用户名: 密码: 验证码:
祁连山西水林区青海云杉林生态系统结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
祁连山位于欧亚大陆中心,是我国高大山系之一,环境独特、生态系统脆弱,是我国的重点区域和自然保护对象。祁连山水源林在维持整个河西走廊社会-经济-生态复合系统的健康和稳定,以及祁连山各条内陆河径流总量稳定方面起着决定性的作用。在祁连山水源涵养林林分结构中,各种相同或不同的结构彼此关联、相互依从,决定着森林功能的发挥。如果森林结构组成不良或资源量不足,就不能发挥良好的功能,从而严重制约本地区水资源供需,对经济社会发展会产生不利的影响。本文依托国家林业局公益性行业科研专项“典型森林生态系统样带监测与经营技术研究(200904022)”和“西北高寒山地针叶林碳氮水耦合观测、模拟与应用技术(201104009-08)”项目,在祁连山西水林区开展水源涵养林结构与功能研究,进一步拓展和完善水源涵养林结构和生态功能关系的研究技术体系,以期为祁连山水源涵养林建设和生态环境可持续发展提供科学依据。
     研究内容包括祁连山西水林区青海云杉林群落结构特征、种群结构特征、空间结构特征以及青海云杉林保育土壤功能、涵养水源功能等,主要研究成果如下:
     青海云杉群落成层现象明显,可划分为乔木层、灌木层、草本层及苔藓层4个层次。乔木层是群落的最主要层次,整体而言其垂直高度结构复杂性要大于灌木层和草本层,苔藓层较为发达;青海云杉种群胸径级频率分布呈“倒J”型,胸径级随个体数的变化符合对数方程y=-219.32ln(x)+482.67(R2=0.9638,P<0.01),胸径分异指数为0.48,种群个体胸径差异属明显分异;青海云杉DBH≥1cm对应的树高结构多度呈“单峰”形,主要集中在高度级小于4-6m,占到总多度的60.00%,高度偏小,小树较多,中树占有一定的比例,大树较少;青海云杉树高级频率分布呈“间歇”型,不同高度级与个体数之间可用二次方程y=0.975x2-31.23x+285.1(R2=0.603,P<0.01)进行较好的描述,树高分异指数为0.55,高度差异属明显分异;胸径和树高两者之间符合对数方程y=5.912ln(x)-4.2493(R2=0.603,P<0.01);青海云杉冠幅级与个体数之间可用三次方程y=5.3176x3-91.759x2+408.88x-173.87(R2=0.8355,P<0.01)进行很好的拟合,冠幅分异指数为0.53,种群个体冠幅差异亦属明显分异。总体上看,青海云杉幼苗较为丰富,天然更新能力强,目前表现为成熟稳定型种群。
     青海云杉直径分布为典型的异龄林直径结构,顶级群落呈单种聚集,空间隔离程度为零度混交,直径大小比数和树高大小比数平均数均为0.49,生长上处于中庸状态,大小分化程度一般,角尺度呈正态分布,其平均值为0.526,从林分水平分布格局上看,青海云杉分布是团状分布,开敞度大小为1.667,生长空间很充足。
     通过对青海云杉林保育土壤功能研究表明,青海云杉林林地的土壤容重平均值均在0.74g/cm3以上,由表层到底层变异系数在39.02%~14.46%之间。说明植被对上层土壤容重的影响较大;林地土壤总孔隙度、毛管孔隙度和非毛管孔隙度平均值分别为63.86%、49.02%和13.72%,表明祁连山西水林区青海云杉具有较好的透水性;土壤总孔隙度平均值表现为灌木青海云杉林>藓类青海云杉林>草类青海云杉林>青海云杉更新地>无林地;在青海云杉林分布的海拔梯度上,0-40cm土层土壤有机质、全氮及全磷平均含量高海拔高于低海拔,而且高海拔与低海拔差异显著(p<0.05);土壤全钾和速效钾含量则是高海拔低于低海拔,差异亦显著(p<0.05);速效磷含量随海拔升高没有明显的变化规律,而且海拔间的差异不显著(p>0.05);土壤pH值大小随海拔的升高不断减小,但海拔间的差异不显著(p>0.05);在不同土层深度,0-10cm土层土壤有机质、全氮、全磷、速效磷和速效钾平均含量均大于10~(-2)0cm和20-40cm土层含量,而且0-10cm土层含量显著大于20-40cm土层含量(p<0.05);土壤pH值大小和全钾含量则随土层深度增加,其数值不断增加,pH值在0-10cm土层与20-40cm差异显著(p<0.05),全钾含量在不同土层差异均不显著(p>0.05);土壤养分和pH值的相关性分析表明,在碳、氮、磷、钾营养元素循环中,土壤pH值和土壤有机质可能作为首要限制因子来影响青海云杉群落养分供应。
     青海云杉林林冠截留、茎流和穿透水量分别是139.1、1.97和253.14mm,林冠截留率、茎流率、穿透率分别为35.28%、0.049%和64.21%,当林外降水量大于0.8mm时才观测到林内穿透雨,而大于12.60mm时,才观测到树干茎流;不同森林类型枯落物层现存量,青海云杉林为33.12T/hm2,其中以藓类云杉林最大为45.68T·hm~(-2)·a-1,云杉林更新地最小为22.04·hm~(-2)·a-1,灌木云杉林和草类云杉分别为34.19T·hm~(-2)·a-1和30.57T·hm~(-2)·a-1。青海云杉林各有林地蓄积量、最大持水率(饱和持水率)和最大持水量以灌木云杉林为最高,分别为34.19t/hm2、149.11%、117.88t/hm2(相当于11.79mm水深);各有林地均高于无林地。在降水条件下,枯落物层开始截留降雨到吸水饱和的全过程分为截留阶段、渗透阶段和饱和阶段;青海云杉林林地各层饱和持水量均值分布在72.16%~149.11%之间;非毛管持水量均值在10.37%~18.43%之间。土壤非毛管持水量分布规律为藓类云杉林>灌木云杉林>草类云杉林>更新林地>无林地;有林地土壤入渗速率均高于无林地。无林地的渗透系数K10最小值为0.6mm/min,有林地土壤渗透系数从大到小的顺序灌木云杉林、藓类云杉林、草类云杉林、更新林地、无林地。土壤渗透系数(K10)分别比无林地提高了了54.83倍、44.0倍、32.6倍、11.3倍。无论在旱季还是雨季,有林地各土壤表层、中间层次和底土层各层土壤含水量都明显高于无林地,各土层含水量均值大小表现为:灌木云杉林>青海云杉林>草类云杉林>云杉林更新地>无林地。
Qilian Mountains is located in the center of the Eurasian continent, is one of China's high mountain, unique environment, ecological system is fragile,is China's key areas and natural protection object.The water conservation forests in Qilian Mountains plays a decisive role in the health and stability of the whole Hexi Corridor social-economic-ecological composite system,and the stability of runoff volume in the inland river and the Qilian Mountains.In the forest stand structure of water conservation forests,all kinds of the same or different structure are interrelated,interdependent,decided the playing of the forest function.If the forest structure is bad or insufficient resources, it can not play a good function, which seriously restricts the supply and demand of water resources in the region,then have an adverse effect on the development of social economy.In this paper, based on the research and public service industry, a special of the State Forestry Administration "Researcher on typical forest ecosystem monitoring and management technology (200904022)"and "Study on the typical forest vegetation formation process regulation of water resources (201104005)"and "Researcher on northwest typical area based on water management on the forest vegetation carrying capacity (200904056)"etc.Research on forest structure and function of water conservation in Xishui forests area of Qilian Mountains to develop and perfect the technical system of the relationship between water conservation forest structure and ecological function,in order to provide scientific basis for the conservation of Qilian mountain forest construction and ecological environment sustainable development.
     The research is include the community structure, population structure, spatial structure in Xishui forests area of Qilian Mountains and soil conservation and water conservation function of Picea crassifolia,the main research results are as follows:
     The layer structure difference is obvious for the P. crassifolia community,and it can be divided into tree layer,shrub layer,herb layer and bryophyta layer.The tree layer is the main layer of the community,and its vertical structure is more complex than the shrub layer and herb layer,and the bryophyta layer is also well developed.DBH size class frequency distribution of Picea crassifolia population is "pour J" type,DBH size classweth the change of individual level is quite fit for the logarithmic equation y=219.32In(x)+482.67(R2=0.9638, P<0.01),differentiation index of DBH is0.48,the differences of DBH in the population for each individual is obvious;The height structure of the P. crassifolia indiciduals with DBH greater than lcm is single-peak form,and the height of the main individuals is less than6m,which account for more than60.00%of the total individuals.So the height of the P. Crassifolia individuals is relatively low,and young trees are much,nid terrs hold a certain proportion,and big trees are little.Frequency distribution of the tree height is "intermittent" type,Tree height size class and individual level can be explained by quadratic equation y=0.975x2-31.23x+285.1(R2=0.603, P<0.01),differentiation index of tree height is0.55,tree height difference is evident;The logarithmic equation y=5.912In(x)4.2493(R2=0.603, P<0.01) can be used to show the relation between tree height and DBH;Crown breadth size class and individual are accorded with equation y=5.3176x3-91.759x2+408.88x-173.87(R2=0.8355, P0.01),differentiation index of crown breadth is0.53,the differentiation crown breadth of population individual is apparent. In general,Picea crassifolia seedlings is relatively rich,natural regeneration ability is strong,at present the performance of Picea crassifolia population is the mature stable populations.
     The diameter distribution of Picea crassifolia stands indicated that it is typical uneven aged diameter structure;Picea crassifolia was climax community and single gathered stands, space isolation degree is zero nitrogen fixation;Mean value of diameter neighborhood comparison and height neighborhood comparison of Picea crassifolia were0.49, its growth was in moderation state, and size differentiation degree was general;Uniform angle index of Picea crassifolia was normal distribution and average of it is0.526, and distribution of Picea crassifolia is round state from the stand level distribution pattern;Open degree of Picea crassifoliawas1.667, for the growth space was very sufficient.
     The study on the soil conservation function of Picea crassifolia show that:The mean values of soil bulk density were above0.74g/cm3,the coefficient of variation in39.02%~14.46%from the surface layer to the bottom layer.The vegetation have a big influence on soil bulk density of the surface layer.The average values of soil total porosity, capillary porosity and non-capillary porosity were63.86%,49.02%and13.72%,identify that the Picea crassifolia in Xishui forests areas has good water permeability;The sequence of soil total porosity is:Shrub-Picea crassifolia> moss-Picea crassifolia> grass-Picea crassifolia> renewal forests of Picea crassifolia> bare land;In the elevation gradient, soil organic matter, total nitrogen and total phosphorus average content of the0-40cm soil layer at higher elevations higher than low altitude, average content at high altitude and low altitude significant difference (P<0.05); Soil total potassium and rapidly-available potassium content at high altitude is lower than low altitude, difference also significantly (P<0.05); Available phosphorus with the elevations rise without a significant change laws, and the differences between the elevation are not significant (P>0.05); Soil PH value with the elevations rise continuously the size is reduced, but the differences between the elevation are also not significant (P>0.05).(2) In different soil depth, soil organic matter, total nitrogen, total phosphorus, available phosphorus and rapidly-available potassium content at0-10cm soil layer are more than10-20cm and20-40cm soil layer content, and0-10cm soil significant higher than content20-40cm soil layer content (P0.05); Soil PH value size and total potassium content is increased with soil depth, and its numerical is on the increase, PH value in0-10cm soil layer and20-40cm significant difference (P<0.05), but total potassium content in different soil layer are not significant difference (P>0.05).Different soil nutrient and PH value correlation analysis showed that:In the cycling of carbon, nitrogen, phosphorus, potassium nutrient, soil pH value and soil organic matter may as the primary limiting factor to influence the nutrient supply of Pice a crassifolia.
     The canopy inter ception,stem-flow, thro ughfall are139.1mm,1.96mm and237.8mm,which account for35.28%,0.49%and60.33%,respectively.When precipitation over0.8mm and12.6mm,throughfall and stem-flow could be recorded respectively.The biomass of litter layer in different forest types show that:Picea crassifolia is33.12T/hm2, which moss-Picea crassifolia for a maximum of45.68T·hm-2·a-1,renewal forests of Picea crassifolia for a minimum of22.04hm-2·a-1,Shrub-Picea crassifolia and gxass-Picea crassifolia was34.19T·hm-2·a-1and30.57T·hm-2·a-1,respectively.In the forest land of Picea crassifolia, volume, maximum water holding capacity (saturation water holding rate) and the maximum water holding capacity of shrub-spruce forest was the highest, are34.19t/hm2,49.52%t/hm2,119.50t/hm2(equivalent to11.95mm depth) respectively; the forest land was higher than that of bare land.Under the conditions of precipitation, the interception of litter layer is divided into saturated with water interception, infiltration stage stage and saturation stage;The mean value of saturated water content distribution is65.67%~149.12%in each layer of Picea crassifolia,The mean value of non capillary water capacity is10.64%~18.43%.The sequence of soil non-capillary water-holding capacity is:moss-Picea crassifolia> shrub-Picea crassifolia> grass-Picea crassifolia renewal forests of Picea crassifolia> bare land;The soil permeability rate in forest region is significantly higher than that in non-stocked land. The minimum value permeability coefficient (K10) of bare land is0.68mm/min,The order of soil permeability coeficient in the forests (K10)is shrub-Picea crassifolia> moss-Picea crassifolia> grass-Picea crassifolia> renewal forests of Picea crassifolia> bare land,The permeability coefficient (K10) higher than bare land (38.85times,33.07times,7.29times,4.79times,1.85times, respectively).Both in the dry season or rainy season,The soil moisture content of forest land were significantly higher than bare land, The sequence of mean soil moisture content are as follows:shrub-Picea crassifolia> moss-Picea crassifolia> grass-Picea crassifolia> renewal forests of Picea crassifolia> bare land..
引文
[1]秦钟,周兆德.森林与水资源的可持续利用[J].热带农业科学,2001,(3):49-55.
    [2]王永安.论我国水源涵养林建设中的几个问题[J].水土保持学报,1989,3(4):74-82.
    [3]于政中主编.森林经理学(第2版)[M].北京:中国林业出版社,1993.
    [4]张建国,段爱国,童书振.林分直径结构模拟与预测研究概述[J].林业科学研究,2004,(17)6:787-795.
    [5]亢新刚.森林资源经营管理[M].北京:中国林业出版社,2001。
    [6]龚直文,顾丽,亢新刚,等.长白山森林次生演替过程中林木空间格局研究[J].北京林业大学学报,2010,32(2):92-99.
    [7]Bailey R L,Dell T R.Quantifying diameter distribution with the Weibull function[J].For Sci,1973,19:97-104.
    [8]Hanus M L,Hann D W,Marshall D D.Reconstructing the spatial pattern of trees from routine stand examination measurements [J]. Fore st science.1998,44(1):125-133.
    [9]孟宪宇.测树学[M].北京:中国林业出版社,1996:66-80.
    [10]邓元德,陈汉章.台湾桂竹林分直径和树高结构规律分析[J1.闽西职业大学学报,1999(1):56-58.
    [11]袁春明,朗南军,孟广涛,等.长江上游华山松水土保持人工群落的结构特征和生物量[J].北京林业大学学报,2002,30(3):5-7.
    [12]刘景海,马履-北京低山油松、侧柏生态公益林的经营[J].西北林学院学报,2006,21(6):108-112
    [13]戎建涛,雷相东,陆元昌,等.北京十三陵林场侧柏人工林林分结构的研究[J].安徽农业科学,2010,38(2):989-994.
    [14]Gustafsson L.Indieators and assessment of biodiversity from a Swedish forestryPerspective[J]. Forestry Research Institute of Sweden.2000,Report No.l.
    [15]成晨.重庆绪云山水源涵养林结构及功能研究[D].北京:北京林业大学,2008.
    [16]缪宁.川西亚高山红桦油民江冷杉天然次生林的空间格局分析[D].北京:中国林业科学研究院,2009.
    [17]Buongiorno J,Dahir S,Lu H etal..Tree size diversity and economic returns in Uneven-aged forest stand.For.Sei.1994,40(1):83-103.
    [18]雷相东,唐守正.林分结构多样性指标研究综述[J].林业科学,2002,38(3):140-146.
    [19]Meyer H A. Structure, growth and drain in balanced uneven-aged forests[J]J.For.1952.50,85-92.
    [20]Meyer H A.Permsylvania Vally Publishers, Pennsylvania. Forest Mensuration[M],1953.
    [21]亢新刚,胡文力,董景林,等.过伐林区检查法经营针阔混交林林分结构动态[J].北京林业大学学报,2003,25(6):1-5.
    [22]Liu C M,Zhang S Y, Lei Y C, etal. Evaluation of three methods for predicting diameter Distributions of black spruce Picea mariana plantations in central Canada[J].Can J For Res,2004,12:2424-2432.
    [23]陆元昌,雷相东,国红.西双版纳热带雨林直径分布模型[J].福建林学院院报,2005,25(1):1-4.
    [24]Bliss C I,Reinker K A.A lognormal approach to diameter distributions in even-aged Stands[J].For Sei,1964,10(3):350-360.
    [25]Hafley W L Sehreuder H T.Statistical distributions for fitting diameter and height data in Even aged stands[J].Can J For Res,1977:481-487.
    [26]Wang Mingliang Rennolls K.Tree diameter distribution modeling introducing the legit logistic distribution[J].Can J For Res,2005:1305-1313.
    [27]孟宪宇.使用weibull分布对人工油松林直径分布的研究[J].北京林学院学报,1985(1):30-40.
    [28]孟宪宇.使用weibun函数对树高分布和直径分布的研究[J].北京林业大学学,报,1988,1:40-48.
    [29]洪利兴,杜国坚,张庆荣,等.天然常绿阔叶异龄幼林胸径的weibufl分布及动态预测[J].植物生态学报,1995.,19(1):29-42.
    [30]刘君然,赵东方.落叶松人工林威布尔分布参数与林分因子模型的研究[M].林业科学,1997,33(5):412-417.
    [31]周春国,佘光辉,吴富祯,等.用变型weibull分布对热带雨林结构规律的研究[J].南京林业大学学报,1998,22(4):14-18.
    [32]惠淑荣,吕永震Weibun分布函数在林分直径结构预测模型中的应用研究[J].北华大学学报,2003,4(2):101-102.
    [33]Sarkkola S,Hokka H,Penttila T. Natural develoPment of stand strueture in Pearland Scots Pine following drainage Results based on long term monitoring of Permanent SamPle Plots[J].Silva Fenniea.2004,4:405-412.
    [34]周国模,刘恩斌,刘安兴,等Weibull分布参数辨识改进及对浙江毛竹林胸径年龄分布的测度[J].生态学报,2006,(26)9:148-156.
    [35]Kuuluvainen T,Penttinen A, Leinonen K.Statistical opportunities for comparing stand Structural Heterogeneity in managed and Primeval forests:An example from boreal spruce Forest in southern Finland[J].Silva Fennie,1996,30(2-3):31:5-328.
    [36]Gadow K V,Gangying Hui.Modeling Forest Development[M].Kluwer academic publishers.1999.
    [37]Pommerening A.Approaches to quantifying forest structures.Foresty,2002,75(3):305-324.
    [38]惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究,2001,14(1):23-27.
    [39]安慧君.阔叶红松林空间结构的研究[D].北京:北京林业大学,2003.
    [40]惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003.
    [41]克劳斯·冯佳多,惠刚盈.森林生长与干扰模拟[M].Goettingen:Cuvillie Verlag Goerringen,1998.
    [42]Gadow K V and Bredenkamp B V.Forest Management[M]. Academica Publishers,1992.
    [43]FueldnerK. Strukturbeschreibung von Bucher Edellaubholz-Mischwaeldern.Dissertation Universitat Gottingen[J].Goettingen:Cuvillier Verlag Goettingen.1995,146.
    [44]Kotar M.Venteilungsmuster der Baeume in einer Optimalphase im Urwald.Vortag beim Symposium ueber die Urwaelderin Zvolen.1993.
    [45]惠刚盈,克劳斯·冯佳多.德国现代森林经营技术[M].北京:中国科学技术出版社,2001.
    [46]汤孟平.森林空间经营理论与实践[M].北京:中国林业出版社,2007.
    [47]Moeur, M.Charaeterizing spatial patterns of trees using stem-mapped data[J].For.Sci.1993,39(4).
    [48]Clark P J and Evans FC.Distance to nearest neighbor as a measure of spatial relationships in populations.Ecology.1954,35(4):445-453.
    [49]Biging G S,Dobbertin M.Evaluation of competition indices in individual tree growth Models[J]. Forest Science,1995,41(2):360-377.
    [50]Ripley.B.D.Modeling spatial patterns(with discussion).J.Ry.Stat.Soc.B.1977.39.
    [51]David F.N.and Moor P.G. Notes on contagious Distribution in palant populations. Ann.Bot.Lond.N. S.1954,18.
    [52]Lloyd,M.Mean Crowding[J].Anim.Ecol.1967,36.
    [53]Morisita,M.Composition of the Is-index[J].Res.Popul.Eeology.1971,13.
    [54]惠刚盈,克劳斯·冯佳多.角尺度--个描述林木个体分布格局的结构参数[J].林业科学,1999,35(1):37-42.
    [55]惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003.
    [56]贾秀红,郑小贤,长白山过伐林区云冷杉针阔混交林空间结构分析[J].华中农业大学学报,2006,25(4):436-440.
    [57]赵中华,惠刚盈,袁士云,等.小陇山锐齿栋天然林空间结构特征[J].林业科学,2009,(45)3:1-6.
    [58]黄丽霞,袁位高,江波,等.不同经营方式下杨梅林分空间结构比较[J].浙江林学院学报,2009,26(2):209-214.
    [59]岳永杰,余新晓,李钢铁,等.北京松山自然保护区蒙古栋林的空间结构特征.应用生态学报,2009,20(8):1811-1816.
    [60]王威.北京山区水源涵养林结构与功能祸合关系研究[D].北京:北京林业大学,2009.
    [61]龚直文,顾丽,亢新刚,等.长白山森林次生演替过程中林木空间格局研究[J].北京林业大学学报,2010,32(2):92-99.
    [62]惠刚盈,,K V Gadow胡艳波.林木分布格局类型的角尺度均值分析方法[J].生态学报,2004a,24(6):1225-1229.
    [63]惠刚盈,KvGadow,胡艳波.林分空间结构参数角尺度的标准角选择[J].林业科学研究,2004b,17(6):687-692.
    [64]惠刚盈,赵中华,胡艳波.结构化森林经营技术指南[M].北京:中国林业出版社,2010.
    [65]惠刚盈,克劳斯·冯佳多.德国现代森林经营技术[M].北京:中国科学技术出版社,2001.
    [66]惠刚盈,克劳斯·冯佳多.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003.
    [67]汤孟平.森林空间结构分析与优化经营模型研究[D].北京:北京林业大学,2003.
    [68]Fueldner K.Strukturbeschreibung von Bucher Edellaubholz-Mischwaeldern.Dissertation Universitat Gottingen[J]. Goettingen:Cuvillier Verlag Goettingen,1995,146.
    [69]中野秀章.森林水文学[M].李云森译.北京:中国林业出版社,1983.
    [70]Karin O,L O Eriksson.The core area concept in forming contiguous areas for long-term forest planning[J].Canadian Journal of Forest Research,1998,28(7):1032-1040.
    [71]Scott A S,Jeremy D R,Toby N C.Dual urban and rural hydrograph signals in three Small watersheds[J]. Journal of the American Water Resources Association,2002,38(4):1027-1041.
    [72]Zaimes G N,Sehultz R C,IsenhartTM.Stream bank erosion adjacent to riparian forest buffers,row-crop fields,and continuously-grazed pastures along Bear Creek in central Lowa[J] Journal of Soil and Water Conservation,2004(59):11)-28.
    [73]R Lowrance,R K Hubbard,R G WIlliams.Effeets of a managed three zone riparian buffer System on shallow ground water quality in the southeasteen coastal plain [J]. Journal of soil and Water Conservation,2000,55(2):212-221.
    [74]R Lowranee,J M Sheridan. Surface Runoff Water Quality in a Managed Three Zone Buffer[J].Journal of Environmental Quality,2005,34(5):1851-1860.
    [75]Mason D B,Takashi Gomi,Jaek J Piccolo.Struetures Linking Physical and Biological Forest Science,Processes in Headwater Streams of the Mavbeso hed,Southeast Alaska[J].2007,53(2):371-384.
    [76]Stedniek,J.D,Monitoring the effects of timber harvest on annual water yield[J].Journal of Hydrology,1996.176:79-95.
    [77]Motta Renzo and Haudemand Jean-Claude Protective Forests and Silvicultural Stability-An Example of Planning in the Aosta Valley [J]. Mountain Researeh and Development.2000,20(2):180-187.
    [78]刘兴聪.祁连山北坡青海云杉林分结构规律探讨[J].甘肃农业大学学报,1985,(4):16-24.
    [79]白星.祁连山水源林调整林分结构的数学模拟[J].甘肃林业科技,2001,26(3):16-24.
    [80]徐柏林,王金叶,葛双兰,等.祁连山(北坡)水源涵养林类型划分与组成结构分析[J].甘肃林业科技,2001,26(3):16-24.
    [81]余树全,李翠环.千岛湖水源涵养林优势树种生态位研究[J].北京林业大学学报,2003,25(2):18-23.
    [82]宁金魁.水源涵养林结构调整研究——以北京密云水库周边水源涵养林为例[D].北京:北京林业大学,2004.
    [83]张光灿,周泽福,刘霞,等.五台山华北落叶松水源涵养林密度结构与生长动态[J].中国水土保持科学,2007,5(1):1-6.
    [84]孙晓娟,范文义,蔡体久.基于GIS平台的公别拉河流域水源涵养林景观格局与功能分析[J].林业科学研究,2007,20(2):257-262.
    [85]李谷景.水源涵养林的规划布局及其组织经营.吉林林业科技[J],1987,3.
    [86]董智勇.中国生态林业理论与实践[M].北京:中国科学技术出版社.1994.
    [87]朱金兆.听水河流域生态经济型防护林体系分布及其主要功能[J].北京林业大学学报,1996,18(2):120-124.
    [88]饶良鼓.三峡库区理水调洪型防护林空间配置与结构优化技术研究[D].北京:北京林业大学,2003.
    [89]秦永胜,刘松,余新晓,等.华北土石山区水源保护林小流域土壤侵蚀过程的模拟研究田[J].土壤学报,2004,41(6):864-869.
    [90]秦富仓,余新晓,张满良,等.小流域林草植被控制土壤侵蚀机理研究[Jl.应用生态学报,2005,16(9):1618-1622.
    [91]谢春华,王秀珍.北京密云水库集水区森林景观生态分类研究[J].林业资源管理,2006,4:85-88.
    [92]余新晓,于志民.水源保护林[M].北京:中国林业出版社,2001.
    [93]余新晓,赵玉涛,张志强,等.长江上游亚高山暗针叶林土壤水分入渗特征研究[J].应用生态学报,2003,14(1):15-19.
    [94]史晓巍.水源涵养林功能指标与结构指标的定量模拟[D].哈尔滨:东北林业大学,2008.
    [95]王礼先,张志强.森林植被变化的水文生态效应研究进展[Jl世界林业研究,1998,11(6):14-23.
    [96]于志民,王礼先.水源涵养林效益研究[M].北京:中国林业出版社,1999.
    [97]余新晓,秦永胜,陈丽华,等.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2002,22(5):783-786.
    [98]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16-22.
    [99]周泽福,张光灿,林富荣.太行山水源涵养林研究[M].北京:中国林业出版社,2006.
    [100]王德连.国内外森林水文研究现状和进展[J].西北林学院学报,2004,19(2):156-160.
    [101]MeCulloch J G,Robinson M.History of forest hydrology[J].Journal of Hydrology,1993(150):189-216.
    [102]Bormann,F.H. And Likens,G.E. Pattern and proeess in a Forested Ecosystem.Springer-Verlag,1979.
    [103]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [104]高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,15(5):60-75.
    [105]Rutter A.J.,Kershaw K.A.,Robins P.C.etal.,Predictive model of rainfall interception in forests.Derivation of the model from observation in a plantation of Corsiean pine[J]. Agriculture and Meteorology,1971,9:367-384.
    [106]Gash J.H.C.,Wrightl.R. And Lloyd C.R.Comparative estimates of interceptiong soil from three coniferous forests in Great Britain [J], Journal of Hydrology,1980,48:89-105.
    [107]Viville D.etal.Interception on a mountainous deelining spruce stand in the Strengbach catchment(Voges,France)[J] Journal of Hydrology,1993,144:273-282.
    [108]Bonell. Progress in the understanding of runoff generation dynamics in forests[J].Hydrology,1998,7:148-152.
    [109]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [110]温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,3(4):289-298.
    [111]王彦辉.刺槐对降雨的截持作用[J].生态学报,1986,7(1):43-49.
    [112]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [113]王彦辉.几个树种的林冠降雨特征[J].林业科学,2001,37(4):2-9.
    [114]张光灿,刘霞,赵玖.泰山几种林分枯落物和土壤水文效应研究[J].林业科技通讯,1999,(6):28-29.
    [115]时忠杰.六盘山香水河小流域森林植被的坡而生态水文影响[D].北京:中国林业科学研究院,2006.
    [116]莎仁图雅.内蒙古大青山油松人工林水分特征的研究[D].呼和浩特:内蒙古农业大学,2009.
    [117]卢俊培.海南岛森林水文效应的初步探讨[J].热带林业科技,1982(1):13-20.
    [118]Horton R E.1919.Rainfall interception.Month Weather Rev,47:603-623.
    [119]Leonard R E.Net preeipitation in a northern hardwood forest[J].J Geophys Res,1961,66:2417-2421.
    [120]Helvey J D,Patrie J H. Canopy and litter interception of rainfall by hardwoods of eastern United States.Water Resour Res,1965,1:193-205
    [121]殷有,周永斌,崔建国,等.林冠截留模型[J].辽宁林业科技,2001,(2):10-12.
    [122]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(-):64-68.
    [123]Wallace J,Mejannet,D.Modeling interception in coastal and montane rain forests in northern Queensland,Australia[J] Journal of hydrology,2008,348:480-495.
    [124]Shi Z J,Wang Y H,Xu L H,etal.Fraction of incident rainfall within the canopy of a pure Stand of Pinus armandiiith revised Gash model int he Liupan Mountains of China[J]. Journal of Hydrology,2010,02.003,1-7.
    [125]Valente,F.,David,J.S.,Gash,J.H.C.Modelling interception loss for two sparse eucalypt and Pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology,1997,190:141-162.
    [126]吴钦孝,赵鸿雁.沙棘林的水土保持功能及其在治理和开发黄土高原中的作用[J].沙棘,2002,15(1):27-30.
    [127]段劫,马履一,张萍,等.不同立地侧柏林下植被与水源涵养能力的关系[J].湖北农业科学,2010,49(2):330-333.
    [128]张玲,王震洪.云南牟定三种人工林森林水文效应的研究[J].水土保持研究,2001,8(2):69-73.
    [129]赵鸿雁,吴钦孝,刘向东.山杨枯枝落叶的水文水保作用研究[J].林业科学,1994,30(2):176-182.
    [130]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,23(3):253-265.
    [131]周国模,刘恩斌,刘安兴,等Weibull分布参数辨识改进及对浙江毛竹林胸径年龄分布的测度[J].生态学报,2006,(26)9:148-156.
    [132]Kelliher F M.Evaporation and canopy characteristics of coniferous forests and Grasslands[J]. Oecologia,1989,95:153-163.
    [133]程积民.子午岭森林植被控制水土流失的作用[J].中国水土保持,1987,(5):8-10.
    [134]刘向东,吴钦孝,苏宁虎.六盘山林区森林树冠截留、枯枝落叶层和土壤水文性质的研究[J].林业科学,1989,25(3):220-227.
    [135]刘创民,李昌哲,陈军华,等.北京九龙山主要植被类型水文作用的研究[J].林业科技通讯,1994,(7):10-12.
    [136]王凤友.森林凋落量研究综述[J].生态学进展,1989,6(2):82-89.
    [137]刘向东,吴钦孝,赵鸿雁.黄土高原油松人工林枯枝落叶层水文生态功能研究[J].水土保持学报,1991,5.
    [138]张建国,李吉跃.北方主要造林树种耐旱机理及其分类模型的研究—叶保水力及维持膨压[J].河北林学院学报,1995,10(3):-57-193.
    [139]Turner B L,Meyer W B,Skole D L.Global land-use/and-cover change:Towards an Integrated program of study[J].Ambio,1994,23(1):91-95
    [140]张志强,王礼先,余新晓E.Klaghofer.森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(1):79-84.
    [141]李新平,陈欣,王兆赛,等.高植物篱笆条件下红壤坡耕地水土流失的发生特征[J].浙江大学学报(农业与生命科学版),2003,29(4):365-374.
    [142]吴钦孝,韩冰,李秧秧.黄土丘陵区小流域土壤水分入渗特征研究[J].中国水土保持科学,2004,2(6):125-129.
    [143]雷廷武,刘汗,潘英华,等.坡地土壤降雨入渗性能的径流-入流-产流测量方法与模型[J].中国 科学D辑(地球科学),2005,35(12):1180-1156.
    [144]刘道平,陈三雄,张金池,等.浙江安吉主要林地类型土壤渗透性[J].应用生态学报,2007,18(3):493书98.
    [145]张昌顺,范少辉,管凤英,等.闽北毛竹林的土壤渗透性及其影响因子[J].林业科学,2009,45(1):36-42.
    [146]Lin H S,Mclnnes K J. Macro-porosity and initial moisture effects on infiltration rates in vertisols and vertical intergrades[J].Soil Science,1998,163(l):2-8.
    [147]赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45.
    [148]朱显漠,田积莹.强化黄土高原土壤渗透性及抗冲性的研究[J].水土保持学报,1993,7(3):1-10.
    [149]朱显漠.黄寸地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110-115.
    [150]Douglas C A.Characterizing flow regimes for floodplain forest conservation:anassessment of Factors affecting sapling growth and survivorship on three cold desert rivers[J].Canadian Journal of Forest Research,2005,35(12):2886-2900.
    [151]Susan J Grayston,Heinz Rennenberg.Assessing effects of forest management on microbial Eommunity strueture in a central European beeeh forest[J].Canadian Journal of Forest Research,2006,36(10):2595-2605.
    [152]余新晓,甘敬.水源涵养林研究与示范[M].北京:中国林业出版社,2007.
    [153]Viles H A,1990.The agency of organic beings:A selective review of recent work in Biogeomorphology[J].In:Thornes,J.B(ed.),vegetation and erosion.John wiley&Sons Ltd,1990.5-24
    [154]Mitehell J K,Engel B A,Srinivasan R,etal.Validation of AGNPS for Small Watersheds using an integrated AGNPS/GIS system[A].In:Geographic Information Systems and Water Resources[C],1993.
    [155]Jennifer K Rohrs-Riehey,Christa P H Minder.Effects of local changes in active layer and soil climate on seasonal foliar nitrogen concentrations of three boreal forest shrubs [J].Canadian Journal of Forest Research,2007,37(2):383-395.
    [156]V Andreu,J L Rubio,R Cemi.Effects of Medirerranean shrub cover on water erosion (Valeneia,Spain)[J].Journal of Soil and Water Conservation,1998,53(2):112-121.
    [157]Daniel H Pote,Brandon C Grigg,Catalino A Blanche,etal.Effects of pine straw harvesting onquantity and quality of surface runoff [J]. Journal of Soil and Water Conservation,2004,59(5):197-204.
    [158]Pamela J Edwards.Karl W J Williard Declines in soil-water nitrate in nitrogen-saturated watersheds [J]. Canadian Journal of Forest Research,2006,36(8):193]-1943.
    [159]杨春时.系统论-信息论-控制论浅说[M].北京:中国广播电视出版社,1987(2):23-24.
    [160]车克钧,傅辉恩.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998,34(5):29-37.
    [161]林文镇.强化森林涵养水源功能之做法与制度[J].台湾林业,1982,8(9):1-3.
    [162]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:科学技术出版社,1995.362-377.
    [163]李金良,郑小贤.北京地区水源涵养林健康评价指标体系的探讨[J].林业资源管理,2004(l):31-34.
    [164]赖玫妃,刘健.闽江生态公益林类型与森林水源涵养关系[J].福建林学院学报,2007,27(2):157-162.
    [165]宋秀瑜.密云水库南岸水源涵养林生态功能研究[J].北京水务,2006(3):52-55.
    [166]时忠杰,王彦辉,徐丽宏,等.六盘山华山松林降雨再分配及其空间变异特征[J].生态学报,2009,29(l):76-85.
    [167]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):108-113.
    [168]杨吉华,李红云,李焕平,等.4种灌木林地根系分布特征及其固持土壤效应的研究[J].水土保持学报,2007,21(3):48-51.
    [169]何常清,于澎涛,管伟,等.华北落叶松枯落物覆盖对地表径流的拦阻效应[J].林业科学研究,2006,19(5):595-599.
    [170]陈红跃,刘钱,康敏明,等.东江水源林不同混交组合林地枯落物和土壤持水能力研究[J].生态环境,2006,15(4):796-801.
    [171]张保华,何毓蓉,周红艺,等.长江上游典型区亚高山不同林型土壤的结构性与水分效应[J].水土保持学报,2002,16(4):127-129.
    [172]杜燕,王威,郑小贤,北京山区水源林结构与功能关系研究[J].林业资源管理,2011年8月第4期:59-65.
    [173]张永利,鲁绍伟,杨峰伟,华北土石山区人工林与天然林结构与功能研究[J].灌溉排水学报,2007,26(2):63-68.
    [174]任引,薛建辉,武夷山常绿阔叶林结构与功能的特征研究进展[J].福建林业科技,2008,35(1):251-255.
    [175]成晨,重庆给云山水源涵养林结构及功能研究[D].北京:北京林业大学,2009.
    [176]鲁绍伟,刘凤芹,余新晓,等.北京山区不同密度油松结构与功能研究[J].水土保持研究,2008,15(1):117-121.
    [177]任玉冰,塔里木河流域不同林分结构与功能的研究[J].干旱环境监测,2012,26(4):222-224.
    [178]孔正红,董卉卉,陈希,等,崇明岛沿岸防护林结构与功能空间异质性分析[J].林业科学,2009,45(4):60-64.
    [179]谢小魁,苏东凯,刘正纲,等.长白山原始阔叶红松林径级结构模拟[J].生态学杂志,2010,29(8):1477-1481.
    [180]梁士楚,王伯荪.红树植物木榄种群高度结构的分形特征[J].植物生态学报,2002,26(4): 408-412.
    [181]蒋雪琴,刘艳红,赵本元,等.湖北神农架地区巴山冷杉(Abies fargesii)种群结构特征与空间分布格局[J].生态学报,2009,29(5):2211-2218.
    [182]张雷,王晓江,胡尔查,等.科尔沁沙地蒙古黄榆种群结构与空间分布格局[J].中国沙漠,2011,31(1):115-119.
    [183]刘建泉,丁国民,郝虎,等.青海云杉群落特征和动态的研究[J].西北林学院学报.2008,23(1):14-17.
    [184]刘建泉,丁国民,郝虎,等.青海云杉群落特征和动态的研究[J].西北林学院学报,2008,23(1):14-17.
    [185]李博.生态学[M].北京:高等教育出版社2000.[LI Bo. Ecology [M].Beijing:Higher Education Press,2000.
    [186]Silvertown J W. Introduction to plant population ecology [M].London:Longman press,1982.
    [187]申仕康,马海英,王跃华,等.濒危植物猪血木自然种群结构及动态[Jl.生态学报,2008,28(5)2404-2412.
    [188]刘兴聪.青海云杉[M].兰州:兰州大学出版社,1992.
    [189]吴俊侠,张希明,邓潮洲,等.塔里木河上游胡杨种群特征与动态分析[J].干旱区地理,2010,33(6):73-79.
    [190]宋萍,洪伟,吴承桢,等.珍稀濒危植物桫椤种群结构与动态研究[J].应用生态学报,2005,16(3),413—418.
    [191]孟宪宇.测树学[M].北京:中国林业出版社,1994.
    [192]金则新.浙江天台山种群结构和分布格局[J].生态学杂志,1997,16(4):15-19.
    [193]Frost I&Rydin H. Spatial pattern and size distribution of the animal-dispersed Quecus rubur in two spurce-dominanted of forests[J].Eco-seienee,2000,7:38-44.
    [194]程煜,闫淑君,洪伟,等.檫树群落主要树种分布格局及其动态分析[J].植物资源与环境学报,2003,12(1):32-37.
    [195]Lieberman M, Lieberman D. Age-size relationships and growth behavior of the palm Welfia georgii [J]. Biotropica,1988,20(4):270-273.
    [196]Biging G S, Dobbertin M.A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees[J].For sci,1992,38(3):695-720.
    [197]Brabg D C.A local basal area adjustment for crown width prediction[J].Northern Journal of Applied Foresry,2001,18(1):22-28.
    [198]张金屯.植被数量生态学方法[J].1995.北京:中国科学技术出版社.
    [199]赵丽琼,黄华国,梁大双,等.甘肃大野口青海云杉种群的空间分布格局[J].北京林业大学学报,2010,32(4):59—64.
    [200]刘建泉.祁连山保护区青海云杉种群分布格局的研究[J].西北林学院学报,2004,19(2)152-155.
    [201]刘兴聪.青海云杉[M].甘肃:兰州大学出版社,1992.
    [202]惠刚盈GADOW Klaus von,ALBERT Matthias一个新的林分空间结构参数大小比数[J].林业科学研究,1999,12(1):1226.
    [203]惠刚盈,克劳斯·冯佳多(德).德国现代森林经营技术[M].北京:中国科学技术出版社,2001.
    [204]惠刚盈GADOW Klaus von,ALBERT Matthias角尺度个描述林木个体分布格局的结构参数[J].林业科学,1999,5(1):37—42.
    [205]慧君.阔叶红松林空间结构研究[D].北京:北京林业大学,2003.
    [206]张立杰,赵文智,何志斌.青海云杉(Picea crassifolia)种群格的分形特征及其影响因素[J].生态学报,2008,28(4):1383—1389.
    [207]赵丽琼,黄华国,梁大双,等.甘肃大野口青海云杉种群的空间分布格局[J].北京林业大学学报,2010,32(4):59—64.
    [208]金铭,李毅,刘贤德,等.祁连山黑河中上游季节冻土年际变化特征分析[Jl,冰川冻土,2011,33(5):10681073.
    [209]宋娟丽,黄土高原草地土壤质量特征及评价研究[D].杨凌:西北农林科技大学,2010:30-34.
    [210]张涛,车克钧,王辉.祁连山青海云杉林不同海拔梯度上土壤水分动态变化[J].湖北农业科学,2009,48(5):1107-1111.
    [211]姜林,耿增超,李珊珊,等.祁连山西水林区土壤阳离子交换量及盐基离子的剖而分布[J].生态学报,2012,32(11):3368-3376.
    [212]陈伏生,曾德慧,何兴元,森林土壤氮素的转化与循环[J].生态学杂志,2004,23(5):126-133.
    [213]胡启武,欧阳华,刘贤德.祁连山北坡垂直带土壤碳氮分布特征[J].山地学报,2006,24(6):654-661.
    [214]李建平,姚机芳,刘世全,等.西藏自治区土壤资源[M].北京:科学出版社.1994.
    [215]崔启武,边履刚,史继德,等.林冠对降水的截留作用[J].林业科学,1980,16(2):144-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700