用户名: 密码: 验证码:
有机—无机杂化纳米粒子/线的分子设计与合成及其聚合物基复合膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜技术是一项新型高效的分离技术,被认为是解决人类所面临的资源和环境领域重大问题的共性技术之一,被广泛应用于污水处理、海水淡化、食品饮料纯化、生物医用过滤、化工分离等领域。膜材料是膜技术的核心,目前绝大多数膜技术依赖于有机高分子膜。与纯有机膜相比,聚合物基有机-无机复合膜结合了有机膜和无机膜的优势,表现出更加优异的分离透过性能和抗污染能力,正成为膜材料领域的研究热点之一。然而,无机纳米材料在聚合物基体中常常难以均匀分散,有机与无机两相之间结合不够紧密,导致无机纳米材料在膜服役过程中容易流失,起不到稳定持久的效果,这成为有机-无机复合膜进一步发展应用的主要障碍。
     在本论文的研究工作中,采取两种策略解决上述问题:(1)采用过滤沉积的方式将分散在液体中的有机-无机杂化纳米线复合在聚合物基膜表面,制备有机-无机复合膜,有机与无机两相仅通过聚合物膜表面相互接触,从而回避了两相之间的相容性问题和无机相团聚问题;(2)采用可逆加成-断裂链转移(RAFT)自由基聚合的方法,在无机纳米粒子表面接枝聚合物,制备有机-无机杂化纳米粒子,再将其与成膜聚合物溶液共混,制备有机-无机复合膜,聚合物接枝层的引入可有效抑制无机纳米粒子的团聚行为,显著增强无机纳米粒子与聚合物基体之间的相互作用,提高无机纳米粒子在聚合物基体中的稳定性。
     通过溶液生长的方法,在硝酸铜和乙醇胺形成的弱碱性溶液中制备了荷正电的单分散的氢氧化铜(Cu(OH)2)纳米线,再加入一定量的荷负电的肝素(Hep)溶液,Hep通过静电作用负载在Cu(OH)2纳米线表面,生成了Hep@Cu(OH)2有机-无机杂化纳米线。采取过滤沉积的方法,将Hep@Cu(OH)2杂化纳米线复合到聚砜(PSf)多孔膜表面,制备PSf/Hep@Cu(OH)2有机-无机复合膜。研究结果表明,Cu(OH)2纳米线表面负载的Hep量对复合膜的结构和性能有很大影响。当Hep的负载量为65.9μg/cm2左右时,水接触角测量结果显示复合膜具有优异的亲水性;当Hep的负载量达到212.0μg/cm2左右时,复合膜的水通量大于PSf基膜;当Hep的负载量达到408.4μg/cm2左右时,复合膜的水通量达到最大值约为517.2Lm-2h-1。Hep的负载有效地提高了膜的抗血小板粘附能力,而且复合膜对大肠杆菌(E.coli)和金色葡萄球菌(S. aureus)具有良好的抗菌能力。
     为了提高二氧化硅(SiO2)纳米粒子在聚醚砜(PES)基体中的分散性和稳定性及其与PES的相互作用,采用RAFT聚合方法,在Si02纳米粒子表面接枝聚甲基丙烯酸羟乙酯(PHEMA),制备了核壳结构的SiO2-g-PHEMA有机-无机杂化纳米粒子,将其作为添加剂,与PES溶液共混,通过传统的非溶剂诱导相分离法(NIPS)制备PES/SiO2-g-PHEMA有机-无机复合膜,考察了SiO2-g-PHEMA杂化纳米粒子的添加量对复合膜结构与性能的影响。研究结果表明,SiO2-g-PHEMA杂化纳米粒子能够很好的分散在铸膜液体系中,与PES表现出良好的相互作用;在膜/浴界面能最低化的驱动下,SiO2-g-PHEMA杂化纳米粒子在NIPS成膜过程中向膜表面迁移/富集,显著提高了PES膜的亲水性、抗污染和抗血小板粘附能力。当SiO2-g-PHEMA杂化纳米粒子的添加量从0增加到6wt%时,膜的水通量和牛血清白蛋白(BSA)截留率均得到明显提高,打破了超滤膜改性中常常出现的通量与截留率此消彼长、相互抑制的现象。由于PHEMA接枝链与PES链段之间的相互缠结和氢键相互作用,SiO2-g-PHEMA杂化纳米粒子在PES膜表面和本体中表现出良好的稳定性。
     为了实现有机-无机复合膜表面的进一步功能化,通过分子设计,采用RAFT聚合方法,在SiO2纳米粒子表面接枝具有反应活性的聚甲基丙烯酸二甲氨乙酯(PDMAEMA),制备了核壳结构的SiO2-g-PDMAEMA有机-无机杂化纳米粒子,并将其作为添加剂,通过NIPS法制备PES/SiO2-g-PDMAEMA有机-无机复合膜。研究结果表明,SiO2-g-PDMAEMA杂化纳米粒子不仅在铸膜液中分散性良好,而且在成膜过程中向膜表面富集,增强了SiO2-g-PDMAEMA杂化纳米粒子对改性膜亲水性和透水性的贡献,提高了SiO2-g-PDMAEMA杂化纳米粒子的利用效率。且由于PDMAEMA与PES聚合物链段之间的缠结作用,SiO2-g-PDMAEMA杂化纳米粒子在PES膜表面和本体中表现出良好的稳定性。更为重要的是,膜表面富集的反应性PDMAEMA链为膜表面的进一步修饰提供了反应性平台。分别采用1,3-丙磺酸内酯(1,3-PS)和碘甲烷(CH3I)与PDMAEMA进行季铵化反应,得到了两性离子化和阳离子化的膜表面。两性离子化的膜表面表现出优异的亲水性能和抗污染能力,阳离子化的膜表面对E.coli和S. aureus具有优良的抗菌能力。
     为了进一步提高Si02纳米粒子在聚偏氟乙烯(PVDF)基体中的分散性和稳定性以及有机与无机两相间的相互作用,进一步设计并通过AFT聚合在SiO2纳米粒子表面接枝聚甲基丙烯酸甲酯(PMMA)和PDMAEMA的两嵌段共聚物,得到核壳结构的SiO2-g-(PMMA-b-PDMAEMA)有机-无机杂化纳米粒子,将其与PVDF溶液共混,通过NIPS法制备PVDF/SiO2-g-(PMMA-b-PDMAEMA)有机-无机复合膜。研究发现,SiO2-g-(PMMA-b-PDMAEMA)杂化纳米粒子在PVDF基体中具有优异的分散性,能够显著地促进膜孔结构的形成和发展,提高膜的表面亲水性,添加较低含量(2.5wt%)的粒子还可以有效地提高PVDF膜的力学强度。且与SiO2-g-PDMAEMA杂化纳米粒子相比,SiO2-g-(PMMA-b-PDMAEMA)杂化纳米粒子在PVDF膜中具有更好的稳定性。进一步通过1,3-PS与PDMAEMA之间的季铵化反应,得到表面两性离子化的有机-无机复合膜,显著提高了PVDF膜的亲水性、抗污染性能和BSA截留率
     综上所述,通过有机-无机杂化纳米粒子/线的分子设计,有效地提高了有机-无机复合分离膜的综合性能,为通用聚合物膜材料的改性与高性能化提供了理论和方法指导。
As a new and highly efficient separation technology, membrane technology is considered as one of universal technique to solve important problems in the fields of resources and environments. Actully, membrane process has been widely used in wastewater treatments, seawater desalination, food and beverage purification, biomedical separation, chemical filtration etc. Basically, membrane material is thought the core of membrane technology. Nowadays, organic polymer membranes play a dominating role in most membrane technologies. Compared with neat polymeric or inorganic membranes, polymer-based organic-inorganic composite membranes often combine the advantages of both polymeric and inorganic membranes, and show more excellent separation performance and antifouling ability. The organic-inorganic composite membranes are attracting increasing attention in the field of membrane technologies. However, some problems and disadvanatages are still exisited for available organic-inorganic composite membranes. The inorganic nanomaterials are often difficult to disperse homogenously in polymer matrix, resulting in the occurance of defects in membrane. Moreover, the inorganic nanomaterials are easy to leach out during membrane application due to the poor miscibility and interaction between organic and inorganic phases. As a result, membrane performance might gradually degrade in membrane use. These problems have becoming the major obstacles of furture development and popularity of organic-inorganic composite membranes.
     In this thesis, we present two strategies to solve the above-mentioned problems. In the first strategy, a filtration and deposition route was used to prepare organic-inorganic composite membranes. The hybrid nanostrands well dispersed in water were filtrated and deposited onto polymer membrane and formed a hybrid separation layer. In this route, the nanostrands only contacted with the surfaces of polymer membranes. So the agglomeration of the nanostrands in the polymer matrix and the miscibility between two phases can be avoided. In the second strategy, polymer brushes were grafted from inorganic nanoparticle surfaces via surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization and obtained the organic-inorganic hybrid NPs. Then the organic-inorganic composite membranes were prepared from the blending solutions of polymer and the synthesized hybrid nanoparticles. The agglomeration of the nanoparticles in the polymer matrix can be effectively suppressed and the interaction between these two phases and the stability of the nanoparticles can be remarkably improved.
     First, the monodisperse positively charged Cu(OH)2nanostrands were prepared in a weakly alkaline copper nitrate solution in the presence of2-aminoethanol. Then a certain amount of negatively charged heparin (Hep) solution was added into the solution of nanostrands. The Hep was immobilized onto the surface of Cu(OH)2nanostrands by electrostatic interaction forming organic-inorganic hybrid Hep@Cu(OH)2nanostrands. The PSf/Hep@Cu(OH)2organic-inorganic composite membranes were prepared by filtration and deposition of the Hep@Cu(OH)2hybrid nanostrands onto a polysulfone (PSf) porous membrane surface. The results showed that the properties of the prepared composite membranes were highly affected by the amount of immobilized Hep on Cu(OH)2nanostrands. When the amount of immobilized Hep was about65.9μg/cm2, the water contact angles of the composite membrane indicated that the hydrophilicity of the composite membranes was best. When the amount of immobilized Hep was about212.0μg/cm2, the water flux of the composite membrane was more than that of the pure PSf membrane. Furthermore, when the amount of immobilized Hep was about408.4μg/cm2, the water flux of the composite membrane reached the maximum value. It was about517.2Lm-2h-1. The platelet adhesion resistant properties of the composite membranes were significantly improved by immobilizing Hep on membrane surface. In addition, the composite membranes exhibited very good antibacterial activities against Escherichia coli (E.coli) and Staphyloccocus aureus Rosenbach (5. aureus).
     In order to improve the dispersity and stability of silica nanoparticles (SiO2NPs) in PES and the interation between these two phases, the shell core SiO2-g-PHEMA organic-inorganic hybrid NPs were prepared by grafting poly(2-hydroxyethyl methacrylate)(PHEMA) brushes from SiO2NPs surfaces via RAFT polymerization. Then the PES/SiO2-g-PHEMA organic-inorganic composite membranes were fabricated from the blending solutions of polyethersulfone (PES) and the additive of SiO2-g-PHEMA hybrid NPs via the non-solvent induced phase separation (NIPS) process. The effects of SiO2-g-PHEMA hybrid NPs concentration on the structures and properties of the prepared composite membranes were mainly discussed. The results showed that the obtained SiO2-g-PHEMA hybrid NPs well dispersed in casting solution. The well dispersed SiO2-g-PHEMA hybrid NPs tended to migrate toward the membrane top surfaces under the driving force of minimization of interfacial energy between membrane and coagulation bath. The membrane hydrophilicity, antifouling and platelet adhesion resistant properties were significant improved caused by the enriched SiO2-g-PHEMA hybrid NPs on the membrane surface. When the concentration of SiO2-g-PHEMA hybrid NPs was increased from0to6wt%, the water permeability and the BSA rejection of the corresponding composite membranes increased simultaneously. The phenomenon indicated that the trade-off between permeability and selectivity of traditional ultrafiltration membranes was broken. The SiO2-g-PHEMA hybrid NPs had good stability in/on PES membrane due to the intertwisting and hydrogen bonds of polymer chains between PHEMA and PES.
     In order to achieve further functionalization of the organic-inorganic composite membranes, based on the molecular design, the shell core SiO2-g-PDMAEMA organic-inorganic hybrid NPs were prepared by grafting reactive poly(2-dimethylaminoethyl methacrylate)(PDMAEMA) brushes from SiO2NPs surface via RAFT polymerization. Then the PES/SiO2-g-PDMAEMA organic-inorganic composite membranes were fabricated from the blending solutions of PES and the additive of the obtained SiO2-g-PDMAEMA hybrid NPs via the NIPS process. The results showed that well dispersed SiO2-g-PDMAEMA hybrid NPs tended to migrate toward the membrane top surfaces. Therefore, the contributions of SiO2-g-PDMAEMA hybrid NPs to the hydrophilicity and water permeability of the membrane were significantly improved. The efficiencies of the SiO2-g-PDMAEMA hybrid NPs were increased. In addation, the SiO2-g-PDMAEMA hybrid NPs showed well stability in/on PES membrane due to the intertwisting of polymer chains between PDMAEMA and PES. More importantly, the reactive PDMAEMA chains enriched on membrane surface provided a strategy to further surface modification. On one hand, the composite membranes were transformed into surface-zwitterionic composite membranes by quaternization between7,3-propane sultone (7,3-PS) and PDMAEMA. On the other hand, the composite membranes were transformed into cationic composite membranes by quaternization between methyl iodide (CH3I) and PDMAEMA. These membranes exhibited better hydrophilicity. It was confirmed that the surface-zwitterionic composite membranes had well antifouling abilities and the cationic composite membranes exhibited high antibacterial activities against E.coli and S. aureus.
     In order to further improve the dispersity and the stability of SiO2NPs in/on poly(vinylidene fluoride)(PVDF) matrix and the interaction between these two phases, based on the molecular design, poly(methyl methacrylate)(PMMA) and PDMAEMA brushes were serially grafted from SiO2NPs surface via RAFT polymerization forming the shell core SiO2-g-(PMMA-b-PDMAEMA) organic-inorganic hybrid NPs. Then the PVDF/SiO2-g-(PMMA-b-PDMAEMA) organic-inorganic composite membranes were fabricated from the blending solutions of PVDF and the additive of the obtained SiO2-g-(PMMA-b-PDMAEMA) hybrid NPs via the NIPS process. The results showed that the SiO2-g-(PMMA-b-PDMAEMA) hybrid NPs well dispersed in the PVDF matrix and significantly enhanced the formation and the development of membrane pores and the hydrophilicity. When the concentration of SiO2-g-(PMMA-b-PDMAEMA) hybrid NPs was lower (2.5wt%), the tensile strength was higher than that of the pure PVDF membrane. Moreover, the SiO2-g-(PMMA-b-PDMAEMA) hybrid NPs had better stability in/on PVDF membrane than that of SiO2-g-PDMAEMA hybrid NPs. The composite membranes were transformed into surface-zwitterionic composite membranes by quaternization between1,3-PS and PDMAEMA. It was confirmed that the surface hydrophilicity, antifouling ability and BSA rejection of the PVDF membranes were significantly enhanced after surface zwitterionicalization.
     In summary, the comprehensive properties of the polymer-based organic-inorganic composite separation membranes were significantly improved by molecular design of organic-inorganic hybrid nanoparticles/nanostrands used in membrane fabrication. The present work provides us with some useful academic and technological information on the modification and functionalization of commonly-used polymer separation membranes.
引文
[1]徐又一,徐志康,高分子膜材料,化学工业出版社,北京,2005.
    [2]D. E. Suk, T. Matsuura, Membrane-based composite processes:A review, Sep. Sci. Technol.,41 (2006):595-626.
    [3]李琳(译著),膜技术基本原理,清华大学出版社,北京,1999.
    [4]李小林,低压纳滤复合膜制备中的结构控制及其性能研究,浙江大学,2010.
    [5]朱利平,聚醚砜、聚醚砜酮多孔膜的结构可控制备,浙江大学,2007.
    [6]K.K. Sirkar, Membrane separation technologies:Current developments, Chem. Eng. Commun.,157 (1997):145-184.
    [7]时钧,袁权,高从堦,膜技术手册,化学工业出版社,北京,2001.
    [8]A.M. Alklaibi, N. Lior, Membrane-distillation desalination:Status and potential, Desalination,171 (2005):111-131.
    [9]M.S. El Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci.,285 (2006):4-29.
    [10]A. Bottino, G. Capannelli, A. Comite, Novel porous poly (vinylidene fluoride) membranes for membrane distillation, Desalination,183 (2005):375-382.
    [11]M. Tomaszewska, Preparation and properties of flat-sheet membranes from poly(vinylidene fluoride) for membrane distillation, Desalination,104 (1996): 1-11.
    [12]G.D. Kang, Y.M. Cao, Development of antifouling reverse osmosis membranes for water treatment:A review, Water Res.,46 (2012):584-600.
    [13]B.H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X.F. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes, J. Membr. Sci.,294 (2007):1-7.
    [14]N. Hilal, O.O. Ogunbiyi, N.J. Miles, R. Nigmatullin, Methods employed for control of fouling in mf and uf membranes:A comprehensive review, Sep. Sci. Technol.,40 (2005):1957-2005.
    [15]C.S. Zhao, J.M. Xue, F. Ran, S.D. Sun, Modification of polyethersulfone membranes-A review of methods, Prog. Mater Sci.,58 (2013):76-150.
    [16]B. Van der Bruggen, Chemical modification of polyethersulfone nanofiltration membranes:A review, J. Appl. Polym. Sci.,114 (2009):630-642.
    [17]L.P. Zhu, Z. Yi, F. Liu, X.Z. Wei, B.K. Zhu, Y.Y. Xu, Amphiphilic graft copolymers based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol) side chains for surface modification of polyethersulfone membranes, Eur. Polym. J.,44 (2008):1907-1914.
    [18]M.M. Tao, F. Liu, L.X. Xue, Hydrophilic poly(vinylidene fluoride) (PVDF) membrane by in situ polymerisation of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation, J. Mater. Chem.,22 (2012):9131-9137.
    [19]Z. Yi, L.P. Zhu, L. Cheng, B.K. Zhu, Y.Y. Xu, A readily modified polyethersulfone with amino-substituted groups:Its amphiphilic copolymer synthesis and membrane application, Polymer,53 (2012):350-358.
    [20]Y.H. Cho, H.W. Kim, S.Y. Nam, H.B. Park, Fouling-tolerant polysulfone-poly(ethylene oxide) random copolymer ultrafiltration membranes, J. Membr. Sci.,379 (2011):296-306.
    [21]H.B. Dong, Y.Y. Xu, Z. Yi, J.L. Shi, Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization, Appl. Surf. Sci.,255 (2009):8860-8866.
    [22]Y. Sui, X.L. Gao, Z.N. Wang, C.J. Gao, Antifouling and antibacterial improvement of surface-fimctionalized poly(vinylidene fluoride) membrane prepared via dihydroxyphenylalanine-initiated atom transfer radical graft polymerizations, J. Membr. Sci.,394-395 (2012):107-119.
    [23]X.L. Li, L.P. Zhu, Y.Y. Xu, Z. Yi, B.K. Zhu, A novel positively charged nanofiltration membrane prepared from N, N-dimethylaminoethyl methacrylate by quaternization cross-linking, J. Membr. Sci.,374 (2011):33-42.
    [24]M.A. Masuelli, M. Grasselli, J. Marchese, N.A. Ochoa, Preparation, structural and functional characterization of modified porous pvdf membranes by y-irradiation, J. Membr. Sci.,389 (2012):91-98.
    [25]Y.C. Chiag, Y. Chang, W.Y. Chen, R.C. Ruaan, Biofouling resistance of ultrafiltration membranes controlled by surface self-assembled coating with pegylated copolymers, Langmuir,28 (2012):1399-1407.
    [26]Y.L. Ji, Q.F. An, Q. Zhao, W.D. Sun, K.R. Lee, H.L. Chen, C.J. Gao, Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance, J. Membr. Sci.,390-391 (2012): 243-253.
    [27]J. Jiang, L. Zhu, L. Zhu, B. Zhu, Y. Xu, Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films, Langmuir,27 (2011):14180-14187.
    [28]D.S. Wavhal, E.R. Fisher, Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment, Desalination,172 (2005):189-205.
    [29]K.S. Kim, K.H. Lee, K.Cho, C.E. Park, Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment, J. Membr. Sci.,199 (2002): 135-145.
    [30]K.R. Kull, M.L. Steen, E.R. Fisher, Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes, J. Membr. Sci.,246 (2005):203-215.
    [31]A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation, J. Membr. Sci.,193 (2001):1-18.
    [32]A. Larbot, C. Guizard, L. Cot, New inorganic ultrafiltration membranes:Titania and Zirconia membranes, J. Am. Ceram. Soc,72 (1989):257-261.
    [33]Z.B. Wand. Q.Q. Ge, Y.S. Yan, High-performance Zeolite NaA membranes on polymer-Zeolite composite hollow fiber supports, J. Am. Chem. Soc,131 (2009): 17056-17057.
    [34]T.H. Bae, J.S. Lee, W. Qiu, WJ. Koros, C.W. Jones, S. Nair, A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals, Angew. Chem. Int. Ed. Engl.,49 (2010):9863-9866.
    [35]R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science,319 (2008):939-943.
    [36]M. Arruebo, J.L. Falconer, R.D. Noble, Separation of binary C5 and C6 hydrocarbon mixtures through MFI zeolite membranes, J. Membr. Sci.,269 (2006):171-176.
    [37]C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of composite organic-inorganic nanocomposites, J. Mater. Chem.,15 (2005):3559-3592.
    [38]J.Y. Yuan, A.H.E. Muller, One-dimensional organic-inorganic composite nanomaterials, Polymer,51 (2010):4015-4036.
    [39]李传峰,邵启华,钟顺和,有机无机复合膜材料的制备技术,化学进展,16(2004):83-89.
    [40]G. Schottner, Composite sol-gel-derived polymers:Applications of multifunctional materials, Chem. Mater.,13 (2001):3422-3435.
    [41]M.M. Pendergast, E.M. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci.,4 (2011):1946-1971.
    [42]G. Kickelbick, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Prog. Polym. Sci.,28 (2003):83-114.
    [43]J.Y. Wen, G.L. Wilkes, Organic/inorganic composite network materials by the sol-gel approach, Chem. Mater.,8 (1996):1667-1681.
    [44]陈琦丽,唐超群,肖循,Ti02纳米微粒的溶胶-凝胶法制备及XRD分析,材料科学与工程,20(2002):224-226.
    [45]曾庆冰,李效东,溶胶-凝胶法基本原理及其在陶瓷材料中的应用,高分子材料科学与工程,14(1998):138-143.
    [46]李彬,溶胶-凝胶薄膜科学与技术的由来和发展,材料导报,6(1992):42-47.
    [47]M.M. Collinson, Sol-gel strategies for the preparation of selective materials for chemical analysis, Crit. Rev. Anal. Chem.,29 (1999):289-311.
    [48]黄传真,艾兴,溶胶-凝胶法的研究和应用现状,材料导报,11(1997):8-9.
    [49]潘群雄,潘晖华,陈建华,溶胶-凝胶技术与纳米材料的制备,材料导报,15(2001):40-42.
    [50]A. Walcarius, Analytical applications of silica-modified electrodes-A comprehensive review, Electroanalysis,10 (1998):1217-1235.
    [51]R.J. Corriu, D. Leclercq, Recent developments of molecular chemistry for sol-gel processes, Angew. Chem. Int. Ed. Engl.,35 (1996):1420-1436.
    [52]L.L. Hench, The sol-gel process, Chem. Rev.,90 (1990):33-72.
    [53]C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of composite organic-inorganic nanocomposites, J. Mater. Chem.,15 (2005):3559-3592.
    [54]杨振坤,有机-无机复合亲水涂层的制备及性能表征,大连理工大学,2007.
    [55]U. Schubert, N. Husing, A. Lorenz, Composite inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides, Chem. Mater.,7 (1995):2010-2027.
    [56]J.Y. Wen, GL. Wilkes, Organic/inorganic composite network materials by the sol-gel approach, Chem. Mater.,8 (1996):1667-1681.
    [57]S.W. Chuang, S.L. Hsu, Y.H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells, J. Membr. Sci.,305 (2007):353-363.
    [58]S.H Zhong, C.F Li, X.F. Xiao, Preparation and characterization of polyimide-silica composite membranes on kieselguhr-mullite supports, J. Membr. Sci.,199 (2002):53-58.
    [59]J.P. He, H.M. Li, X.Y. Wang, Y. Gao, In situ preparation of polyethylene terephthalate)-SiO2 nanocomposites, Eur. Polym. J.,42 (2006):1128-1134.
    [60]H.T. Wang, W. Zhong, P. Xu, Q.G Du, Polyimide/silica/titania nanocomposites via a novel non-hydrolytic sol-gel route, Compos. Part A,36 (2005):909-914.
    [61]GT. Gu, Z.J. Zhang, H.X. Dang, Preparation and characterization of hydrophobic organic-inorganic composite thin films of PMMA/SiO2/TiO2 with low friction coefficient, Appl. Surf. Sci.,221 (2004):129-135.
    [62]M.H. Tsai, S.J. Liu, P.C. Chiang, Synthesis and characteristics of polyimide/titania nano composite films, Thin Solid Films,515 (2006): 1126-1131.
    [63]S.Q. Lai, T.S. Li, F.D. Wang, X.J. Li, L. Yue, The effect of silica size on the friction and wear behaviors of polyimide/silica composites by sol-gel processing, Wear,262 (2007):1048-1055.
    [64]W.J. Chen, Y.L. Su, L. Zhang, Q. Shi, J.M. Peng, Z.Y. Jiang, In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes, J. Membr. Sci.,348 (2010):75-83.
    [65]F. Xi, J. Wu, X. Lin, Novel nylon-supported organic-inorganic composite membrane with hierarchical pores as a potential immobilized metal affinity adsorbent, J. Chromatogr. A,1125 (2006):38-51.
    [66]Y.H. Wu, J.Y. Luo, L.L. Yao, C.M. Wu, F.L. Mao, T.W. Xu, PVA/SiO2 anion exchange composite membranes from multisilicon copolymers with two types of molecular weights, J. Membr. Sci.,399-400 (2012):16-27.
    [67]Y. Wu, J. Luo, C. Wu, T. Xu, Y. Fu, Bionic multisilicon copolymers used as novel cross-linking agents for preparing anion exchange composite membranes, J. Phys. Chem. B,115 (2011):6474-6483.
    [68]Y.H. Wu, C.M. Wu, T.W. Xu, Y.X. Fu, Novel anion-exchange organic-inorganic composite membranes prepared through sol-gel reaction of multi-alkoxy precursors, J. Membr. Sci.,329 (2009):236-245.
    [69]C.M. Wu, Y.H. Wu, J.Y. Luo, T.W. Xu, Y.X. Fu, Anion exchange composite membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process, J. Membr. Sci.,356 (2010):96-104.
    [70]H. Wang, C.M. Wu, Y.H. Wu, J.Y. Luo, T.W. Xu, Cation exchange composite membranes based on PVA for alkali recovery through diffusion dialysis, J. Membr. Sci.,376 (2011):233-240.
    [71]L.Y. Yu, Z.L. Xu, H.M. Shen, H. Yang, Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method, J. Membr. Sci.,337 (2009):257-265.
    [72]Y.N. Yang, P. Wang, Preparation and characterizations of a new PS/TiO2 composite membranes by sol-gel process, Polymer,47 (2006):2683-2688.
    [73]M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation:A review, Sep. Purif. Technol.,75 (2010):229-242.
    [74]S. Balta, A. Sotto, P. Luis, L. Benea, B. Van der Bruggen, J. Kim, A new outlook on membrane enhancement with nanoparticles:The alternative of ZnO, J. Membr. Sci.,389 (2012):155-161.
    [75]C.X. Dong, G.H. He, H. Li, R. Zhao, Y. Han, Y.L. Deng, Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles, J. Membr. Sci.,387-388 (2012):40-47.
    [76]N. Akar, B. Asar, N. Dizge, I. Koyuncu, Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles, J. Membr. Sci.,437 (2013):216-226.
    [77]J.S. Taurozzi, H. Aral, V.Z. Bosak, A.F. Burban, T.C. Voice, M.L. Bruening, V.V. Tarabara, Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities, J. Membr. Sci.,325 (2008):58-68.
    [78]F. Liu, M.R.M. Abed, K. Li, Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3, J. Membr. Sci.,366 (2011):97-103.
    [79]H.Y. Shi, F. Liu, L.X. Xue, Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites, J. Membr. Sci.,437 (2013):205-215.
    [80]E. Celik, H. Park, H. Choi, H. Choi, Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res.,45 (2011): 274-282.
    [81]V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Fabrication and characterization of novel antifouling nano filtration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite, J. Membr. Sci.,375 (2011):284-294.
    [82]Y. Mansourpanah, S.S. Madaeni, A. Rahimpour, M. Adeli, M.Y. Hashemi, M.R. Moradian, Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive:Property changes and morphological studies, Desalination,277 (2011):171-177.
    [83]Z.H. Wang, H.R. Yu, J.F. Xia, F.F. Zhang, F. Li, Y.Z. Xia, Y.H. Li, Novel GO-blended PVDF ultrafiltration membranes, Desalination,299 (2012):50-54.
    [84]邓慧宇,低压荷电纳滤膜的结构控制及性能研究,浙江大学,2008.
    [85]H.Q. Wu, B.B. Tang, P.Y. Wu, Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles, J. Membr. Sci.,428 (2013):341-348.
    [86]L.M. Jin, S.L. Yu, W.X. Shi, X.S. Yi, N. Sun, Y.L. Ge, C. Ma, Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination, Polymer,53 (2012):5295-5303.
    [87]J. Yin, E.S. Kim, J. Yang, B. Deng, Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification, J. Membr. Sci.,423-424 (2012):238-246.
    [88]S.H. Kim, B.H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci.,211 (2003):157-165.
    [89]S.S. Madaeni, S. Zinadini, V. Vatanpour, A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles, J. Membr. Sci.,380 (2011):155-162.
    [90]T. Bae, T. Tak, Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system, J. Membr. Sci.,266 (2005):1-5.
    [91]T.H. Bae, I.C. Kim, T.M. Tak, Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes, J. Membr. Sci., 275 (2006):1-5.
    [92]S. Srivastava, N.A. Kotov, Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires, Acc. Chem. Res.,41 (2008):1831-1841.
    [93]Y. Lvov, K. Ariga, M. Onda, I. Ichinose, T. Kunitake, Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions, Langmuir,13 (1997):6195-6203.
    [94]A. Urrutia, P.J. Rivero, L. Ruete, J. Goicoechea, C.F. Valdivieso, F.J. Arregui, I.R. Matias, An antibacterial surface coating composed of PAH/SiO2 nanostructurated films by layer by layer, Phys. Status Solidi C,7 (2010):2774-2777.
    [95]R. Pinto, P.P. Marques, A.B. Timmons, T. Trindade, C.P. Neto, Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly, Compos. Sci. Technol.,68 (2008):1088-1093.
    [96]R.X. Zhang, L. Braeken, P. Luis, X.L. Wang, B. Van der Bruggen, Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine, J. Membr. Sci.,437 (2013):179-188.
    [97]J.H. Jiang, L.P. Zhu, X.L. Li, Y.Y. Xu, B.K. Zhu, Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin, J. Membr. Sci.,364 (2010):194-202.
    [98]J.F. Ou, J.Q. Wang, S. Liu, J.F. Zhou, S.L. Ren, S.R. Yang, Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate, Appl. Surf. Sci.,256 (2009):894-899.
    [99]H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos, Nature,448 (2007):338-341.
    [100]M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol.,47 (2013):3715-3723.
    [101]Y.H. Luo, J.G. Huang, J. Jin, X.S. Peng, W. Schmitt, I. Ichinose, Formation of positively charged copper hydroxide nanostrands and their structural characterization, Chem. Mater.,18 (2006):1795-1802.
    [102]X.S. Peng, J. Jin, I. Ichinose, Mesoporous separation membranes of polymer-coated copper hydroxide nanostrands, Adv. Funct. Mater.,17 (2007): 1849-1855.
    [103]X.S. Peng, J. Jin, E.M. Ericsson, I. Ichinose, General method for ultrathin free-standing films of nanofibrous composite materials, J. Am. Chem. Soc,129 (2007):8625-8633.
    [104]X.S. Peng, J. Jin, Y. Nakamura, T. Ohno, I. Ichinose, Ultrafast permeation of water through protein-based membranes, Nat. Nanotech.,4 (2009):353-357.
    [105]Q. Wang, S. Samitsu, I. Ichinose, Ultrafiltration membranes composed of highly cross-linked cationic polymer gel:The network structure and superior separation performance, Adv. Mater.,23 (2011):2004-2008.
    [106]Q.G. Zhang, S. Ghosh, S. Samitsu, X.S. Peng, I. Ichinose, Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles, J. Mater. Chem.,21 (2011):1684-1688.
    [107]X.S. Peng, I. Ichinose, Manganese oxyhydroxide and oxide nanofibers for high efficiency degradation of organic pollutants, Nanotechnology,22 (2011):1-7.
    [108]X.S. Peng, I. Ichinose, Green-chemical synthesis of ultrathin β-MnOOH nano fibers for separation membranes, Adv. Funct. Mater.,21 (2011): 2080-2087.
    [109]X.S. Peng, J. Jin, N. Kobayashi, W. Schmitt, I. Ichinose, Time-dependent growth of zinc hydroxide nanostrands and their crystal structure, Chem. Commun.,16 (2008):1904-1906.
    [110]L.W. Zhu, L. Gu, Y. Zhou, S.L. Cao, X.B. Cao, Direct production of a free-standing titanate and titania nanofiber membrane with selective permeability and cleaning performance, J. Mater. Chem.,21 (2011): 12503-12510.
    [111]A.S. Brady Estevez, S. Kang, M. Elimelech, A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens, Small,4 (2008):481-484.
    [112]H.W. Liang, L. Wang, P.Y. Chen, H.T. Lin, L.F. Chen, D. He, S.H. Yu, Carbonaceous nanofiber membranes for selective filtration and separation of nanoparticles, Adv. Mater.,22 (2010):4691-4695.
    [113]P. Chen, H.W. Liang, X.H. Lv, H.Z. Zhu, H.B. Yao, S.H. Yu, Carbonaceous nanofiber membrane functionalized by beta-cyclodextrins for molecular filtration, ACS Nano,5 (2011):5928-5935.
    [114]Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater.,23 (2013):3693-3700.
    [115]Y.F. Li, G.W. He, S.F. Wang, S.N. Yu, F.S. Pan, H. Wu, Z.Y. Jiang, Recent advances in the fabrication of advanced composite membranes, J. Mater. Chem. A,1 (2013):10058-10077.
    [116]孙交通,聚合物表面修饰无机纳米材料及其功能性应用,中国科学技术大学,2012.
    [117]X. Xie, Y. Mai, X. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix:A review, Mater. Sci. Eng., R,49 (2005):89-112.
    [118]N. Karousis, N. Tagmatarchis, Current progress on the chemical modification of carbon nanotubes, Chem. Rev.,110 (2010):5366-5397.
    [119]P.C. Ma, N.A. Siddiqui, G Marom, J.K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:A review, Composites Part A,41 (2010):1345-1367.
    [120]M.Z. Rong, M.Q. Zhang, W.H. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites:A review, Mater. Sci. Technol.,22 (2006):787-796.
    [121]张宏,无机纳米粒子/聚合物复合材料的制备与性能研究,兰州大学,2007.
    [122]Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A,39 (2008):1876-1883.
    [123]J.C. Zhao, K.Q. Wu, T.X. Wu, H. Hidaka, N. Serpone, Photodegradation of dyes with poor solubility in an aqueous dispersion under visible light irradiation, J. Chem. Soc,94 (1998):673-676.
    [124]C.X. Wang, H.Y. Mao, C.X. Wang, S.H. Fu, Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent, Ind. Eng. Chem. Res.,50 (2011):11930-11934.
    [125]A. Adeel, S.H. M., I. Naseer, A. Zahoor, The effect of SiO2 filler content and its organic compatibility on thermal stability of epoxy resin, J. Therm. Anal. Calorim., 111 (2012):247-252.
    [126]B. Radhakrishnan, R. Ranjan, WJ. Brittain, Surface initiated polymerizations from silica nanoparticles, Soft Matter,2 (2006):386-396.
    [127]T. Otsu, M. Yoshida, Role of initiator-transfer agent-terminator (Iniferter) in radical polymerizations:Polymer design by organic disulfides as iniferters Makromol. Chem., Rppid Comrnun.,3 (1982):127-132.
    [128]N. Griffete, A. Lamouri, F. Herbst, N. Felidj, S. Ammar, C. Mangeney, Synthesis of highly soluble polymer-coated magnetic nanoparticles using a combination of diazonium salt chemistry and the iniferter method, RSC Advances,2 (2012):826-830.
    [129]C. Bartholome, E. Beyou, E. Bourgeat Lami, P. Chaumont, N. Zydowicz, Nitroxide-mediated polymerizations from silica nanoparticle surfaces:"Graft from" polymerization of styrene using a triethoxysilyl-terminated alkoxyamine initiator, Macromolecules,36 (2003):7946-7952.
    [130]J.S. Wang, K. Matyjaszewsk, Controlled "living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc.1995,117 (1995):5614-5615.
    [131]K.Matyjaszewski, S. Gaynor, J.S. Wang, Controlled radical polymerizations: The use of alkyl iodides in degenerative transfer, Macromolecules,28 (1995): 2093-2095.
    [132]M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of methyl methacrylate with the carbon tetrachlorideldichlorotris-(triphenylphosp-hine)ruthedum(Ⅱ)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system:Possibility of living radical polymerization 1, Macromolecules,28 (1995):1721-1723.
    [133]李德玲,硅片表面可逆加成-断裂链转移(RAFT)接枝聚合,浙江大学,2007.
    [134]D.X. Li, Q. He, Y. Cui, J.B. Li, Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine), Chem. Mater.,19, (2007):412-417.
    [135]Y.T. Joo, K.H. Jung, M.J. Kim, Y. Kim, Preparation of antibacterial PDMAEMA-functionalized multiwalled carbon nanotube via atom transfer radical polymerization, J. Appl. Polym. Sci.,127, (2013):1508-1518.
    [136]W. Long, C.W. Jones, Composite sulfonic acid catalysts based on silica-supported poly(styrene sulfonic acid) brush materials and their application in ester hydrolysis, ACS Catalysis,1 (2011):674-681.
    [137]T.V. Werne, T.E. Patten, Atom transfer radical polymerization from nanoparticles:A tool for the preparation of well-defined composite nanostructures and for understanding the chemistry of controlled/"living"radical polymerizations from surfaces, J. Am. Chem. Soc., 123 (2001):7497-7505.
    [138]Y.K. Chong, T. Le, G Moad, E. Rizzardo, S.H. Thang, A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization:The raft process, Macromolecules,32 (1999):2071-2074.
    [139]J. Chiefari, Y.K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. Le, R. Mayadunne, G.F. Meijs, C.L. Moad, G Moad, E. Rizzardo, S.H. Thang, Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process, Macromolecules,31 (1998):5559-5562.
    [140]G Moad, E. Rizzardo, H. Thang, Living radical polymerization by RAFT process, Aust. J. Chem.,58 (2005):379-410.
    [141]G Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process-A first update, Aust. J. Chem.,59 (2006):669-692.
    [142]P.S. Chinthamanipeta, S. Kobukata, H. Nakata, D.A. Shipp, Synthesis of poly(methyl methacrylate)-silica nanocomposites using methacrylate-function-alized silica nanoparticles and RAFT polymerization, Polymer,49 (2008): 5636-5642.
    [143]M. Beija, J.D. Marty, M. Destarac, Raft/MADIX polymers for the preparation of polymer/inorganic nanocomposites, Prog. Polym. Sci.,36 (2011):845-886.
    [144]V.G. Ngo, C. Bressy, C. Leroux, A. Margaillan, Synthesis of composite TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the raft process, Polymer,50 (2009):3095-3102.
    [145]M. Baum, W.J. Brittain, Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique, Macromolecules,35 (2002):610-615.
    [146]Y.K. Huang, Q. Liu, X.D. Zhou, S.B. Perrier, Y.L. Zhao, Synthesis of silica particles grafted with well-defined living polymeric chains by combination of raft polymerization and coupling reaction, Macromolecules,42 (2009): 5509-5517.
    [147]M.Q. Zhu, L.Q. Wang, G.J. Exarhos, A.D. Li, Thermosensitive gold nanoparticles, J. Am. Chem. Soc.,126 (2004):2656-2657.
    [148]M. Baum, W.J. Brittain, Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique, Macromolecules,35 (2002):610-615.
    [149]GQ. Zhai, W.H. Yu, E.T. Kang, K.G. Neoh, Functionalization of hydrogen-terminated silicon with polybetaine brushes via surface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization, Ind. Eng. Chem. Res.,43 (2004):1673-1680.
    [150]W.C. Wang, K.G Neoh, E.T. Kang, Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization, Macromol. Rapid Commun,27 (2006):1665-1669.
    [151]M.D. Konopacki, S.G Boyes, Synthesis of surface initiated diblock copolymer brushes from flat silicon substrates utilizing the RAFT polymerization technique, Macromolecules,40 (2007):879-888.
    [152]Y. Tsujii, M. Ejaz, K. Sato, A. Goto, T. Fukuda, Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface.1. Experimental evidence of surface radical migration, Macromolecules,34 (2001): 8872-8878.
    [153]J. Liu, L. Zhang, S. Shi, S. Chen, N. Zhou, Z. Zhang, Z. Cheng, X. Zhu, A novel and universal route to SiO2-supported organic/inorganic composite noble metal nanomaterials via surface RAFT polymerization, Langmuir,26 (2010): 14806-14813.
    [154]G Xu, W.T. Wu, Y.S. Wang, W.M. Pang, Q.R. Zhu, P.H. Wang, Functionalized carbon nanotubes with polystyrene-block-poly (n-isopropylacrylamide) by in situ RAFT polymerization, Nanotechnology,18 (2007):145606.
    [155]K. Ohno, Y. Ma, Y. Huang, C. Mori, Y. Yahata, Y. Tsujii, T. Maschmeyer, J. Moraes, S. Perrier, Surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization from fine particles functionalized with trithiocarbonates, Macromolecules,44 (2011):8944-8953.
    [156]D.H. Nguyen, P. Vana, Silica-immobilized cumyl dithiobenzoate as mediating agent in reversible addition fragmentation chain transfer (RAFT) polymerization, Polym. Adv. Technol.,17 (2006):625-633.
    [157]C.Y. Hong, X. Li, C.Y. Pan, Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release, J. Mater. Chem.,19 (2009):5155-5160.
    [158]J. Raula, J. Shan, M. Nuopponen, A. Niskanen, H. Jiang, E.I. Kauppinen, H. Tenhu, Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition fragmentation chain-transfer polymerization, Langmuir,19 (2003):3499-3504.
    [159]B. Zhang, J. Wang, Y. Chen, D. Friichil, B. YU, X.D. Zhang, N. He, W.J. Blau, Multiwalled carbon nanotubes covalently functionalized with poly(n-vinylcarbazole) via RAFT polymerization:Synthesis and nonliner optical properties, J. Polym. Sci. A Chem.,48 (2010):3161-3168.
    [160]S.R. Razin, V.H. Asl, M.S. Kalajahi, F.B. Sadabad, H.R. Mamaqani, Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization, J. Iran. Chem. Soc,9 (2012):877-887.
    [161]C.H. Liu, C.Y. Pan, Grafting polystyrene onto silica nanoparticles via RAFT polymerization, Polymer,48 (2007):3679-3685.
    [162]L.J. Zhu, L.P. Zhu, J.H.Jiang, Z. Yi, Y.F. Zhao, B.K. Zhu, Y.Y. Xu, Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive, J. Membr. Sci., (Accepted).
    [163]A. Rungta, B. Natarajan, T. Neely, D. Dukes, L.S. Schadler, B.C. Benicewicz, Grafting bimodal polymer brushes on nanoparticles using controlled radical polymerization, Macromolecules,45 (2012):9303-9311.
    [164]L. Wang, B.C. Benicewicz, Synthesis and characterization of dye-labeled poly(methacrylic acid) grafted silica nanoparticles, ACS Macro Lett.,2 (2013): 173-176.
    [165]X.W. Pei, J.C. Hao, W.M. Liu, Preparation and characterization of carbon nanotubes-polymer/Ag composite nanocomposites via surface RAFT polymerization, J. Phys. Chem. C,111 (2007):2947-2952.
    [166]P.T. Perrier, C.A. Mars, Reversible addition-fragmentation chain transfer polymerization mediated by a solid supported chain transfer agent, Macromolecules,38 (2005):6770-6774.
    [167]C.Z. Li, J.W. Han, C.Y. Ryu, B.C. Benicewicz, A versatile method to prepare raft agent anchored substrates and the preparation of pmma grafted nanoparticles, Macromolecules,39 (2006):3175-3183.
    [168]Y. Zhao, S.b. Perrier, Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by z-supported raft polymerization, Macromolecules,39 (2006):8603-8608.
    [169]I. Bjork, U. Lindahl, Mechanism of the anticoagulant action of heparin, Mol. Cell. Biochem.,48 (1982):161-182.
    [170]G. Li, P. Yang, Y. Liao, N. Huang, Tailoring of the titanium surface by immobilization of heparin/fibronectin complexes for improving blood compatibility and endothelialization:An in vitro study, Bio macromolecules,12 (2011):1155-1168.
    [171]X.F. Wu, G.Q. Shi, S.B. Wang, P.Y. Wu, Formation of 3D dandelions and 2D nanowalls of copper phosphate dihydrate on a copper surface and their conversion into a nanoporous CuO film, Eur. J. Inorg. Chem.,23 (2005): 4775-4779.
    [172]J.S. Xu, D.F. Xue, Fabrication of copper hydroxyphosphate with complex architectures, J. Phys. Chem. B,110 (2006):7750-7756.
    [173]M. Tanaka, A. Mochizuki, Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface, J Biomater. Sci. Polym. Ed.,21 (2010):1849-1863.
    [174]M. Jaiswal, V. Koul, Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications, J. Biomater. Appl.,27 (2013):848-861.
    [175]G Bayramoglu, K. Can Akcal1, S. Gultekin, E. Bengu, M.Y. Arica, Preparation and characterization of poly(hydroxyethyl methacrylate-co-poly(ethyleneglyc-ol-methacrylate)/hydroxypropyl-chitosan) hydrogel films:Adhesion of rat mesenchymal stem cells, Macromol. Res.,19 (2011):385-395.
    [176]J.Q. Meng, C.L. Chen, L.P. Huang, Q.Y. Du, Y.F. Zhang, Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface, Appl. Surf. Sci.,257 (2011):6282-6290.
    [177]Y. Sui, Z. Wang, X. Gao, C. Gao, Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations, J. Membr. Sci.,413-414 (2012):38-47.
    [178]J.J. Qin, M.H. Oo, Y. Li, Development of high flux polyethersulfone hollow fiber ultrafiltration membranes from a low critical solution temperature dope via hypochlorite treatment, J. Membr. Sci.,247 (2005):137-142.
    [179]B. Jiao, A. Cassano, E. Drioli, Recent advances on membrane processes for the concentration of fruit juices:A review, J. Food Eng.,63 (2004):303-324.
    [180]N. Bolong, A.F. Ismail, M.R. Salim, D. Rana, T. Matsuura, Development and characterization of novel charged surface modification macromolecule to polyethersulfone hollow fiber membrane with polyvinylpyrrolidone and water, J. Membr. Sci.,331 (2009):40-49.
    [181]Y. Yu, S. Seo, I.C. Kim, S. Lee, Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process, J. Membr. Sci.,375 (2011):63-68.
    [182]H. Yamamura, K. Kimura, Y. Watanabe, Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment, Environ. Sci. Techno 1.,41 (2007):6789-6794.
    [183]Y.F. Zhao, L.P. Zhu, Z. Yi, B.K. Zhu, Y.Y. Xu, Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive, J. Membr. Sci.,440 (2013):40-47.
    [184]G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in raft polymerization:The synthesis of polymers with defined end-groups, Polymer, 46 (2005):8458-8468.
    [185]A.F. W. Stober, E. Bohn,, Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interface Sci.,26 (1968):62-69.
    [186]C.H. Liu, C.Y. Pan, Grafting polystyrene onto silica nanoparticles via RAFT polymerization, Polymer,48 (2007):3679-3685.
    [187]S. Zhao, Z. Wang, X. Wei, B.R. Zhao, J.X. Wang, S.B. Yang, S.C. Wang, Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive, Ind. Eng. Chem. Res.,51 (2012):4661-4672.
    [188]Y.N. Yang, W. Jun, Z.Q. Zhu, C.X. Si, Z.H. Xuan, The research of rheology and thermodynamics of organic-inorganic composite membrane during the membrane formation, J. Membr. Sci.,311 (2008):200-207.
    [189]S. Zhao, Z. Wang, X. Wei, B. Zhao, J. Wang, S. Yang, S. Wang, Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive, Ind. Eng. Chem. Res.,51 (2012):4661-4672.
    [190]P. Wang, J. Ma, Z. Wang, F. Shi, Q. Liu, Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the PVP-grafted polymerization modification of montmorillonite (MMT), Langmuir,28 (2012):4776-4786.
    [191]H. Ma, C. Burger, B.S. Hsiao, B. Chu, Highly permeable polymer membranes containing directed channels for water purification, ACS Macro Letters,1 (2012):723-726.
    [192]Y. Chang, C.Y. Ko, Y.J. Shih, D. Quemener, A. Deratani, T.C. Wei, D.M. Wang, J.Y. Lai, Surface grafting control of pegylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization, J. Membr. Sci.,345 (2009):160-169.
    [193]Z. Yi, L.P. Zhu, Y.Y. Xu, Y.F. Zhao, X.T. Ma, B.K. Zhu, Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes, J. Membr. Sci.,365 (2010):25-33.
    [194]W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci.,26 (1968):62-69.
    [195]Z. Yi, L.P. Zhu, Y.Y. Xu, X.N. Gong, B.K. Zhu, Surface zwitterionicalization of poly(vinylidene fluoride) porous membranes by post-reaction of the amphiphilic precursor, J. Membr. Sci.,385-386 (2011):57-66.
    [196]T. Cai, W.J. Yang, K.G. Neoh, E.T. Kang, Poly(vinylidene fluoride) membranes with hyperbranched antifouling and antibacterial polymer brushes, Ind. Eng. Chem. Res.,51 (2012):15962-15973.
    [197]J. Xue, L.Chen, H.L. Wang, Z.B. Zhang, X.L. Zhu, E.T. Kang, K.G. Neoh, Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-graft-poly [2-(n,n-dimethylamino)ethyl methacrylate] prepared via atom transfer radical polymerization, Langmuir,24 (2008):14151-14158.
    [198]Z.C. Zhang, W. Wang, Positively charged hollow-fiber composite nanofiltration membrane prepared by quaternization crosslinking, J. Appl. Polym. Sci.,129 (2013):2806-2812.
    [199]Y.L. Su, C. Li, The reorientation of poly(2-dimethylamino ethyl methacrylate) after environment stimuli improves hydrophilicity and resistance of protein adsorption, J. Colloid Interface Sci.,316 (2007):344-349.
    [200]Y.L. Su, C.X. Mu, C. Li, Z.Y. Jiang, Antifouling property of a weak polyelectrolyte membrane based on poly(acrylonitrile) during protein ultrafiltration, Ind. Eng. Chem. Res.,48 (2009):3136-3141.
    [201]T. Chakrabarty, M. Kumar, V.K. Shahi, pH responsive composite zwitterionomer for protein separation:Smart nanostructured adsorbent, Ind. Eng.Chem. Res.,51 (2012):3015-3022.
    [202]W.W. Yue, HJ. Li, T. Xiang, H. Qin, S.D. Sun, C.S. Zhao, Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility, J. Membr. Sci.,446 (2013): 79-91.
    [203]S.F. Chen, J. Zheng, L.Y. Li, S.Y Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:Insights into nonfouling properties of zwitterionic materials, J. Am. Chem. Soc,127 (2005): 14473-14478.
    [204]J.H. Li, M.Z. Li, J. Miao, J.B. Wang, X.S. Shao, Q.Q. Zhang, Improved surface property of pvdf membrane with amphiphilic zwitterionic copolymer as membrane additive, Appl. Surf. Sci.,258 (2012):6398-6405.
    [205]T. Ma, Z.Y. Cui, Y. Wu, S.H. Qin, H. Wang, F. Yan, N. Han, J.X. Li, Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation:I. Effect of pmma on the membrane formation process and the properties, J. Membr. Sci.,444 (2013):213-222.
    [206]W.W. Cui, D.Y. Tang, Z.L. Gong, Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries, J. Power Sources, 223 (2013):206-213.
    [207]F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci.,375 (2011):1-27.
    [208]K. Ohno, Y. Ma, Y. Huang, C. Mori, Y. Yahata, Y. Tsujii, T. Maschmeyer, J. Moraes, S. Perrier, Surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization from fine particles functionalized with trithiocarbonates, Macromolecules,44 (2011):8944-8953.
    [209]L.P. Zhu, Y.Y. Xu, H.B. Dong, Z. Yi, B.K. Zhu, Amphiphilic PPESK-graft-P(PEGMA) copolymer for surface modification of PPESK membranes, Mater. Chem. Phys.,115 (2009):223-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700