用户名: 密码: 验证码:
C_(60)-(N,N-四氯邻苯二甲酰基)脱氢枞胺衍生物的合成及抗HIV活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱氢枞胺是松香的重要改性产品之一,是歧化松香胺的主要成分,广泛应用于手性拆分、造纸、胶粘剂、涂料、选矿、石油开采、医药、农药等领域。它是含有三个手性碳原子的天然手性化合物,具有许多天然药物都具有的芳香型三环二萜结构。富勒烯是碳的第三种同素异形体。自富勒烯发现以来,各种富勒烯衍生物的开发及在材料和生物医药领域的应用已被广泛的研究。研究发现,富勒烯衍生物具有一系列的生物学活性,如抗HIV病毒、抗癌、切割DNA、清除自由基等。近年来,连接有生物活性基团的富勒烯衍生物已引起人们极大的关注。许多生物活性分子如氨基酸、多肽、核苷酸、糖类、甾体化合物已被链接到富勒烯分子上,并已证明具有不同的生物学活性。
     本文将脱氢枞胺与四氯邻苯二甲酸酐反应生成N,N-四氯邻苯二甲酰基脱氢枞胺,并通过氧化反应在B环引入羰基,再在C环通过硝化、乙酰化、氧化、水解、取代等反应引入硝基、乙酰基、酯基、羟基及甲氧基等官能团,合成一系列的脱氢枞胺衍生物。脱氢枞胺衍生物的7位羰基与对甲苯磺酰肼经缩合反应生成脱氢枞胺对甲苯磺酰腙衍生物,然后与C_(60)通过[1+2]环加成反应生成C_(60)-N,N-四氯邻苯二甲酰基脱氢枞胺衍生物。将所得的C_(60)-N,N-四氯邻苯二甲酰基脱氢枞胺衍生物进行水性化改性,以增强其在生物环境中的溶解性,并对它们进行抗HIV-1逆转录酶、蛋白酶活性测试。本课题为探索和开发新的具有生物活性的松香胺衍生物提供了参考。论文的研究内容及结果如下:
     (1)以歧化松香胺为原料,通过与对甲苯磺酸的成盐反应,提纯制备了脱氢枞胺。通过脱氢枞胺与四氯苯酐的缩合反应,合成了N,N-四氯邻苯二甲酰基脱氢枞胺(2)。
     (2) N,N-四氯邻苯二甲酰基脱氢枞胺在氯化铝作用下进行傅-克酰基化反应生成N,N-四氯邻苯二甲酰基-12-乙酰基脱氢枞胺(8),然后与间氯过氧苯甲酸发生氧化反应生成N,N-四氯邻苯二甲酰基-12-乙酰氧基脱氢枞胺(9)。化合物9经7位烯苯基氧化、水解,再与碘甲烷作用分别得到N,N-四氯邻苯二甲酰基-7-氧代-12-乙酰氧基脱氢枞胺(10),N,N-四氯邻苯二甲酰基-7-氧代-12-羟基脱氢枞胺(11)和N,N-四氯邻苯二甲酰基-7-氧代-12-甲氧基脱氢枞胺(12)。
     (3)采用较温和的蒙脱土-硝酸铜(claycop)试剂对脱氢枞胺衍生物的C环进行硝化,得到N,N-四氯邻苯二甲酰基-12-硝基脱氢枞胺(3)和N,N-四氯邻苯二甲酰基-14-硝基脱氢枞胺(4)的混合物,N,N-四氯邻苯二甲酰基-7-氧代-13-硝基脱异丙基脱氢枞胺(7)。与传统的浓硫酸-浓硝酸的混酸体系相比,由于体系中释放出的硝酸根离子浓度较低,反应较为缓和,危险性小。
     (4)7位烯苯基氧化反应中,传统的方法是在Ac_2O/AcOH混合溶剂中使用CrO_3或Na_2CrO_4等六价铬试剂作氧化剂,该方法会产生大量铬的有毒废液,同时,由于反应物N,N-四氯邻苯二甲酰基脱氢枞胺(2)、N,N-四氯邻苯二甲酰基-12-乙酰氧基脱氢枞胺(9)及N,N-四氯邻苯二甲酰基-12-硝基脱氢枞胺(3)在Ac_2O/AcOH中溶解性差,所得产物产率很低(大约10~15%)。因此,我们改用8倍量的叔丁基过氧化氢作氧化剂,以CrO_3/吡啶作催化剂,在CH_2Cl_2中室温搅拌反应25h,所得N,N-四氯邻苯二甲酰-7-氧代脱氢枞胺衍生物(6、10和5)产率分别为68.5%、65.5%、38.1%。相较于传统的CrO_3或Na_2CrO_4氧化剂,使用叔丁基过氧化氢氧化试剂,反应条件温和、产物后处理过程更为简单快捷、产率提高,同时不产生有毒废液,有利于环保。
     (5)使用对甲苯磺酰肼与N,N-四氯邻苯二甲酰脱氢枞胺衍生物的7位羰基或12位乙酰基发生缩合反应生成N,N-四氯邻苯二甲酰脱氢枞胺对甲苯磺酰腙衍生物(13~18),反应溶剂的选择对产率影响很大,以苯/乙醇(4:1)作反应溶剂,0.09倍量的对甲苯磺酸作催化剂时,取得较好效果。
     (6)对甲苯磺酰腙衍生物(13~18)在吡啶中与甲醇钠在室温下反应20min,然后加入C_(60)的氯苯溶液,70°C搅拌反应24h,生成单加成物、多加成物及未反应完的C_(60)的混合物,再经柱层析得N,N-四氯邻苯二甲酰基-7,7-C_(60)-脱氢枞胺(19),N,N-四氯邻苯二甲酰基-12-硝基(或乙酰氧基、甲氧基)-7,7-C_(60)-脱氢枞胺(20、21、22),N,N-四氯邻苯二甲酰基-13-硝基-7,7-C_(60)-脱异丙基脱氢枞胺(23)和N,N-四氯邻苯二甲酰基-12-乙基-23,23-C_(60)-脱氢枞胺(24)。N,N-四氯邻苯二甲酰基-12-乙酰氧基-7,7-C_(60)-脱氢枞胺(21)经水解生成N,N-四氯邻苯二甲酰基-12-羟基-7,7-C_(60)-脱氢枞胺(25)。根据文献,C_(60)与对甲苯磺酰腙衍生物反应生成[5,6]开环或[5,6]开环和[6,6]闭环异构体混合物,但在我们的实验中,没有发现[5,6]开环异构体生成,提纯产物只中有[6,6]闭环异构体。所以,该反应是通过卡宾机制实现的。产物经IR,UV-vis,~1H NMR,~(13)C NMR,MALDI-TOF MS,元素分析等分析方法测试了结构,确认为目标产物。
     (7)乙二胺与N,N-四氯邻苯二甲酰基-C_(60)-脱氢枞胺衍生物(19~25)上的C_(60)发生加成反应,产物经酸化后得到七个水溶性的N,N-四氯邻苯二甲酰基-C_(60)-脱氢枞胺乙二胺二盐酸盐衍生物(26~32)。产物经MALDI-TOF MS检测确认为目标产物,且为乙二胺加成度为1~2的混合物。
     (8)本文还探索了水溶性N,N-四氯邻苯二甲酰基-C_(60)-脱氢枞胺乙二胺二盐酸盐衍生物的生物活性。合成的七个水溶性N,N-四氯邻苯二甲酰基-C_(60)-脱氢枞胺乙二胺二盐酸盐衍生物经上海国家新药筛选中心进行体外抗HIV-1逆转录酶和抗HIV-1蛋白酶的活性测试。测试结果表明:①7,7-C_(60)取代衍生物(26)、12-羟基-7,7-C_(60)取代衍生物(30)、23,23-C_(60)取代衍生物(32)抗HIV-1逆转录酶活性较好,半数抑制浓度(IC_(50))分别为3.01μg/mL、5.24μg/mL、4.32μg/mL。但12-硝基-7,7-C_(60)取代衍生物(27)、12-乙酰氧基-7,7-C_(60)取代衍生物(28)、12-甲氧基-7,7-C_(60)取代衍生物(29)和C环脱异丙基-7,7-C_(60)取代衍生物(31)的活性相对较低,它们的IC_(50)值都大于8μg/mL。②七个水溶性N,N-(四氯邻苯二甲酰基)-C_(60)-脱氢枞胺衍生物都呈现出一定的抗HIV-1蛋白酶活性。在7,7-C_(60)取代衍生物(26~31)中,7,7-C_(60)取代衍生物(26)的抗HIV-1蛋白酶活性最强,其IC_(50)值为7.80μg/mL,12-乙酰氧基-7,7-C_(60)取代衍生物(28)次之,IC_(50)值为12.65μg/mL,12-羟基-7,7-C_(60)取代衍生物(30)活性最低,IC_(50)值为112.87μg/mL。另外三个衍生物,12-甲氧基-7,7-C_(60)取代衍生物(29)、12-硝基-7,7-C_(60)取代衍生物(27)和C环脱异丙基-7,7-C_(60)取代衍生物(31),它们的抗HIV-1蛋白酶半数抑制浓度(IC_(50))分别为19.39μg/mL、29.50μg/mL、19.43μg/mL。与7,7-C_(60)取代衍生物(26~31)相比,23,23-C_(60)取代衍生物(32)活性更低,其IC_(50)值为633.94μg/mL。
Dehydroabietylamine is one of important modified products of rosin and the maincomponent of disproportionated rosin amine. It is widely used in many fields such as chiralresolution,papermaking,adhesives,paint,beneficiation,oil exploitation,medicine,pesticide,etc. It is a natural chiral compound with three chiral carbon atoms and possesses an aromaticditerpene structure with three rings as many natural drugs. Fullerene is the third allotrope ofcarbon. Since the discovery of C_(60), various fullerene derivatives have been developed and theirapplications in the felds of material and biomedical sciences have been studied extensively.The study found that C_(60)derivatives exhibit a range of interesting biological activities,including inhibiting HIV-1protease, antitumor, inducing DNA photocleavage, and scavengingfree radicals. Among these fullerene derivatives C_(60)hybrids containing bioactive groups havereceived considerable attention in recent years. Many bioactive molecules, such as amino acids,peptides, nucleotide, sugars and steroids have been linked to C_(60), and these C_(60)derivatives hasbeen proved to have different biological activities.
     In this paper, dehydroabietylamine reacted with tetrachlorophthalic anhydride to giveN,N-(Tetrachlorophthaloyl)dehydroabietylamine, which was introduced carbonyl on B ringthrough oxidation, and then functional groups such as nitro group, acetyl group, ester group,hydroxyl group and methoxy group were introduced on C ring by nitration, acetylation,oxidation, hydrolysis and substitution reaction, and so a series of dehydroabietylamine deri-vatives were synthesized. Subsequently, the condensation reactions of7-carbonyl of dehydro-abietylamine derivatives with p-tosylhydrazide yielded the corresponding dehydroabietylaminep-tosylhydrazones, followed by [1+2] cycloaddition reactions with C_(60)to yield C_(60)-N,N-(tetr-achlorophthaloyl)dehydroabietylamine derivatives. These C_(60)-N,N-(tetrachlorophthaloyl)dehy-droabietylamine derivatives were waterborne modified to increase their solubility in biologicalenvironment and their biological activities of anti-HIV-1reverse transcriptase and anti-HIV-1protease were tested. The research project can be expected to provide a reference for exploringand developing new rosinamine derivatives with potential biological activity. Following are theworks and results of our study.
     (1) Dehydroabietylamine was purified by the salt-forming reaction of disproportionatedrosin amine and p-toluenesulphonic acid. N,N-(Tetrachlorophthaoyl)dehydroabietylamine(2)was synthesized by condensation reaction of dehydroabietylamine and tetrachlorophthalicanhydride.
     (2) N,N-(Tetrachlorophthaoyl)dehydroabietylamine was transformed into N,N-(tetrachlo-rophthaloyl)-12-acetyldehydroabietylamine(8) by Friedel-Crafts acylation in the presence ofAlCl3, followed by oxidation with m-chloroperbenzoic acid to generate N,N-(tetrachlorophthal-oyl)-12-acetoxydehydroabietylamine(9). Compound9was transformed into N,N-(tetrachloro-phthaloyl)-7-oxo-12-acetoxydehydroabietylamine(10), N,N-(tetrachlorophthaloyl)-7-oxo-12-h-ydroxydehydroabietylamine(11) and N,N-(tetrachlorophthaloyl)-7-oxo-12-methoxydehydroabi-etylamine(12), respectively, by C-7benzylic oxidation, hydrolysis and the reaction with CH3I.
     (3) C ring of dehydroabietylamine derivatives(2) was mononitrated with the milder clay-supported copper(II) nitrate(claycop) to afford a mixture of N,N-(tetrachlorophthaloyl)-12-nitrodehydroabietylamine(3) and N,N-(tetrachlorophthaloyl)-14-nitrodehydroabiethylamine(4), aswell as N,N-(tetrachlorophthaloyl)-7-oxo-13-nitrodehydroabiethylamine(4). This reaction has the advantages of milder and high safety due to the lower concentration of nitate ion releasingin the claycop system, compared with the traditional H2SO4-HNO_3mixed acid system.
     (4) The conventional methods for C-7benzylic oxidations involve the use of chromium(VI)reagents, such as CrO_3and Na_2CrO_4, in a mixed solvent of Ac_2O/AcOH, which led toconsiderable amounts of toxic effuents and afforded low yields (approximately10~15%) in theC-7benzylic oxidations of N,N-(Tetrachlorophthaoyl)dehydroabietylamine(2), N,N-(tetrachlo-rophthaloyl)-12-acetoxydehydroabietylamine(9) and N,N-(tetrachlorophthaloyl)-12-nitrodehyd-roabietylamine(3) because of their poor solubility in Ac_2O/AcOH. So we used an excess oft-BuOOH (8equiv) as an oxidant and CrO_3/pyridine mixture as a catalyst, the reaction mixturewas stirred for25h at room temperature in CH_2Cl_2, the yields of N,N-(tetrachlorophthal-oyl)-7-oxodehydroabietylamine derivatives (6,10and5) was68.5%、65.5%、38.1%,respectively. Compared with the traditional CrO_3or Na_2CrO_4oxidant, using t-BuOOH as theoxidant, the reaction is milder,the post-treatment process of products is more simple and theyields is higher, meanwhile it produce few toxic effuents and has a great significance inenvironmental protection.
     (5) The condensation reactions of7-carbonyl or12-acetyl of N,N-(tetrachlorophthaloyl)dehydroabietylamine derivatives with p-tosylhydrazide yielded N,N-(tetrachlorophthaloyl)de-hydroabietylamine p-tosylhydrazone derivatives(13~18). The choice of reaction solvent had agreat infuence on the yields. A mixture of benzene/ethanol(4:1) was used as the reaction solventand p-tolu-enesulphonic acid(0.09equiv) was added as a catalyst, giving a good effect.
     (6) p-Tosylhydrazone derivatives(13~18) were reacted with NaOMe in pyridine for20minat room temperature. A solution of C_(60)in chlorobenzene was then added, and the mixture wasstirred for24h at70°C. A mixture of the monoadduct, higher adducts and unreacted C_(60)wasobtained and then purifed by column chromatography to give N,N-(tetrachlorophthaloyl)-7,7-C_(60)-dehydroabietylamine(19), N,N-(tetrachlorophthaloyl)-12-nitro(or acetoxy, methoxy)-7,7-C_(60)-dehydroabietylamine(20,21,22), N,N-(tetrachlorophthaloyl)-13-nitro-7,7-C_(60)-deisopr-opyldehydroabietylamine(23) and N,N-(tetrachlorophthaloyl)-12-ethyl-23,23-C_(60)-dehydroabie-tylamine(24). N,N-(tetrachlorophthaloyl)-12-acetoxy-7,7-C_(60)-dehydroabietylamine(21) was hy-drolysed to afford N,N-(tetrachlorophthaloyl)-12-hydroxy-7,7-C_(60)-dehydroabietylamine(25).According to the literature, C_(60)reacted with p-tosylhydrazones to afford [5,6]-open isomers or amixture of [5,6]-open isomers and [6,6]-closed isomers. In our experiment, no traces of the[5,6]-open isomer were found and the only isolated product was the [6,6]-closed isomer. Thus,the carbene mechanism is realised in this reaction. The target compounds were characterized byIR, UV-vis,~1H NMR,~(13)C NMR, MALDI-TOF MS and elemental analysis.
     (7) Ethylenediamine reacted with C_(60)of N,N-(tetrachlorophthaloyl)-C_(60)-dehydroabiety-lamine derivatives(19~25) by addtion reaction, then the products were acidified to giveN,N-(tetrachlorophthaloyl)-C_(60)-dehydroabietylamine ethylenediamine dihydrochloride derivat-tives(26~32). The target compounds were characterized by MALDI-TOF MS, and were themixture of1~2different addition degrees of ethylenediamine.
     (8) In this paper, the bioactivities of water-soluble N,N-(tetrachlorophthaloyl)-C_(60)-dehydroabietylamine ethylenediamine dihydrochloride derivatives were also investigated, andthe anti-HIV-1reverse transcriptase and anti-HIV-1protease activities of the sythesized sevenwater-soluble N,N-(tetrachlorophthaloyl)-C_(60)-dehydroabietylamine ethylenediamine dihydro-chloride derivatives were tested by The National Center for Drug Screening. The test results showed that:①7,7-C_(60)-substituted derivative(26),12-hydroxy-7,7-C_(60)-substituted derivative(30)and23,23-C_(60)-substituted derivative(32) showed relatively high anti-HIV-1reverse transcr-iptase activities, and their median inhibition concentration(IC_(50)) were3.01μg/mL,5.24μg/mLand4.32μg/mL, respectively. But the anti-HIV-1reverse transcriptase activities of12-nitro-7,7-C_(60)-substituted derivative(27),12-acetoxy-7,7-C_(60)-substituted derivative(28),12-methoxy-7,7-C_(60)-substituted derivative(29) and C ring deisopropyl-7,7-C_(60)-substituted derivative(31)were relatively low, their IC_(50)values were greater than8μg/mL.②All seven water-solubleN,N-(tetrachlorophthaloyl)-C_(60)-dehydroabietylamine derivatives presented a certain anti-HIV-1protease activities. In the7,7-C_(60)-substituted derivatives(26~31), the anti-HIV-1proteaseactivity of7,7-C_(60)-substituted derivative (26) was highest, its IC_(50)value was7.80μg/mL,closely followed by12-acetoxy-7,7-C_(60)-substituted derivative(28), its IC_(50)value was12.65μg/mL, and that of12-hydroxy-7,7-C_(60)-substituted derivative(30) was lowest, its IC_(50)value was112.87μg/mL. Three other derivatives,12-methoxy-7,7-C_(60)-substituted derivative(29),12-nitro-7,7-C_(60)-substituted derivateive(27) and C ring deisopropyl-7,7-C_(60)-substituted derivative(31), their IC_(50)value were respectively19.39μg/mL、29.50μg/mL and19.43μg/mL.Compared with that of7,7-C_(60)-substituted derivatives(26~31), the anti-HIV-1protease activityof23,23-C_(60)-substituted derivative(32) is lower, its IC_(50)value was633.94μg/mL.
引文
[1] Kroto, H. W.; Heath, J. R.; Obrien, S. O.; et al. C60: Buckminsterfullerene[J]. Nature,1985,318:162~163.
    [2] Kratschmer, W.; Lamb, L. D.; Fostiropoulous, K.; et al. Solid C60–A new form of carbon[J]. Nature,1990,347:354~358.
    [3] Saito, S.; Ostiyama, A. Cohesive mechanism and energy bands of solid C60[J]. Phys. Rev. Lett.,1991,66:2637~2640.
    [4] Ruoff, R. S.; D. Tse, D. S.; Malhorta, R.; et al. Solubility of C60in a Variety of Solvents[J]. J. Phys. Chem.,1993,97:3379~3383.
    [5] Ajie, H.; Alvarez, M. M.; Anz, S. J.; et al. Characterization of the Soluble All-Carbon Molecules C60andC70[J]. J. Phys. Chem.,1990,94:8630~8633.
    [6] Cyvin, S. J.; Brendsdal, E.; Cyvin, B. N.; et al. Molecular vibrations of footballene[J]. Chem. Phys.Lett.,1988,143(4):377~380.
    [7]李建霖,林永生,吴振奕等.金属富勒烯配合物的合成与表征[J].厦门大学学报(自然科学版),2002,41(4):453~455.
    [8] Nierengarten, J. F.; Nicoud, J. F. Cyclopropanation of C60with malonic acid mono-esters[J]. TetrahedronLett.,1997,38:7737~7740.
    [9] Bingel, C. Cyclopropanation of fullerenes[J]. Chem. Ber.,1993,126:1957~1959.
    [10] Camps, X.; Hirsch, A. Efficient cyclopropanation of C60starting from malonates[J]. J. Chem. Soc.,Perkin Trans.1,1997,(11):1595~1596.
    [11] Benito, A. M.; Darwish, A. D.; Kroto, H. W.; et al. Synthesis and characterisation of themethanofullerenes, C-60(CHCN) and C-60(CBr2)[J]. Tetrahedron. Lett.,1996,37:1085~1086.
    [12]王乃兴,孙承华,刘薇等.亚甲基-[6,6]-富勒烯(fullerene)[60]单羧酸的合成研究[J].有机化学,2001,21(8):611~613.
    [13] Wang, Y. H.; Cao, J. R.; Sehuster, D. I.; et al. A superior synthesis of [6,6]-methanofullerenes: thereaction of sulfonium ylides with C60[J]. Tetrahedron. Lett.,1995,36:6843~6846.
    [14] Bestmann, H. J.; Hadawi, D.; Rǒder, T.; et al.6,6uberbruckte geschlossene methanofullerene aus C60und phosphoniumyliden[J]. Tetrahedron. Lett.,1994,35:9017~9020.
    [15] Hirsch, A. Addition reactions of buckminsterfullerene (C60)[J]. Synthesis,1995,8:895~913.
    [16] Vasella, A.; Uhlmann, P.; Waldraff, C. A. A.; et al. Fullerenzucker: Herstellung enantiomerenreiner,spiroverknüpfter C-Glycoside von C60[J]. Angew. Chem.,1992,104:1383~1385.
    [17] Isaacs, L.; Diederich, F. Structures and Chemistry of Methanofullerenes: A Versatile Route intoN-[(Methanofullerene)carbonyl]-Substituted Amino Acids[J]. Helv. Chem. Acta.,1993,76:2454~2464.
    [18] Xu, J. H.; Li, Y. L.; Zheng, D. G.; et al. An unexpected reaction:[2+1] cycloaddition of [60]fullerenewith4,4,5,5-tetramethylimidazolidine-2-thione and DL-valine[J]. Tetrahedron Lett.,1997,38:6613~6616.
    [19] Osterdot, J.; Nieger, M.; Windscheif, P.–M.; et al. Crowded fullerenes[J]. Chem. Ber.,1993,126:2331~2336.
    [20] Hall, M. H.; Lu, H.; Shevlin, P. B. Observation of Both Thermal First-Order and PhotochemicalZero-Order Kinetics in the Rearrangement of [6,5] Open Fulleroids to [6,6] Closed Fullerenes[J]. J. Am.Chem. Soc.,2001,123(7):1349~1354.
    [21] Hummelen, J. C.; Knight, B. W.; LePeq, F.; et al. Preparation and characterization of fulleroid andmethanofullerene derivatives[J]. J. Org. Chem.,1995,60(3):532~538.
    [22] Gómez, R.; Segura, J. L. Synthesis of a π-conjugated oligomer–fullerene dyad through a versatile
    [6,6]diphenylmethanofullerene carboxylic acid[J]. Tetrahedron,2009,65(2):540~546.
    [23] Tuktarov, A. R.; Korolev, V. V.; Tulyabaev, A. R.; et al. Synthesis of optically active spiro homo-andmethanofullerenes[J]. Tetrahedron. Lett.,2011,52(7):834~836.
    [24] Ohno, T.; Martin, N.; Knight, B.; et al. Quinone-type methanofullerene acceptors: precursors for organicmetals[J]. J. Org. Chem.,1996,61(4):1306~1309.
    [25] Ohno, T.; Moriwaki, K.; Miyata, T. Intramolecular charge-transfer interaction in a new dyad based onC60and bis(4′-tert-butylbiphenyl-4-yl)aniline(BBA) donor[J]. J. Org. Chem.,2001,66:3397~3401.
    [26] Chiang, L.Y.; Swirczewski, J. W.; Hsu, C. S.; et al. Versatile nitronium chemistry for C60fullerenefunctionalization[J]. J. Chem. Soc. Chem. Commun.,1992,22:1791~1793.
    [27] Chiang, L. Y.; Wang, L.Y.; Swirezewski, J. W.; et al. Efficient synthesis of polyhydroxylated fullerenederivatives via hydrolysis of polycyclosulfated precursors[J]. J. Org. Chem.,1994,59(14):3960~3968.
    [28] Zhang, J. M.; Yang, W.; He, P.; et al. Efficient and convenient preparation of water-soluble fullerenol[J].Chin. J. Chem.,2004,22(9):1008~1011.
    [29] Naim, A.; Shevlin, P. B. Reversible addition of hydroxide to the fullerenes[J]. Tetrahedron. Lett.,1992,33(47):7097~7100.
    [30] Bogdanovi, G.; Koji, V.; Dordevi, A.; et al. Modulating activity of fullerol C60(OH)22ondoxorubicin-induced cytotoxicity[J]. Toxicology in Vitro,2004,18:629~637.
    [31] Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W. Versatile nitronium chemistry for C60fullerenefunctionalization[J]. J. Am. Chem. Soc.,1992,114:10154~10157.
    [32] Li, J.; Takeuchi, A.; Ozawa, M.; et al. C60fullerol formation catalysed by quaternary ammoniumhydroxides[J]. J. Chem. Soc. Chem. Commun.,1993,23:1784~1785.
    [33] Yao, L.; Kang, F.; Peng, Q. Y.; et al. An improved method for fullerol preparation based on dialysis[J].Chin. J. Chem. Eng.,2010,18(5):876~879.
    [34] Chiang, L. Y.; Wang, L. Y.; Swirczewski, J. W.; et al. Efficient synthesis of polyhydroxylated fullerenederivatives via hydrolysis of polycyclosulfated precursors[J]. J. Org. Chem.,1994,59(14):3960~3968.
    [35]张晓敏,邓波,李景烨等.紫外光氧化法制备水溶性富勒醇[J].辐射研究与辐射工艺学报,2010,28(1):1~4.
    [36] Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W.; et al. Evidence of hemiketals incorporated in thestructure of fullerols derived from aqueous acid chemistry[J]. J. Am. Chem. Soc.,1993,115:54535457
    [37] Roy, S.; Sarkar, S. NO2adducts of C60: synthesis of polinitropolyhydroxy fullerenes[J]. J. Chem. Soc.Chem. Commun.,1994,24(3):275~276.
    [38] Schneider, N. S.; Darwish, A. D.; Kroto, H. W.; et al. Formation of fullerols via hydroboration offullerene-C60[J]. J. Chem. Soc. Chem. Commun.,1994,24(3):463464
    [39]孙大勇,刘子阳,郭兴华等. C60(OH)x的简便合成及性质[J].高等学校化学学报,1996,17(1):19~20.
    [40]戴剑锋,王青,李维学等.水溶性富勒烯衍生物的合成[J].兰州理工大学学报,2004,30(4):70~72.
    [41] Hirsch, A.; Lamparth, I.; Karfunkel, H. R. Fullerene chemistry in three dimensions: isolation of sevenregioisomeric bisadducts and chiral trisadducts of C60and di(ethoxy-carbonyl)methylene[J]. Angew.Chem. Int. Ed. Engl.,1994,33:437~438.
    [42] Hirsch, A.; Lamparth, I.; Grosser T. Regiochemistry of multiple additions to the fullerene core: Synthesisof a Th-symmetric hexakisadduct of C60with bis(ethoxy-carbonyl) methylene[J]. J. Am. Chem. Soc.,1994,116:9385~9386.
    [43] Lamparth, I.; Hirsch, A.; Water-soluble malonic acid derivatives of C60with a defined three-dimensionalstructure[J]. J. Chem. Soc. Chem. Commun.,1994,24(3):1727~1728.
    [44]刘绪峰,官文超,程珍贤.6-氨基己酸及2-氨基乙磺酸C60加成物的合成及溶解性[J].有机化学,2005,25(6):741~744.
    [45] Chen, H. H.; Yu, C.; Ueng, T. H.; et al. Acute and subcute toxicity study of water-solublte polyalkyeponated C60in rats[J]. Toxical. Pathol.,1998,26:143~146.
    [46] Chen, H. H.; Yu, C.; Ueng, T. H.; et al. Renal effects of water-soluble polyarylsulfonated C60in rats withan acute toxicity study[J]. Fullerene Sci.&Tech.,1997,5:1387~1390.
    [47] Yu, C.; Bhonsle, J. B.; Canteenwala, T.; et al. Novel water-soluble hexa(sulfobutyl) fullerenes as potentfree radical scavengers[J]. Chem. Lett.,1998,5:465~466.
    [48] Sijbesma, R.; Srdanov, G.; Wudl, F.; et al. Synthesis of a fullerene derivative for the inhibition of HIVenzymes[J]. J. Am. Chem. Soc.,1993,115:6510~6512.
    [49] Tokuyama, H.; Yamago, S.; Nakamura, E. Photoinduced biochemical activity of fullerene carboxylicacid[J]. J. Am. Chem. Soc.,1993,115:7918~7919.
    [50] Bullard-Dillard, R.; Creek, K. E.; Scrivens, W. A.; et al. Tissue sites of uptake of14C-labeled C60[J].Bioorg. Chem.,1996,24:376~385.
    [51] Richardson, C. F.; Schuster, O. I.; Wilson, S. R. Synthesis and characterization of water-soluble aminofullerene derivatives[J]. Org. Lett.,2000,2:1011~1014.
    [52] Bosi, S.; Da Ros, T.; Castellano, S.; et al. Antimycobacterial activity of ionic fullerene derivatives[J].Bioorg. Med. Chem. Lett.,2000,10:1043~1045.
    [53] Bosi, S.; Da Ros, T.; Spalluto, G.; et al. Synthesis and anti-HIV properties of new water-solublebis-functionalized[60]fullerene derivatives[J]. Bioorg. Med. Chem. Lett.,2003,13:4437~4440.
    [54] Hu, Z.; Guan, W. C.; Wang, W.; et al. Synthesis of β-alanine C60derivative and its protective effect onhydrogen peroxide-induced apoptosis in rat pheochromocytoma cells[J]. Cell Biology International,2007,31(8):798~804.
    [55] Hu, Z.; Guan, W. C.; Wang, W.; et al. Protective effect of a novel cystine C60derivative on hydrogenperoxide-induced apoptosis in rat pheochromocytoma PC12cells[J]. Chemico-Biological Interactions,2007,167(2):135~144.
    [56]张静,王艳霞,康峰等.新型富勒烯α-氨基酸的合成及其纳米颗粒水悬液的制备[J].高等学校化学学报,2008,29(10):1986~1989.
    [57]解馨,杨新林.富勒烯半胱氨酸的固相合成与荧光特性[J].有机化学,2010,30(10):1508~1511.
    [58] Prato, M.; Maggini, M. Fulleropyrrolidines: a family of full-fledged fullerene derivatives[J]. Accounts ofChemical Research,1998,31(9):519~526.
    [59] Maggini, M.; Scorrano, G. Addition of azomethine ylides to C60: synthesis, characterization, andfunctionalization of fullerene pyrrolidines[J]. J. Am. Chem. Soc.,1993,115(21):9798~9799.
    [60] Tagmatarchis, N.; Prato M. The addition of azomethine ylides to [60]fullerene leading tofulleropyrrol-idines[J]. Synlett.,2003,6(1):768~779.
    [61] Illescas, B.; Rifé, J.; Ortuno, R. M.; et al. Stereoselective synthesis of C60-based cyclopropane aminoacids[J]. J. Org. Chem.,2000,65(19):6246~6248.
    [62] Skiebe, A.; Hirsch, A. A facile method for the synthesis of amino acid and amido derivatives of C60[J]. J.Chem. Soc. Chem. Commun.,1994,24(3):335~336.
    [63] Janot, J. M.; Bienvenüe, E.; Seta, P.; et al.[60]Fullerene and three [60]fullerene derivatives in membranemodel environments[J]. J. Chem. Soc., Perkin Trans.1,2000,(2):301~306.
    [64] Toniolo, C.; Bianco, A.; Maggini, M.; et al. A bioactive fullerene peptide[J]. J. Med. Chem.,1994,37(26):4558~4562.
    [65] Chen, B. X.; Wilson, S. R.; Das. M.; et al. Antigenicity of fullerenes: antibodies specific for fullerenesand their characteristics[J]. Proceedings of National Academy Sciences USA,1998,95(18):10809~10811.
    [66] Romanova, V. S.; Tsyryaphin, V. A.; Lyakhovetsky, Y. I.; et al. Addition of amino acids and dipeptides tofullerene C60giving rise to monoadducts[J]. Russian Chemical Bulletin,1994,43(6):1154~1155.
    [67] Volpin, M. E.; Belavtseva, E. M.; Romanova, V. S.; et al. Self-assembling of associates of amino acidsand dipeptide derivatives of [60]fullerene in aqueous solution: a study by scaning electronmicroscopy[J]. Mendeleev Communications,1995,4(3):129~131.
    [68] Klemenkova, Z. S.; Romanova, V. S.; Tsyryapkin, V. A.; et al. Infrared spectra of amino acid and peptidemonoderivatives of [60]fullerene and their methyl esters[J]. Mendeleev Communications,1996,5(1):60~62.
    [69] Sofou, P.; Elemes, Y.; Panou-Pomonis, E.; et al. Synthesis of a proline-rich[60] fullerene peptide withpotential biologicalactivity[J]. Tetrahedron,2004,60(12):2823~2828.
    [70]董国孝,李纪生,李文革等.水溶性富勒烯衍生物C60腺苷的合成[J].科学通报,1996,41(3):226~228.
    [71] Brettreich, M.; Hirsch, A. A highly water-soluble dendro[60]fullerene[J]. Tetrahedron Lett.,1998,39:2731~2734.
    [72] Wharton, T.; Kini, V. U.; Mortis, R. A.; et al. New non-ionic, highly water-soluble derivatives of C60designed for biological compatibility[J]. Tetrahedron Lett.,2001,42:5159~5162.
    [73] Kato, H.; Boettcher, C.; Hirsch, A. Sugar balls: synthesis and supramolecular assembly of [60]fullereneglycoconjugates[J]. Eur. J. Org. Chem.,2007,2007(16):2659~2666.
    [74] Samal, S.; Geckeler, K. E. Cyclodextrin-fullerene: a new class of water-soluble fullerenes[J]. Chem.Commun.,2000,13:1101~1102.
    [75] Xie, Q.; Pérez-Cordero, E.; Echegoyen, L. Electrochemical Detection of C6-6-60and C70: EnhancedStability of Fullerides in Solution[J]. J. Am. Chem. Soc.,1992,114:3978~3980.
    [76] Echegoyen, L.; Echegoyen, L. E. Electrochemistry of Fullerenes and their Derivatives[J]. Acc. Chem.Res.,1998,31:593~601.
    [77] Zhang, Y.; Liu, W.; Gao, X.; et al. The frst synthesis of a water-soluble acyclodextrin/C60supramolecular complex using anionic C60as a building block[J]. Tetrahedron. Lett.,2006,47:8571~8574.
    [78] Kurz, A.; Halliwell, C. M.; Davis, J. J.; et al. A Fullerene-modified Protein[J]. J. Chem. Soc. ChemCommun.,1998,28(3):433~434.
    [79] Schuster, D. I.; Wilson, S. R.; Schinazi, R. F. Anti-Human Immunodeficiency Virus Activity andCytotoxicity of Derivatized Buckminsterfullerenes[J]. Bioorg. Med. Chem. Lett.,1996,6:1253~1256.
    [80] Says, C. M.; Fortner, J. D.; Guo, W. Lyon, D.; et al. The differential cytotoxicity of water-solublefullerenes[J]. Nano. Lett.,2004,4(10):188l~1887.
    [81] Sayes, C. M.; Goin, A. M.; Ausrnan, K. D.; et al. Nano-C(60)cytotoxicity is due to lipid peroxidation[J].Biomaterials,2005,26(36):7586~7595.
    [82] Boutorine, A. S.; Tokuyama, H.; Takasugi, M.; et al. Fullerene-oligonucleotide conjugates: photoinducedsequence-specific DNA cleavage[J]. Angew. Chem. Int. Ed. Engl.,1994,33:2462~2465.
    [83] Friedman, S. H.; De Camp, D. L.; Sijbesma, R. P.; et al. Inhibition of the HIV-1protease by fullerenederivatives: model building studies and experimental verification[J]. J. Am. Chem. Soc.,1993,115:6506~6509.
    [84] Mashino, T.; Okuda, K.; Hirota, T.; et al. Inhibition of E. coli growth by fullerene derivatives andinhibition mechanism[J]. Bioorg. Med. Chem. Lett.,1999,9(20):2959~2962.
    [85] Okuda, K.; Mashino, T.; Hirobe, M. Superoxide radical quenching and cytochrome C peroxidase-likeactivity of C60-dimalonic acid, C62(COOH)4[J]. Bioorg. Med. Chem. Lett.,1996,6(5):539~542.
    [86] Dugan, L. L.; Turetsky, D. M.; Du, C.; et al. Carboxyfullerenes as neuroprotective agents[J].Proceedings of the National Academy of Sciences,1997,94(17):9434~9439.
    [87] Schinazi, R. F.; Sijbesma, R. P.; Srdanov, G.; et al. Synthesis and virucidal activity of a water soluble,configurationally stable, derivatized C60fullerene[J]. Antimicrob. Agents Chemother.,1993,37(8):1707~1710.
    [88] Marcorin, G. L.; Ros, T. D.; Castellano, S.; et al. Design and Synthesis of Novel [60]FullereneDerivatives as Potential HIV Aspartic Protease Inhibitors[J]. Org. Lett.,2000,2:3955~3958.
    [89] Marchesan, S.; Da Ros, T.; Spalluto, G.; et al. Anti-HIVproperties of cationic fullerene derivatives[J].Bioorg. Med. Chem. Lett.,2005,15:3615~3618.
    [90] Schuster, D. I.; Wilson, L. J.; Kirschner, A. N.; et al. Fullerene2000-Functionalized Fullerenes[M].Pennington, N. J. USA: The Electrochemical Society,2000:267~270.
    [91] Cannon, L. C. Penicillin salts of amines derived from rosin[P]. US:2585436,1952.
    [92]杨东海.松香再加工及应用[M].北京:中国林业出版社,1984,62~83.
    [93] McKinnei, B. G.; La, B. R. Resolution of acylated D, L-alkyl substituted alkanoic acids[P]. US:4294775,1981
    [94] Gottstein, W. J.; Cheney, L. C. Dehydroabietylamine: A new resolving agent[J]. J. Org. Chem.,1965,30:2072~2073.
    [95]王道林,牛之猛,刘华东.光学活性拆分剂脱氢枞胺的制备性纯化及其表征[J].北京理工大学学报,2004,24(4):357~359.
    [96]宋湛谦,向凤仙,高德华等.脱氢枞胺及其醋酸盐的合成和应用[J].林业科学,1981,17(1):69~71.
    [97]范旭,丁霞,林中祥等. N,N-二羧甲基脱氢枞胺的合成、表征及抑制木材腐朽菌的活性[J].现代化工,2007,27(增刊1):257~259.
    [98]曾涛,彭淑静. N, N-二甲基脱氢枞胺的合成[J].南京林业大学学报,1996,20(1):25~28.
    [99]岑波,段文贵,赵树凯等. N-去氢枞基新型甜菜碱类两性表面活性剂的合成[J].化学世界,2004,45(3):150~153.
    [100]陈泳,林中祥. N-苯甲酰基-脱氢枞胺-7-酮的合成及其对雄激素受体活性的研究[J].林产化学与工业,2009,29(增刊):121~124.
    [101]熊垚,林中祥,范旭等. C60与N-羧甲基脱氢枞胺的1,3-偶极环加成反应研究[J].化学通报,2009,72(5):474~477.
    [102] Khlebnikova, T. B.; Karpyshev, N. N.; Tolstikova, O. V.; et al. Synthesis of new chiral phosphorous-and nitrogen-containing ligands from resin acids[J]. Chirality,2004,16(S1): S40~S50.
    [103]唐莅东,潘英明,王刚等.两种新型手性衍生试剂的合成[A].第三届广西青年学术年会论文集(自然科学篇),2004,南宁.
    [104] Yamamoto, J.; Kamio, N.; Kawano, A.; et al. Reaction of Nor-dehydroabietylamine with someBenzaldehydes[J]. Tottori Daigaku Kogakubu Kenkyu Hokoku,1999,30(1):33~37.
    [105] Hadioudis, E.; Argyroglou, J. Photochromism and Thermochromism of Solid Salicylidene Dehydr-Dehydroabietylamines and Salicylidene-6-Amino Methyl-Dehydroabietates[J]. Mol. Cryst. Liq. Cryst.,1986,134(1):245~253.
    [106]饶小平,宋湛谦,高宏.含氟脱氢枞胺Schiff碱的合成及抑菌活性[J].林产化学与工业,2007,27(2):97~99.
    [107] Tsutsumi, T.; Sakata, C. Novel phenanthlene derivative and its production[P]. JP:02104565,1990
    [108] Wada, H.; Kodato, S.; Kawamori, M.; et al. Antiulcer activity of dehydroabietic acid derivaties[J].Chem. Pharm. Bull (Tokyo).,1985,33(4):1472~1487.
    [109]张曙光,林中祥.脱氢枞胺衍生物的合成与抗菌活性[J].化工学报,2009,60(12):3077~3081.
    [110]李鸣雷,高连勋,丁孟贤.对映体制备性分离方法的进展[J].化学通报,1997,60(2):17~23.
    [111] Cannon, L. C. Penicillin salts of amines derived from rosin[P]. US:2585436,1952.
    [112] Kalser, A.; Scheer, M. Process for the preparation of L-DOPA[P]. US:3969397,1976.
    [113] Riff, T.; Marle, H. R.; Hodingol, A. Process for the resolution of racemic half esters[P]. CN:85106365,1987.
    [114]何曼,陆进华,沈德渊.脱氢枞胺键合交联聚苯乙烯树脂的制法和应用[J].化工时刊,2002,16(12):25~29.
    [115] Buzby, Jr, G. C.; Schouten, H. G. Resolution of3-benzoylthio-2-methyl-propanoic acid with (+)-dehydroabietylamine[P]. US:4559178,1985.
    [116]弗里茨·里福,翰斯·鲁多尔夫·马勒,阿尔弗里德·赫丁格.外消旋半酯分拆工艺[P]. CN:85106365,1987.
    [117] Kohl, B.; Eistetter, K.; Wolf, H. P. O. Process for the preparation of optically pure oxiranecarboxylicacids [P]. EP:386654,1990.
    [118] Charles K, C.; Morgan, M. Resolution of2-benzyl-4-piperidone-succinic acid[P]. US:5280122,1994.
    [119]林国强,雷新胜,张爱民.光学纯2-氟-α-甲基-[1,1’-二苯基]-4-乙酸的制备方法[P]. CN:01113303,2001.
    [120] Bolchi, C.; Pallavicini, M.; Fumagalli, L.; et al. Resolution of2-substituted1,4-benzodioxanes byentrainment[J]. Tetrahedron: Asymmetry,2007,18(9):1038~1041.
    [121]柏一慧,刘金强,陈新志.6-氟-3,4-二氢-2H-1-苯并比喃-2-甲酸的拆分研究[J].浙江大学学报(工学版),2008,42(4):702~706.
    [122]黄春林,黄尚顺,黄科林等.手性脱氢枞胺拆分1,1′-联-2-萘酚[J].精细化工,2010,27(1):57~59.
    [123]曾韬.松香胺及其衍生物在工业助剂方面的应用[J].化工时刊,1993,(6):12~16.
    [124]梁梦兰,叶建峰.松香衍生物的季铵盐阳离子表面活性剂的合成与性能测定[J].化学世界,2000,41(3):138~141.
    [125]贾卫红,饶小平,宋湛谦等.松香基季铵盐Gemini表面活性剂的合成及性能研究[J].现代化工,2008,28(增刊2):390~394.
    [126]王延,宋湛谦,梁梦兰. N-脱氢枞基-N,N-二羟乙基季铵盐类阳离子表面活性剂合成及性质研究[J].林产化学与工业,1997,17(1):6~10.
    [127]王延,宋湛谦. N-脱氢枞酸氨基酸类两性表面活性剂合成及其结构与性质关系研究[J].林产化学与工业,1996,16(3):1~6.
    [128]王延,宋湛谦,梁梦兰. N-脱氢枞基-N,N-二甲基季铵盐类阳离子表面活性剂的合成及性质[J].日用化学工业,1997,(4):16~18.
    [129] Steck, E. A. Topical prophylaxis against schistosomiasis[P]. US:4282253,1981.
    [130] Goodson, B.; Ehrhardt, A.; Simon, N. G.; et al. Characterization of novel antimicrobial peptoids[J].Antimicrobial Agents and Chemotherapy,1999,43(6):1429~1434.
    [131]李海涛,陈涛,杨冬梅.脱氢枞胺钾盐对实验性胃溃疡的治疗作用[J].药学与临床研究,2008,16(6):457~459.
    [132] Poonam, D.; Vinay, C. S.; Gautam, P. Cyclo-oxygenase-2expression and prostaglandin E2productionin experimental chronic gastric ulcer healing[J]. Eur. J. Pharmacol.,2005,519(3):277~284.
    [133]张守仁,邵金莺,於毓文.呋喃唑酮和一些常用抗溃疡药对四种大鼠胃溃疡模型的影响[J].药学学报,1984,19(1):5~6.
    [134]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,1993:441.
    [135] Wilkerson, W. W.; Galbraith, W.; DeLucca, I.; et al. Topical anti-inflammatory dehydroabietylaminederivatives[J]. Bioorg. Med. Chem. Lett.,1993,3(10):2087~2092.
    [136] Wilkerson, W.; DeLucca, I.; Galbraith, W.; et al. Antiinflammatory phospholipase-A2inhibitors[J].Europe Journal of Medical Chemistry,1991,26(7):667~676.
    [137]谢建翔,何玲,张陆勇等.脱氢枞胺衍生物DHAA-urea对人肝癌HepG2细胞糖代谢的抑制作用[J].中国藥科大学学报,2010,41(2):160~165.
    [138]管小虹,邓慧敏,林中祥.电喷雾质谱法研究12-氨基乙酰脱氢枞胺与脱氧核糖核酸的相互作用[J].分析化学,2010,38(8):1172~1176.
    [139]管小虹,邓慧敏,林中祥.电喷雾质谱法研究N-苯甲酰基-脱氢枞胺-7-酮与DNA的相互作用[J].中山大学学报(自然科学版),2010,49(6):74~77.
    [140]吕林,邓慧敏,林中祥. ESI-MS法研究N-苯甲酰基-脱氢枞胺衍生物与血管紧张肽Ⅲ的相互作用[J].高等学校化学学报,2011,32(4):863~867.
    [141]周春隆.有机颜料表而处理原理及其新进展[J].化工进展,1992,(2):12~19.
    [142]施达常,贾春华,彭淑静.歧化松香胺西佛碱对联苯胺G的性能改进[J].林产化学与工业,1996,16(3):7~12.
    [143] Towle, A.; Anderson, A. S. Lubricating compositions for two-cycle internal combustion engines[P]. US:3120429,1964.
    [144] James. B Hinkamp, Birmingham, Roy Sugimoto, Royal Oak, Mich. Diesel fuel compositions[P]. US:2857253,1958.
    [145]王延,谷元强,周永红等.脱氢枞胺聚氧乙烯醚合成及其结构与性能关系研究[J].日用化学工业,1998,(3):4~6.
    [146]姚绪杰,饶小平,王宗德.脱氢枞胺水杨醛类Schiff碱对铜的缓蚀性能研究[J].生物质化学工程,2006,40(3):21~24.
    [147] Laszlo, P.; Cornelis, A. Clay-supported cupric nitrite CLAYCOP, a user-friendly oxidizing and nitratingreagent[J]. Aldrichimica Acta,1988,21:97~103.
    [148] Salmond, W. G.; Bartra, M. A.; Havens, J. L. Allylicoxidation with3,5-dimethylpyrazole, chromiumtrioxide complex. Steroidal Δ5-7-ketones[J]. J. Org. Chem.,1978,43(10):2057~2059.
    [149] Parish, E. J.; Wei, T. Y. Allylic Oxidation of Δ5-Steroids with Pyridinium Chlorochromate (PCC) andPyridinium Dichromate (PDC)[J]. Synth. Commun.,1987,17(10):1227~1233.
    [150] Matsushita, Y.; Iwakiri, Y.; Yoshida, S.; et al. Synthesis of12-deoxyroyleanone, cryptoquinone,11,14-dihydroxy-8,11,13-abietatrien-7-one, and related derivatives from dehydroabietic acid[J].Tetrahedron. Lett.,2005,46:3629~3632.
    [151] Alvarez-Manzaneda, E. J.; Chahboun, R.; Guardia, J. J.; et al. New route to15-hydroxy dehydroabieticacid derivatives: application to the first synthesis of some bioactive abietane and nor-abietane typeterpenoids[J]. Tetrahedron. Lett.,2006,47:2577~2580.
    [152] Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.; et al. First synthesis of picealactone C. A new routetoward taxodione-related terpenoids from abietic acid[J]. Tetrahedron. Lett.,2007,48:989~992.
    [153] Sharp, G. T.; Cessford, A. G.; Stewart, A. R. ARKIVOC,2002, vi:67~81.
    [154] Hu, Z.; Guan, W. C.; Wang, W.; et al. Synthesis of β-alanine C60derivative and its protective effect onhydrogen peroxide-induced apoptosis in rat pheochromocytoma cells[J]. Cell. Biol. Int.,2007,31:798~804.
    [155] Hu, Z.; Guan, W. C.; Wang, W.; et al. Protective effect of a novel cystine C60derivative on hydrogenperoxide-induced apoptosis in rat pheochromocytoma PC12cells[J]. Chem-Biol. Interact.,2007,167:135~144.
    [156] Toniolo, C.; Bianco, A.; Maggini, M.; et al. A bioactive fullerene peptide [J]. J. Med. Chem.,1994,37:4558~4562.
    [157] Sofou, P.; Elemes, Y.; Panou-Pomonis, E.; et al. Synthesis of a proline-rich[60] fullerene peptide withpotential biological activity[J]. Tetrahedron,2004,60:2823~2828.
    [158] Kato, H.; Yashiro, A.; Mizuno, A.; et al. Syntheses and Biological Evaluations of α-d-Mannosyl
    [60]fullerenols[J]. Bioorg. Med. Chem. Lett.,2001,11:2935~2939.
    [159] Li, L. S.; Hu, Y. J.; Wu, Y. K.; et al. Steroid-fullerene adducts from Diels–Alder reactions:characterization and the effect on the activity of Ca2+-ATPase[J]. J. Chem. Soc., Perkin Trans.1,2001,617~621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700