动驾驶飞机的航拍航摄遥感系统[J].遥感技术与应用.2001.16(003):144-147.
    [41]崔红霞,林宗坚,李国忠,等.基于无人机系统制作大比例尺正射影像[J].电子器件.2008.31(001):334-337.
    [42]李文格,尹欣,强伯年.低空无人飞机航摄在中小型水利工程中的应用试验[J].北京水务.2008.(004):45-47.
    [43]李小春,杜学飞,秦子建,等.模型机航空近景摄影测量系统的开发和应用[J].岩土力学.2009.30(2):318-322.
    [44]陈华刚,王昌翰.低空数字摄影系统在山地区域制作1∶500数字线划图的试验研究[J].测绘与空间地理信息.2008.31(002):157-159.
    [45]尹金宽.无人机低空数字摄影测量系统及其在道路工程中的应用[D].北京:北京工业大学.2007.
    [46]张建霞.超轻型飞机数码航空摄影测量初步研究[D].西安:西安科技大学.2006.
    [47]张建霞,王留召,蒋金豹.基于数字影像的低空摄影测量研究[J].测绘通报.2006.(012):29-31.
    [48] N. Kuntz,P. Oh.Development of Autonomous Cargo Transport for an Unmanned AerialVehicle Using Visual Servoing[C].2008.
    [49] B. Wang,B. M. Chen,T. H. Lee.An RPT approach to time-critical path following ofan unmanned helicopter[C].211-216.
    [50] B. Stille,M. P. Strauss.Rigid coaxial rotor unmanned helicopter with auxiliarypropulsion[Z]. Google Patents,2006.
    [51] G. Cai,B. M. Chen,X. Dong,等.Design and implementation of a robust and nonlinearflight control system for an unmanned helicopter[J].Mechatronics.
    [52] C. Delacourt,P. Allemand,M. Jaud,等.DRELIO: An Unmanned Helicopter for ImagingCoastal Areas[J].Journal of Coastal Research.2009.21489-1493.
    [53] F. Lin,K. Y. Lum,B. M. Chen,等.Development of a vision-based ground targetdetection and tracking system for a small unmanned helicopter[J].Science in China SeriesF: Information Sciences.2009.52(11):2201-2215.
    [54] J. Liu,Q. Ren,B. Han,等.Dynamic shadow detection based on micro unmannedhelicopter platform[J].Geomatics and Information Science of WuhanUniversity.35(11):1275-1278.
    [55] T. Merz,S. Duranti,G. Conte.Autonomous landing of an unmanned helicopter based onvision and inertial sensing[J].Experimental Robotics IX.2006.343-352.
    [56] A. Nakatsubo,K. Tanaka,T. Sugiura,等.Application of The Hyperspectral RemoteSensing by Au Unmanned Helicopter in Maize (Zea mays L.) Production (Part2)[J].
    [57] Y. Pan,P. Song,K. Li.PID Control of Miniature Unmanned Helicopter Yaw System Basedon RBF Neural Network[J].Intelligent Computing and Information Science.308-313.
    [58] J. Shin,K. Nonami,D. Fujiwara,等.Model-based optimal attitude and positioningcontrol of small-scale unmanned helicopter[J].Robotica.2005.23(1):51-63.
    [59] D. Song,J. Qi,L. Dai,等.Modelling a small-size unmanned helicopter using optimalestimation in the frequency domain[J].International Journal of Intelligent SystemsTechnologies and Applications.8(1):70-85.
    [60] R. Sugiura,N. Noguchi,K. Ishii.Remote-sensing technology for vegetationmonitoring using an unmanned helicopter[J].Biosystems engineering.2005.90(4):369-379.
    [61] K. Tanaka,A. Nakatsubo,T. Sugiura,等.Application of The Hyperspectral RemoteSensing by Au Unmanned Helicopter in Maize (Zea mays L.) Production (Part1)[J].
    [62] J. H. Yang,W. C. Hsu.Adaptive backstepping control for electrically driven unmannedhelicopter[J].Control Engineering Practice.2009.17(8):903-913.
    [63]王建雄,张辅霞,孔令琼.应用遥控直升机进行大比例尺地形测绘试验研究[J].测绘科学.2007.32(001):82-83.
    [64]甘晓华,郭颖.飞艇技术概论[M].北京:国防工业出版社,2005.
    [65] G. Khoury,J. Gillett.Airship technology[M]: Cambridge University Press Cambridge,MA,1999.
    [66]安伟刚,李为吉,王海峰.某型飞艇外形多目标优化设计及其决策[J].西北工业大学学报.2007.25(006):789-793.
    [67]蔡自立,屈卫东,席裕庚.带有升降气囊与压块的飞艇动力学建模[J].应用数学和力学.2005.26(008):979-987.
    [68]陈慧,杨新,周江华.高空飞艇高度保持控制器设计[J].航天控制.2009.27(002):56-61.
    [69]方存光,王伟.自主飞艇俯仰角动力学建模及其尾翼结构参数的确定[J].应用力学学报.2004.21(002):95-100.
    [70]高明伟,单雪雄.改变飞艇重心位置控制纵向运动[J].力学季刊.2006.27(004):714-718.
    [71]任鹏,王大华,余刃.飞艇浮升力随高度变化规律的研究[J].海军工程大学学报.2007.19(001):108-112.
    [72]王海峰,宋笔锋,刘斌,等.高空飞艇总体设计方法研究[J].西北工业大学学报.2007.25(001):56-60.
    [73]王海峰,宋笔锋,钟小平.飞艇运动建模与仿真验证[J].飞行力学.2009.27(001):31-35.
    [74]王琳,陈跃华,李炜.涤纶平纹基布涂层飞艇囊体材料的开发[J].纺织科技进展.2008.(001):14-16.
    [75]王琳,陈跃华,李炜.飞艇囊体材料的研究进展[J].产业用纺织品.2008.26(010):1-4.
    [76]王伟志,刘学强.平流层飞艇外形气动特性分析[J].航天返回与遥感.2007.28(003):55-61.
    [77]王文隽,李勇,姚伟,等.飞艇气囊压力与蒙皮张力的估算[J].宇航学报.2007.5(5):
    [78]王晓亮,刘丹,单雪雄.飞艇最优飞行轨迹研究[J].力学季刊.2005.26(004):555-561.
    [79]张博,王大华.一种对流层软式飞艇设计体积估算方法的商榷[J].航空计算技术.2008.38(004):56-60.
    [80]范珉一.小型无人飞艇飞行控制系统设计[D].南京:南京理工大学.2007.
    [81]冯超.无人飞艇的路径规划研究[D].上海:上海交通大学.2007.
    [82]倪凯健.基于移动通信的小型无人飞艇远程控制系统设计[D].南京:南京理工大学.2008.
    [83]施兴祖.小型低空飞艇中的数据采集,控制与实现[D].上海:上海交通大学.2009.
    [84]孙珺.小型无人飞艇的建模与飞行控制系统的设计[D].南京:南京理工大学.2009.
    [85]徐柳华.无人飞行器影像处理研究及其实现[D].长沙:中南大学.2009.
    [86]张瑞.低空遥感飞艇飞行安全应急控制系统应用研究[D].成都:西南交通大学.2008.
    [87] J. B. Kumer,R. Rairden,A. Roche,等.NASA ESTO IIP Tropospheric Infrared MappingSpectrometers (TIMS) demonstration first deployment on an airship: Preliminary results[C].
    [88] J. Puleo,M. O'Neal,T. McKenna,等.A Remote-Control Airship for Coastal andEnvironmental Research[C].2008.1220.
    [89] H. Colting.Propulsion and steering system for an airship[Z]. US Patent20,110,198,438.
    [90] H. S. Colting.Airship and Vectored Propeller Drive Therefor[Z]. US Patent App.20,100/224,722.
    [91] M. P. Mitchell.High-altitude long-endurance airship[Z]. Google Patents.
    [92] J. R. Thiele,C. F. Daley.AIRSHIP HANDLING DEVICES AND ASSOCIATED SYSTEMS ANDMETHODS[Z]. Google Patents,2009.
    [93] S. S. BUENO,J. R. Azinheira,J. RAMOS Jr,等.Project AURORA: Towards an autonomousrobotic airship[J].
    [94] D. W. Norton.By Airship to the North Pole: An Archaeology of Human Exploration,by PJ Capelotti and Arctic Mission: By Airship and Submarine to the Far North, by WilliamAlthoff[J].ARCTIC.55(4):398-400.
    [95] W. J. Plant,W. C. Keller,V. Hesany,等.Measurements of the marine boundary layerfrom an airship[J].
    [96]张兴旺.相机稳定平台设计[D].哈尔滨:哈尔滨工程大学.2010.
    [97]高山,唐为民,钱海涛.无源三轴稳定平台结构设计[J].电子机械工程.2009.(005):34-37.
    [98] P. Azzari,L. Di Stefano,A. Bevilacqua.An effective real-time mosaicing algorithmapt to detect motion through background subtraction using a PTZ camera[C].2005.511-516.
    [99] I. H. Chen,S. J. Wang.Efficient vision-based calibration for visual surveillancesystems with multiple PTZ cameras[J].2006.
    [100] A. Goh,Y. Yong,C. Chan,等.Interactive PTZ camera control system using WII remoteand infrared sensor bar[C].2008.127-132.
    [101] C. S. Yang,R. H. Chen,C. Y. Lee,等.PTZ camera based position tracking inIP-surveillance system[C].2008.142-146.
    [102] Y. Yao,B. Abidi,M. Abidi.Fusion of omnidirectional and PTZ cameras for accuratecooperative tracking[C].2006.46-46.
    [103] S. Yoon,H. G. Jung,J. K. Suhr,等.Non-intrusive iris image capturing system usinglight stripe projection and pan-tilt-zoom camera[C].2007.1-7.
    [104]崔伟,陈伟曹.基于自适应卡尔曼滤波器的MEMS陀螺零点漂移的研究[J].传感器世界.2011.17(001):6-8.
    [105]冯志刚,刘彦,方昌华.捷联式惯导系统工具误差模型及处理技术研究进展[J].导弹与航天运载技术.2007.326-29.
    [106]付涛.三轴稳定平台控制系统的设计与仿真研究[D].南京:南京理工大学.2009.
    [107]吉训生,王寿荣.MEMS陀螺仪随机漂移误差研究[J].宇航学报.2006.27(4):640-642.
    [108]金光明,张国良,陈林鹏,等.MEMS陀螺仪静态漂移模型与滤波方法研究[J].传感器与微系统.2007.26(11):48-50.
    [109]李建利,房建成,盛蔚.MEMS陀螺标度因数误差分析及分段插值补偿[J].北京航空航天大学学报.2007.33(9):1064-1067.
    [110]李杰,刘俊,张文栋,等.MEMS陀螺仪随机误差补偿方法研究[J].中北大学学报(自然科学版).2009.30(4):
    [111]李杰,张文栋,刘俊.基于时间序列分析的Kalman滤波方法在MEMS陀螺仪随机漂移误差补偿中的应用研究[J].传感技术学报.2006.19(05B):2215-2219.
    [112]潘金艳,朱长纯,樊建民.微机械陀螺零位误差的研究[J].西安交通大学学报.2006.40(004):480-483.
    [113]任远航.陀螺稳定伺服平台设计[D].南京:南京理工大学.2008.
    [114]王昊,王俊璞,田蔚风,等.梯度RBF神经网络在MEMS陀螺仪随机漂移建模中的应用[J][J].中国惯性技术学报.2006.14(4):44-48.
    [115]吴海亮.三轴稳定微卫星姿态控制系统设计及仿真[D].南京:南京航空航天大学.2008.
    [116]夏德莉.三轴稳定平台中陀螺的信号处理及解耦问题研究[D].南京:南京理工大学.2008.
    [117]夏敦柱,周百令,王寿荣.实时小波滤波方法在硅微陀螺仪中的应用研究[J][J].中国惯性技术学报.2007.15(1):92-95.
    [118]杨锋.三轴稳定卫星姿态确定及控制系统的研究[D].西安:西北工业大学.2006.
    [119]赵世峰,张海,范耀祖.MEMS陀螺随机漂移多尺度滤波方法[J].中国惯性技术学报.2007.15(2):229-232.
    [120]陈永冰,钟斌.惯性导航原理[M]:国防工业出版社,2007.
    [121]以光衢,航空航天.惯性导航原理[M]:航空工业出版社,1987.
    [122]蔡昌盛,李征航.SA取消前后GPS单点定位精度对比分析[J].测绘信息与工程.2002.27(003):24-25.
    [123]陈义.利用精密星历进行单点定位的数学模型和初步分析[J].测绘学报.2002.(0z1):31-33.
    [124]龚佑兴.GPS单点定位研究[D].中南大学.2004.
    [125]韩保民,欧吉坤.基于GPS非差观测值进行精密单点定位研究[J].武汉大学学报:信息科学版.2003.28(004):409-412.
    [126]刘经南,叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报:信息科学版.2002.27(003):234-240.
    [127]邰贺,张小红,张明,等.GPS单频精密单点定位方法与实践[J].测绘信息与工程.2008.33(3):1-3.
    [128]吴江飞,黄珹.GPS精密单点定位模型及其应用分析[J].大地测量与地球动力学.2008.28(001):96-100.
    [129]张小红,李星星,郭斐,等.GPS单频精密单点定位软件实现与精度分析[J].武汉大学学报:信息科学版.2008.33(008):783-787.
    [130]张星炜,查勇.GPS单点定位误差分析[J].南京师大学报:自然科学版.2006.29(003):122-126.
    [131]庄卫东,刘振东,王熙.GPS数据处理及其单点定位精度研究[J].黑龙江八一农垦大学学报.2003.15(2):51-53.
    [132]蔡艳辉,程鹏飞,李夕银.GPS伪距改正及精密动态单点定位精度分析[J].全球定位系统.2004.29(002):11-15.
    [133] Y. Furukawa,J. Ponce.Accurate camera calibration from multi-view stereo and bundleadjustment[J].International journal of computer vision.2009.84(3):257-268.
    [134] L. Hui-ying,S. Jian,L. Yu-mei,等.Camera calibration technique based onrectification of image aberration [J][J].Journal of Jilin University (Engineering andTechnology Edition).2007.2
    [135] C. Mei,P. Rives.Single view point omnidirectional camera calibration from planargrids[C].2007.3945-3950.
    [136] I. Schiller,C. Beder,R. Koch.Calibration of a PMD-Camera using a planar calibrationpattern together with a multi-camera setup[J].The International Archives of thePhotogrammetry, Remote Sensing and Spatial Information Sciences.2008.297-302.
    [137] C. Strecha,W. Von Hansen,L. Van Gool,等.On benchmarking camera calibration andmulti-view stereo for high resolution imagery[J].2008.
    [138] Z. Zhang.A flexible new technique for camera calibration[J].Pattern Analysis andMachine Intelligence, IEEE Transactions on.2000.22(11):1330-1334.
    [139]姜大志,孙闵.数码相机标定方法研究[J].南京航空航天大学学报.2001.33(001):55-59.
    [140]李洪海,王敬东.摄像机标定技术研究[J].光学仪器.2007.29(004):7-12.
    [141]李鹏,王军宁.摄像机标定方法综述[J].山西电子技术.2007.(004):77-79.
    [142]李为民,俞巧云,刘超.采用分离式差分标定靶的单摄像机标定方法[J].ACTA OPTICASINICA.2006.26(5):
    [143]刘团结.航空多光谱数字相机系统关键技术及应用研究[D].北京:中国科学院研究生院(遥感应用研究所).2002.
    [144]刘亚侠.TDI-CCD遥感相机标定技术的研究[D][D].中国科学院研究生院(长春光学精密机械与物理研究所).2005.
    [145]谢文寒,张祖勋,张剑清.一种新的基于灭点的相机标定方法[J].哈尔滨工业大学学报.2003.35(011):1384-1387.
    [146]尹文生,罗瑜林,李世其.基于OpenCV的摄像机标定[J].计算机工程与设计.2007.28(001):197-199.
    [147]张伟,程鸿,韦穗.摄像机标定系统的设计与实现[J].计算机工程.2007.33(2):255-257.
    [148]张吴明,钟约先.基于改进差分进化算法的相机标定研究[J].光学技术.2004.30(006):720-723.
    [149]张永军,张祖勋.利用二维DLT及光束法平差进行数字摄像机标定[J].武汉大学学报:信息科学版.2002.27(006):566-571.
    [150]蔡志刚.多源遥感影像自动配准与镶嵌的方法研究[D].杭州:浙江大学.2006.
    [151]陈春华.基于POS观测值的立体匹配[D].北京:中国地质大学(北京).2006.
    [152]陈明生.图像配准技术研究与应用[D].长沙:国防科学技术大学.2006.
    [153]江万寿.航空影像多视匹配与规则建筑物自动提取方法研究[D].武汉:武汉大学.2004.
    [154]刘亚文.利用数码像机进行房产测量与建筑物的精细三维重建[D].武汉:武汉大学.2004.
    [155]吕海霞.自动图像配准技术研究[D].西安:西北工业大学.2007.
    [156]马瑞升.微型无人机航空遥感系统及其影像几何纠正研究[D].南京:南京农业大学.2004.
    [157]钱为.基于角点特征的图像配准技术研究[D].成都:电子科技大学.2009.
    [158]邵振峰.基于航空立体影像对的人工目标三维提取与重建[D].武汉:武汉大学.2004.
    [159]史栋林.基于边缘的图像配准研究[D].南京:南京理工大学.2006.
    [160]王鑫.图像配准理论及其算法研究[D].哈尔滨:哈尔滨工程大学.2005.
    [161]吴乐文.基于半方差函数的影像匹配方法研究[D].西安:西北大学.2008.
    [162]伍君.基于小波变换的图像配准方法研究[D].长沙:湖南大学.2005.
    [163]夏召红.基于小波变换的图像配准[D].鞍山:辽宁科技大学.2008.
    [164]邢帅.多源遥感影像配准与融合技术的研究[D].郑州:解放军信息工程大学.2004.
    [165]许骥.POS数据辅助立体影像自动量测[D].武汉:武汉大学.2005.
    [166]杨占龙.基于特征点的图像配准与拼接技术研究[D].西安:西安电子科技大学.2008.
    [167]张宏伟.矢量与遥感影像的自动配准[D].武汉:武汉大学.2004.
    [168]张宇坤.多源控制点影像匹配策略及控制点影像库设计研究[D].西安:西北大学.2008.
    [169]张政.点云数据配准算法研究[D].济南:山东大学.2008.
    [170]周亚平.图像配准技术研究[D].西安:西安电子科技大学.2008.
    [171]李新刚,袁建平.微机械陀螺的发展现状[J].力学进展.2003.33(003):289-301.
    [172]熊海林,邓方林.陀螺静态漂移系数的两种估计方法[J].上海航天.2002.19(001):39-41.
    [173] A. Kourepenis,J. Borenstein,J. Connelly,等.Performance of MEMS inertialsensors[C].1998.1-8.
    [174]楼益栋,敖水金,聂菊根.车载导航型GPS接收机的性能分析[J].测绘与空间地理信息.2009.32(004):5-8.
    [175]周新力,范志勇,羊春华.对提高导航型GPS定位精度之工作方法的探讨[J].测绘科学.2008.33(003):87-89.
    [176]周新力,王泽楠,唐保华.一种求解导航型GPS坐标转换参数的方法[J].大地测量与地球动力学.2007.27(6):
    [177]李照塔.导航型GPS用于1∶1万地质填图定位测量的方法[J].矿山测量.(003):49-50.
    [178]李辉,殷国华,曾刚,等.使用sirf导航型GPS接收机进行差分GPS解算[J].中国科技信息.2008.(003):88-88.
    [179]程新文,陈性义.手持式GPS定位精度研究[J].测绘通报.2004.9(1):20-22.
    [180]李晓红,张淑强.经典网和自由网平差的基准及其在变形分析中的应用[J].红水河.2010.(002):84-86.
    [181]鲁铁定,张立亭,周世健,等.自由网平差的直接解算[J].西安科技大学学报.2004.24(004):447-450.
    [182]唐立强.遗传算法在秩亏自由网平差中的应用研究[J].湖南水利水电.2010.(002):36-37.
    [183]王娟,王东.浅议自由网平差与程序设计[J].城市勘测.2011.(3):122-125.
    [184]王帅,高井祥.秩亏自由网平差中最小范数解的唯一性分析[J].SITE INVESTIGATIONSCIENCE AND TECHNOLOGY.2011.
    [185]赵超英,黄观文.秩亏自由网平差及其通解[J].地球科学与环境学报.2010.32(002):215-217.
    [186]周科亮,张学培,冯仲科,等.基于秩亏自由网平差理论的手持GPS面积量测[J].北京测绘.2003.13(2):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700