用户名: 密码: 验证码:
壳聚糖改性聚氨酯和角蛋白的制备及其对羊毛防毡缩的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊毛是一种具有鳞片层结构的天然蛋白质纤维,它富有弹性,具有良好的吸湿性和保暖性。但是羊毛本身特有的鳞片层会产生定向摩擦效应,易产生毡缩,极大影响其服用性能。传统的羊毛防毡缩整理中常使用氯气或释氯剂,处理过程中产生的AOX(absorbable organic halogen)会对环境造成严重污染。水性聚氨酯(PU)是无氯防毡缩常用整理剂,但要获得良好的防毡缩效果使用量很大,整理后织物变硬,羊毛手感变差。采用生物质材料壳聚糖来增强水性聚氨酯,可以较大幅度降低羊毛防毡缩剂的使用量,使得PU在羊毛纤维表面形成的膜变薄,这不仅可改善整理后羊毛的手感,大量节约整理剂原料;而且可提高毛织物的生物可降解性。另外,我国作为羊毛制品生产大国,每年产生大量的废弃羊毛,从废弃羊毛中提取羊毛角蛋白,将其应用在羊毛织物的防毡缩整理中,可使废弃羊毛这一宝贵的蛋白资源得到合理有效的利用。
     因此,本文研究壳聚糖改性聚氨酯的制备及其羊毛防毡缩整理工艺、以及废弃羊毛中提取角蛋白用于羊毛防毡缩工艺。同时,对壳聚糖改性聚氨酯复配液所成的膜及角蛋白与壳聚糖复合生物膜的相关性能进行探索,为今后新工艺的产业化提供理论支撑。
     第一部分,本文研究壳聚糖改性聚氨酯的制备及其在羊毛防毡缩整理应用工艺。研究发现,壳聚糖分子量的大小对增强效果有较大影响,这在文献中鲜有报道。本文筛选和制备一种合适分子量范围的壳聚糖,在实际应用中可与聚氨酯以任意比例混合,可以现配现用,为工业化应用奠定基础。
     首先,本文采用H2O2-微波酸性复合降解工艺对高分子量的壳聚糖进行降解,得到11种不同分子量范围的壳聚糖,探讨了过氧化氢用量和微波处理时间对降解产物粘均分子量、产率、稳定性等的影响,并通过红外测试对降解产物进行结构分析。随着微波时间和过氧化氢用量的增加,壳聚糖分子量逐渐降低,颜色逐渐加深,产率也逐渐下降。
     其次,将所得11种不同分子量的壳聚糖与聚氨酯以一定比例复配,然后进行羊毛防毡缩整理,重点研究了壳聚糖的分子量、聚氨酯用量、壳聚糖与聚氨酯的质量百分比等对复配液的稳定性、均匀性及防毡缩效果的影响。通过对羊毛织物的毡缩率、力学性能等的测试,确定羊毛防毡缩整理的最佳工艺条件。结果表明,粘均分子量为3×104D的降解壳聚糖与60g/L的聚氨酯复配成质量百分比为4%的复配液,其防毡缩效果最理想,面积毡缩率达0.1%,达到ISO6330、IWS TM NO.31防毡缩技术标准和市场的要求。少量粘均分子量为3×104D的壳聚糖通过复配的形式与聚氨酯进行共混,大大提高了复配液的均匀性及稳定性,并且可以现配现用,适用于工厂大规模生产。与不加壳聚糖的聚氨酯整理羊毛织物的工艺相比,壳聚糖的加入使聚氨酯的用量降低了45%,同时改善了织物手感、增强了织物的强力。
     第二部分:较系统研究壳聚糖/聚氨酯复合膜的性能。利用粘均分子量为3×104D的改性壳聚糖与60g/L的聚氨酯形成的复配液进行成膜性实验。动态热机械分析仪(DMA)测试结果表明,壳聚糖的加入使复合膜的拉伸强力提高40%、储存模量提高6%,这说明壳聚糖的加入对聚氨酯的增强效果明显。此外,壳聚糖的加入使得复合膜的玻璃化转变温度从-52℃升高到-45℃,这主要是壳聚糖与聚氨酯的软段发生相互作用,从而破坏聚氨酯软段与硬段之间的相互作用,导致微相分离程度有所加剧所致。热力学测试表明,壳聚糖的加入使得聚氨酯的热稳定性有所改善。红外光谱(FTIR)的测试结果说明壳聚糖与聚氨酯之间存在一定的化学交联。另外,通过生物降解性测试结果发现壳聚糖的加入可以有效改善聚氨酯的生物降解性,使其强力在水降解条件下降低65.7%,酶降解条件下降低70.7%,改性聚氨酯膜表面出现凹槽和裂痕。
     本文第三部分,研究羊毛角蛋白的羊毛防毡缩工艺。首先系统地研究了生物酶溶解羊毛提取角蛋白技术,通过考察处理温度、处理时间、处理浴pH值和酶用量等条件对羊毛溶解率的影响,筛选出提取羊毛角蛋白的最佳工艺条件。借助SDS-凝胶电泳、傅里叶变换衰减全反射红外光谱、广角X射线衍射和热重分析等测试手段分析了酶法提取角蛋白的结构与性能,并与熔融尿素法和传统还原法所得角蛋白进行对比,同时对羊毛溶解机理进行了初步探讨。研究结果表明,采用蛋白酶法的羊毛溶解率和角蛋白产率分别高达90.1%和87.6%,角蛋白分子结构中二硫键部分断裂,其分子量<2kD,呈多肽形式,结晶度为45.2%,其热稳定性逊于熔融尿素法和氧化-还原法产品。
     其次还对羊毛角蛋白溶液用于羊毛织物的防毡缩整理亦进行了探讨。研究了不同工艺提取的角蛋白分子对羊毛防毡缩效果的影响,分子量较大对羊毛防毡缩效果稍好。并首次对比纯角蛋白、粗角蛋白、纯还原剂、角蛋白/还原剂、预处理-角蛋白/还原剂等不同工艺对织物防毡缩效果及物理机械性能的影响,优化羊毛织物防毡缩整理工艺。结果显示,纯角蛋白对羊毛防毡缩性影响不大,需要与还原剂协同作用才有效果;追加还原剂和亲水化预处理均能促进角蛋白对织物的防毡缩性,追加还原剂可以还原羊毛织物中的二硫键,产生较多的巯基-SH,可以与角蛋白中的巯基-SH进行反应生成新的二硫键,增强角蛋白与羊毛之间的结合,增强其耐洗性,亲水化预处理可以增加羊毛的亲水性,使角蛋白与羊毛更容易接触;优化工艺条件整理后羊毛织物的毡缩率由11.1%降至1.2%,达到国际羊毛局机可洗标准,且织物强力损失小,手感柔软,无泛黄现象。
     本文第四部分,研究角蛋白—壳聚糖复合膜的制备及其力学性能、热稳定性、亲水性、抗菌性等。角蛋白具有很好的亲水性,所成膜较脆,影响其应用性能。这也是其在羊毛防毡缩中效果不佳的原因。本研究通过将壳聚糖与角蛋白在活化剂兼交联剂EDC(碳二亚胺)的作用下进行反应制备具有一定机械强度的复合生物膜。
     通过傅立叶红外光谱、X射线衍射图谱、热重分析等测试技术对复合生物膜的性能进行表征和分析。研究表明EDC的加入使得壳聚糖与角蛋白之间发生化学交联,壳聚糖与角蛋白质量比为7:3时,热稳定性最好,分子排列最规整。对生物膜进行接触角测试发现,随着壳聚糖含量的增加、复合生物膜的亲水性逐渐降低。对生物膜进行强力测试发现,随着壳聚糖含量的增加,其断裂强度总体增大,当壳聚糖与角蛋白质量比为7:3时,强力最好。
Wool is a kind of natural protein fiber with scale layer structure, whichhas good hydroscopicity, warmth-retention and elastic properties. However, the characteristic scale layer with directional friction effects can easily generatefelting and would affect their performance greatly. Chlorideand its derivatives were used for wool anti-felting finishing in traditional process.However, AOX (absorbable organic halogen) was produced during this process and polluted the environment seriously. Waterborne polyurethane, a kind of free chlorine anti-felting finishing agent, could cover the scales of wool fiber due to the formation of a thin film. The huge amount of waterborne polyurethane is applied to get better anti-felting, which results in the hardening of fabric and bad handle feeling.Using biomass material chitosan to enhance waterborne polyurethane will reduce the usage of wool felting agent, which leads to the formation of a thinner film. As a result, this could not only improve the handle feeling, save the cost, but also improve the biodegradability of finished wool fabric. In addition, huge amount of wool generated in China are disposed as waste. Wool keratinextracting from waste wool was used as agent for anti-felting application. The valuable protein from the wasted wool could be more reasonable and effective use by this way.
     Therefore, the subjectstudied on preparation of polyurethane which was modified by chitosan and anti-felting finishing processes of wool fabric treated by modified polyurethane, as well as the anti-felting finishing processes of wool fabric treated by keratin extracted from the waste wool. At the same time, the related properties of the chitosan/polyurethane composite films and chitosan/keratin composite films were studied. This provides theoretical support for the industrialization of new technology in the future.
     In the first part, the anti-felting finishing technology of wool fabric with polyrehane modified by chitosan was studied. There is nearly no report about the effect of the size of molecular wight of chitosan on enhancement of polyurethane. So an appropriate molecular weight within a certain scope of chitosan was seleted and prepared. And the chitosan could be mixed with polyurethane in any proportion in practice. And the mixture could be prepared immediatelywhen needed. This would lay the foundation for industrialized application.
     Firstly, the chitosan with high molecular weight was hydrolyzed with H2O2under mocrowave irradiation in anticipation of obtaining11kinds of chitosan with different molecular weights. The effects of concentrations of H2O2and irradiation time were investigated by the single factor test. The structure of the product was confirmed by FTIR spectrum analysis. The changes in the molecular weights of the hydrolyzed chitosan are strongly dependent on the reaction time and the concentration of H2O2.
     Secondly, eleven kinds of the hydrolyzed chitosan were mixed with polyurethanein in certain proportion. Then they were used for antifelting finishing of wool fabrics. The effects of the chitosan molecular weights, dosage of polyurethane, and the quality percentage of chitosan on the stability, uniformity and anti-felting of the mixed solutions were mainly researched. The optimum process of antifelting finishing was determined by the results of shrinkage area and mechanical properties tests. The results showed that the area shrinkage was0.3%,which meets the requirements of factory production of common standards when the proportion of chitosan with molecular wight of3X104D was4%in proportion of polyurethane and the concentration of polyurethane was60g/L.A small amount of low molecular weight of modified chitosan was blended with polyurethane to improvethe uniformity and stability of the compound solution greatly. The solution could be prepared when needed. This could be suitable for industrial application. The amount of modified polyurethane was reduced by45%. Meanwhile, the handle feeling of the processed fabric was improved and the strenght of the fabric was enhanced.
     The second part was about the systematic research of chitosan/pu composite membrane performance. The polyurethane modified by hydrolyzed chitosan with viscosity molecular wight3×104D forms membrane easily.The results of DMA tests showed that the tensile strength of the modified polyurethaneincreases by40%. The chitosan effectively enhanced the polyurethane. In addition, the chitosan mainly interacted with the soft segment of the polyurethane, and undermined the interaction between the soft segment and the hard segment of the polyurethane. This could induce the increase of the micro phase separation degree and the glass transition temperature (-52℃to-45℃). Thermodynamic test results showed that the modified polyurethane has better thermal stability. FTIR test results showed that the chemical crosslinking existed between the chitosan and polyurethane.The biodegradability test results found that the addition of chitosan could effectively improve the biodegradability of polyurethane and could make its strength to decrease respectively65.7%and70.7%under the conditions of water degradation and enzyme degradation conditions. The modified polyurethane membrane surfaces appeared grooves and cracks.
     The third part was about wool keratin processes for wool fabric shrinkproof.Firstly, the technique of enzyme extracted wool keratin was systematically studied. Theprocessing temperature, processing time, processing bath pH value and enzyme dosage were investigated by the single factor test.And then the optimum process was selected. The analysis and comparision of the structure and properties of keratins extracted respectively by protease, molten urea and oxidation-reduction method through SDS-PAGE、ATR-FTIR, WAXD, TG and DTG tests. The dissolution mechanisms of the wool were also explored. The tests results showed that the dissolution rate and production rate of keratin protein extracted by enzymatic method were90.1%and90.1%respectively. The disulfide bonds of keratin molecular structure fracture partially ruptured and the molecular weight of the keratin was less than2kD. The keratin was in the form of apolypeptide and the crystallinity was45.22%. Its thermal stability is inferior to those extracted by the molten urea method and oxidation-reduction method.
     Secondly, the wool keratin solutions were applied on woolen fabric directly.The processes of different wool keratin applied on antifelting finishing of wool fabrics were discussed. Keratin with large molecular has better anti-felting effect. The effects of different processes of pure keratin, pure reductant, rough keratin, keratin/reductant, pretreatment-keratin/reductant on antifelting effect and mechanical properties were compared. Results showed that Better antifelting effect was obtained when the keratin and the reductant acted synergistically. Additional reductant and hydration pretreatment could promote the anti-felting effect. The reductant could retain the-SH of the keratin and reduct the disulfide bond in wool fabric to produce more-SH. The-SH of the keratin and wool fabric restructured to generate new disulfide bond to strengthen the combination of the keratin and wool and enhance their resistance of washing. The hydrophilization pretreatment could increase the hydrophilicity of wool and make the keratin easier to contact with the wool fabrics.The shinkage area of the processed wool fabric under the optimum condition was decreased from11.1%to1.2%. This reached the IWS standard. And the strength loss of the processed fabric was small and the handle feeling of the fabric was soft. There was no yellowing phenomenon.
     The fourth part was about the preparation and characterization of the keratin-chitosan composite membranes. Keratin has good hydrophilicity. Keratin film was brittle, whichaffects its application performance and is the reason for its bad antifelting effect of the wool fabric. And the chitosan and keratin reacted in the presence of the EDC to form the composite biofilm which had certain mechanical strength.
     The characterization and analysis of the keratin-chitosan composite biofilms were tested by Fourier transform infrared spectroscopy, X-ray diffraction spectrum, thermogravimetric analysisand so on. The results of above tests showed that chitosan and keratincrosslinked in the presence of EDC. When chitosan and keratin quality ratio was7:3, the bio-composite film has the best thermal stability and the most regular molecular arrangement.The contact angle tests found that the hydrophilicity of biological composite membranes gradually decreased with the increase of the content of chitosan. Strength test results showed that the breaking stress generally increase with the increase of the content of the chitosan. When chitosan and keratin quality ratio was7:3, the strength was the best.
引文
[1]黄玉丽,王宪迎,王树兰.羊毛生物法防毡缩技术的研究[J].印染,2004,6:1-3.
    [2]黄玉丽,王树兰,王宪迎.羊毛的蛋白酶/壳聚糖生物整理研究[J].毛纺科技,2001,1:31-34.
    [3]Wicks, Douglas A.; Wicks Jr, Zeno W. Blocked isocyanates III. Progress in OrganicCoatings, Vol (41), issue 1-3 March,2001:1-83.
    [4]杨黎明.壳聚糖的改性及其智能水凝胶的研究[D].上海大学材料学,2005:6-15.
    [5]车小琼,孙庆申,赵凯.甲壳素和壳聚糖作为天然生物高分子材料的研究进展[J].高分子通报,2008(2):45-52.
    [6]崔华帅.羊毛粉/PP共混纺丝纤维的结构与性能研究[D].北京服装学院,2008.
    [7]徐恒星,史吉华,周奥佳,阎克路.羊毛角蛋白的提取及其成膜性[J].纺织学报,2012.6(33):41-47.
    [8]王丽静,史吉华,周奥佳,阎克路.新型羊毛角蛋白提取技术研究[J].毛纺科技,2013,41(5):1-7.
    [9]杨旭红,钟林钧,陈博,颜晓华.废弃羊毛中角蛋白提取初探[J].毛纺科技,2004(4):14-18.
    [10]Simpson, W. S., and Geoffrey H. Crawshaw, eds. Wool:science and technology [M]. CRC Press,2002.
    [11]张猛.废弃羊毛的溶解及其与纤维素共混的研究[D].东华大学,2011.
    [12]Hearle J W S. A critical review of the structural mechanics of wool and hair fibres[J]. International Journal of Biological Macromolecules,2000,27(2):123-138.
    [13]邓雄波.羊毛纱线盐缩处理及高锰酸钾氧化防毡缩研究[D].东华大学,2010.
    [14]林琳.人发拉伸改性[D].东华大学,2003.
    [15]姚金波,何天虹.羊毛角蛋白质溶液的制备[J].毛纺科技,2003(4):16-19.
    [16]杨莉.羊毛角蛋白的制备及其对氧化棉制品的整理研究[D].苏州大学,2008.
    [17]王淑花.粘胶纤维表面改性技术及机理的研究[D].太原理工大学,2008.
    [18]Toshizumi Tanabe, Naoya Okitsu,Kiyoshi Yamauchi. Fabrication and characterization of chemically crosslinked keratin films[J]. Material Science and Engineering,2004(24):441-446.
    [19]王浩.蛋白棉纤维(制品)的制备及结构和性能研究[D].苏州大学,2008.
    [20]王飞飞.羊毛粉末制备及在纺织上应用的探讨[D].东华大学,2006.
    [21]Sehgal P K Studies on Solubilized Keratins from Poultry Feathers[J]. Leather Science,1986(12):333-343.
    [22]姚金波.羊毛角蛋白质溶液制备与应用[D].天津工业大学博士论文,2003.
    [23]Timmons S F, Blanchard C R, Smith R A. Method of making and cross-linking keratin-based films and sheets. US Patent,6124265,2000-09-26.
    [24]Timmons S F, Blanchard C R, Smith R A. Method of making and cross-linking keratin-based films, sheets and bulk materials. WO Patent,9926570,999-06-03.
    [25]Timmons S F, Smith R A. Porous and bulk keratin bio-polymers. US Patent, 6159495,2000-12-12.
    [26]练向阳,李亚滨.鸡毛角蛋白的纺丝溶液的制备方法[J].山东纺织科技,2009(1):53-56.
    [27]朱磊,朱赛,陈维国.羊毛角蛋白质溶液的制备及其在织物整理中的应用[J].丝绸,2005(2):26-27.
    [28]王淑花.粘胶纤维表面改性技术及机理的研究[D].太原理工大学,2008.
    [29]王琛.羊毛角蛋白溶液的制备及其在毛织物抗起毛起球整理中的应用[D].上海:东华大学,2010.
    [30]朱磊.动物纤维角蛋白的提取及在织物整理中的应用研究[D].浙江理工大学硕士论文,2005.
    [31]王慧玲.多功能涂层织物的研究[D].青岛大学,2007.
    [32]Xie H, Li S, Zhang S. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers [J]. Green Chemistry,2005(7):606-608.
    [33]范杰.羊毛角蛋白晶须分离及其应用研究[D].东华大学博士论文,2009.
    [34]H Murate, M Shigematsu, K Abe, M Tanahashi. Molten urea as a novel dissolving solvent for wool and other animal proteins [J]. SEN'I GAKKAISHI,2010 (66):6-159.
    [35]M Tanahashi, H Murate. Method of classifying proteins, Method of dissolving proteins, Method of fractionating and collecting non-animal fiber and proteins originating in animal fiber [P]. WO patent,2009/119596 Al,2009.
    [36]Yang X, Zhang H, Yuan X, et al. Wool keratin:A novel building block for layer-by-layer self-assembly[J]. Journal of colloid and interface science,2009,336(2): 756-760.
    [37]Cardamone J M. Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR)[J]. Journal of molecular structure,2010,969(1):97-105.
    [38]姚金波,何天虹,何美劲等.羊毛角蛋白质溶液在毛织物定形中的应用[J].毛纺,2004,(1):14-16.
    [39]杨立艾(译).使用天然高聚物处理羊毛[J].化纤与纺织,1996,(3):42.
    [40]何中琴(译).毛织物形态稳定整理[J].染整译丛,1998,(1):23.
    [41]王琛,毛志平.羊毛角蛋白粗溶液制备及在毛织物上的应用[J].染整技术,2009,29(6):4-7.
    [42]王琛,毛志平.羊毛角蛋白粗溶液的制备及在羊毛改性处理中的应用[J].毛纺科技,2007,7:10-13.
    [43]王琛,毛志平.羊毛角蛋白粗溶液的制备及在毛织物防毡缩整理上的应用[J].毛纺科技,2007,9:16-19.
    [44]王浩,赵为陶,陈宇岳,黄晨.羊毛角蛋白抗紫外整理剂的制备及应用[J].印染,2011,5:4-7.
    [45]王江波,刘建勇,张玉荣,王洁.羊毛角蛋白溶液对涤纶织物的整理[J].印染助剂,2011,28(11):36-38.
    [46]储咏梅,郝露,陈宇岳.羊毛角蛋白溶液改善竹原织物抗皱性的研究[J].上海纺织科技,2009,37(12):31-33.
    [47]储咏梅,陈亮,陈宇岳.羊毛角蛋白溶液对氧化竹原纤维的整理工艺研究[C].第29届全国毛纺年会论文集,92-95.
    [48]储咏梅,陈亮,陈宇岳.羊毛角蛋白溶液对氧化竹原纤维的整理[J].毛纺科技,2010,38(4):15-18.
    [49]储咏梅,林红,陈宇岳.羊毛角蛋白对氧化竹原织物抗紫外线性能的改善[J].毛纺科技,2010,38(2):8-11.
    [50]李国萍,孙卫国,谢焕,冯永龙.羊毛角蛋白溶液对苎麻织物的整理[J].毛纺科技,2011,39(9):20-22.
    [51]李毅,陈东,唐芳琼,胡军岩,刘惠玉.角蛋白多孔材料织物表面的亲水化纳米整理方法[P].公开号:CN101225599.
    [52]李戎,王东,宋阳,王建庆.ITO/羊毛角蛋白溶液复合功能整理剂的制备方法[P].公开号:CN102182061A.
    [53]张红.壳聚糖纺丝原液性能及其湿法纺丝工艺研究[D].北京服装学院,2009.
    [54]Ravi Kumar M N V. A review of chitin and chitosan applications[J]. Reactive and functional polymers,2000,46(1):1-27.
    [55]陈建,左武松.壳聚糖的应用研究综述[J].淮北煤炭师范学院学报(自然科学版),2004,25(2):42-46.
    [56]唐星华,沈明才.壳聚糖及其衍生物应用研究进展[J].日用化学工业,2005,35(1):40-44.
    [57]王爱勤.甲壳素化学[M].科学出版社,2008:121-125.
    [58]Toshifumi Yui, Kiyohisa Imada, Kenji Okuyama, et al. Molecular and crystal-structure of the anhydrous form of chitosan[J]. Macromolecules,1994,27(26): 7601-7605.
    [59]孙晓君,刘晓慧,秦智等.柠檬酸化壳聚糖的合成及其水溶性研究[J].哈尔滨工业大学学报,2011,43(6):145-148.
    [60]那海秋,刘宝忠,张德智.壳聚糖的性质、制备及应用[J].辽宁化工,1997,(4):16-18.
    [61]徐寅.纳米纤维素晶须/壳聚糖可降解包装复合膜的制备与研究[D].浙江理工大学,2011.
    [62]韩永萍,林强.低聚壳聚糖制备及其生理活性进展[J].化学工业与工程,2007,24(3):272-276.
    [63]李红,高德玉等.壳聚糖降解技术[J].化学工程师,2008(3):27-29.
    [64]陈巍,罗志刚,李忠彦等.物理方法在壳聚糖降解中应用[J].酿酒,2006,33(2):57-60.
    [65]段杉,彭喜春,彭志英.低聚壳聚糖的制备及应用[J].中国食品添加剂,2002,(5):66-71.
    [66]邓培昌,胡杰珍等.壳寡糖制备方法研究进展[J].广州化工,2012,40(6):22-25.
    [67]覃彩芹,肖玲,杜予民等.过氧化氢氧化降解壳聚糖的可控性研究[J].武汉大学学报,2000,46(2):196-198.
    [68]邹良栋,王静华.壳聚糖的提取及其性质初探[J].辽宁农业职业技术学院学报,1997,(21):100-104.
    [69]冯小强,杨声等.低聚壳聚糖降解制备、分离、纯化、鉴别的研究进展[J].高分子通报,2006(10):82-89.
    [70]韩永萍,林强.低聚壳聚糖制备及其生理活性进展[J].化学工业与工程,2007,3(24):273.
    [71]赵海峰,张敏卿,曾爱武.H202氧化降解壳聚糖研究[J].化工进展,2003(2):160-164.
    [72]刘颖.H202氧化降解壳聚糖的条件研究[J].材料科学,2012(2).
    [73]Wang Y, Zhou P, Yu J, et al. Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8[J]. Asia Pacific journal of clinical nutrition,2007,16.
    [74]邓倩莹,李立华,李毅群.溶菌酶、过氧化氢对壳聚糖降解性能的影响[J].化学世界,2005,46(6):338-340.
    [751王军,周本权等.低聚壳聚糖的制备及应用研究进展[J].日用化学工业,2010,40(2):124-128.
    [76]Vishu Kumar A B, Varadaraj M C, Lalitha R G, et al. Low molecular weight chitosans:preparation with the aid of papain and characterization[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2004,1670(2):137-146.
    [77]Kittur F S, Kumar A B, Gowda L R, et al. Chitosanolysis by a pectinase isozyme of Aspergillus niger-A non-specific activity[J]. Carbohydrate Polymers,2003,53(2): 191-196.
    [78]周孙英,余萍,陈盛等.四种不同类型酶降解壳聚糖的效果比较[J].海峡药学, 2003,15(1):58-61.
    [79]Stanislaw Trzcinski, Danuta U. Staszewska. Kinetics of ultrasonic degradation and polymerization degree distribution of sonochemically degraded chitosan[J]. Carbohydrate Polymers,2004,56(4):489-498.
    [80]Renata Czechowska-Biskup, Bozena Rokita, Salah Lotfy, et al. Degradation of chitosan and starch by 360-kHz ultrasound[J]. Carbohydrate Polymers,2005,60(2): 175-184.
    [81]潘高峰,吕健,于刚.超声波降解壳聚糖制备纸用微囊的研究[J].中国造纸学报,2006,4(21):71-73.
    [82]Tao Wu, Svetlana Zivanovic, Hayes, Douglas G.. Efficient reduction of chitosan molecular weight by high-intensity ultrasound:underlying mechanism and effect of process parameters[J]. Journal of Agriculture and Food Chemistry,2008,56(13): 5112-5119.
    [83]Chen R H, Chang J R, Shyur J S. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan[J]. Carbohydrate research,1997,299(4):287-294.
    [84]Shari Baxter, Svetlana Zivanovic, Jochen Weiss. Molecular weight and degress ofacetylation of high-intensity ultrasonicated chitosan[J]. Food Hydrocolloids,2005, 19(5):821-830.
    [85]丁恒生,王亚娜,郑铁生.微波辐射法快速制备龙虾壳聚糖工艺的研究[J].世界科技研究与发展,2009,31(5):886-888.
    [86]Le Hai, Iran Bang Diep, Naotsugu Nagasawa, Fumio Yoshii, et al. Radiation depolymerization of chitosan to prepare oligomer[J]. Nuclear Instruments and Methods in Physics Research,2003,208:466-470.
    [87]Ismail Zainol, Hazizan Md Akil, Azreena Mastor. Effect of y-irradiation on the physical and mechanical properties of chitosan powder[J]. Materials Science and Engineering C,2009,29(1):292-297.
    [88]李治,刘晓非,杨冬芝等.壳聚糖降解研究进展[J].化工进展,2000,6:20-23.
    [89]李红,高德玉,李锦书等.壳聚糖降解技术[J].化学工程师,2008,22(3):27-29.
    [90]陈巍,罗志刚,李忠彦等.物理方法在壳聚糖降解中的应用[J].粮油食品科技,2006,14(3):56-57.
    [91]罗文波.脉冲电场-活性氧协同作用降解壳聚糖研究[D].华南理工大学,2011.
    [92]黄群增,王世铭,王琼生等UV/H2O2降解壳聚糖的研究[J].福建师范大学学报,2004,20(4):63-67.
    [93]张峰,殷佳敏,丁丽娟.超声波辅助降解壳聚糖的研究[J].高分子材料科学与工 程,2004,20(1):221-223.
    [94]Weiping Wang, Yumin Du, Yanlin Qiu, Xiaoying Wang, Ying Hu, et al. A new green technology for direct production of low molecular weight chitosan[J]. Carbohydrate Polymers,2008,74(1):124-132.
    [95]Sun T, Zhou D, Xie J, et al. Preparation of chitosan oligomers and their antioxidant activity[J]. European Food Research and Technology,2007,225(3-4): 451-456.
    [96]陈海燕,张彬,何勇松.壳寡糖的研究进展和应用前景[J].广东畜牧兽医科技,2007,32(2):38-41.
    [97]王凤珍.壳聚糖修饰醋甲唑胺固体脂质纳米粒眼用制剂的研究[D].南京医科大学,2012.
    [98]杨丑伟,王香梅,张晶等.壳聚糖/聚氨酯复合材料研究进展[J].化学推进剂与高分子材料,2011,9(4):34-38.
    [99]周素琼,李国明.聚氨酯/硫酸酯化壳聚糖复合膜的制备及其血液相容性的研究[J].化工时刊,2007,21(5):1-4.
    [100]Yu Shuhuei, Mi Fwulong, Shyu Shinshing, et al. Miscibility, mechanical characteristic and platelet adhesionof 6-O-carboxymethylchitosan/polyurethane semi-IPNmembranes[J]. Journal of Membrane Science,2006,276 (2):68-80.
    [101]Gong P, Zhang L, Zhuang L, et al. Synthesis and characterization of polyurethane-chitosan interpenetrating polymer networks[J]. Journal of applied polymer science,1998,68(8):1321-1329.
    [102]周金平,张俐娜,黄进等.聚氨酯/壳聚糖互穿聚合物网络涂层再生纤维素膜的生物降解性[J].纤维素科学与技术,2000,8(3):15-21.
    [103]Liu Haiqiang, Zang Lina. Structure and properties ofsemi interpenetrating polymer networks based on polyurethaneand nitrochitosan[J]. Appl Polym Sci,2001, 82(12):3109-3117.
    [104]曾鸣.甲壳素衍生物/聚氨醋复合材料的结构与性能[D].湖北:武汉大学,2004.
    [105]Dong K, Guo X, Xu J, et al. Preparation, characterization and dye decolorization application of chitosan/polyurethane foam material[J].Polymer-Plastics Technology and Engineering,2012,51(7):754-759.
    [106]Silva Simone S, Menezes Sonia Maria C, GarciaRosangela B. Synthesis and characterization ofpolyurethane-g-chitosan[J]. European Journal,2003,39 (7): 1515-1519.
    [107]董岸杰,张晓丽,王晓强等.壳聚糖-两性聚氨酯接枝共聚物的制备[J].应用化学,2002,19(4):321-324.
    [108]Xu Dan, Wu Ke, Zhang Qiuhong, et al. Synthesis and biocompatibility of anionic polyurethane nanoparticlescoated with adsorbed chitosan[J]. Polymer,2010, 51:1926-1933.
    [109]Shih C Y, Huang K S. Synthesis of a polyurethane-chitosan blended polymer and a compound process for shrink-proof and antimicrobial woolen fabrics[J]. Journal of applied polymer science,2003,88(9):2356-2363.
    [110]Shih C Y, Chen C W, Huang K S. Adsorption of color dyestuffs on polyurethane-chitosan blends[J]. Journal of applied polymer science,2004,91(6): 3991-3998.
    [111]Xu D, Meng Z, Han M, et al. Novel blood-compatible waterborne polyurethane using chitosan as an extender[J]. Journal of applied polymer science,2008,109(1): 240-246.
    [112]El-Sayed A A, El Gabry L K, Allam O G. Application of prepared waterborne polyurethane extended with chitosan to impart antibacterial properties to acrylic fabrics[J]. Journal of Materials Science:Materials in Medicine,2010,21(2):507-514.
    [113]Nikje M M A, Tehrani Z M. Synthesis and characterization of waterborne polyurethane-chitosan nanocomposites[J]. Polymer-Plastics Technology and Engineering,2010,49(8):812-817.
    [114]Ghosh B, Urban M W. Self-repairing oxetane-substituted chitosan polyurethane networks[J]. Science,2009,323(5920):1458-1460.
    [115]Barikani M, Honarkar H, Barikani M. Synthesis and characterization of chitosan-based polyurethane elastomer dispersions[J]. Monatshefte fur Chemie-Chemical Monthly,2010,141(6):653-659.
    [116]Silva S S, Menezes S M C, Garcia R B. Synthesis and characterization of polyurethane-g-chitosan[J]. European Polymer Journal,2003,39(7):1515-1519.
    [117]刘冠峰,陈建勇,周雪梅等.壳聚糖与水分散型聚氨酯共混膜的结构与性能[J].高分子材料科学与工程,1998,14(6):129-131.
    [118]Hiraoka K, Yokoyama T. Development of polyurethane/chitin composites[J]. JOURNAL-SOCIETY OF RUBBER INDUSTRY JAPAN,1997,70:155-162.
    [119]彭志平,刘鹏生,梁宝霞等.壳聚糖-聚氨酯复合膜的结构与性能[J].高分子材料科学与工程,2005,21(3):152-155.
    [120]王琰,左丹英.碳酸氢氨对壳聚糖粉体/医用聚氨酯复合支架结构和性能的影响[J].武汉科技学院学报,2009,22(4):19-21.
    [121]Yang J M, Yang S J, Lin H T, et al. Chitosan containing PU/Poly (NIPAAm) thermosensitive membrane for wound dressing[J]. Materials Science and Engineering: C,2008,28(1):150-156.
    [122]Lin Y H, Chou N K, Wu W J, et al. Physical properties of water-borne polyurethane blended with chitosan[J]. Journal of Applied Polymer Science,2007, 104(4):2683-2689.
    [123]范杰,于伟东.羊毛微观结构的分离方法及其应用可能性研究[J]材料导报,2007,21(09):98-103.
    [124]周雯.羊毛角蛋白酶-蛋白酶一浴法防毡缩整理[D].江南大学,2010.
    [125]樊增禄,戴谨谨,朱泉.毛织物的毡缩及防毡缩整理[J].毛纺科技,1996,(5):3-7.
    [126]李志忠,吴红玲,崔萍.纯毛绒线蛋白酶防毡缩整理的研究[J].毛纺科技,2006,9:20-22.
    [127]吴红玲,李志忠,王雪梅,高增祥.绒线酶防缩整理工艺的探讨[J].染料与染色,2008,45(5):49-51.
    [128]陆永良,沈维等.丝光防缩羊毛毡缩性能测试方法研究[J].毛纺科技,2010,38(8):49-52.
    [129]Mahltig B, Haufe H, Bottcher H. Functionalisation of textiles by inorganic sol-gel coatings[J]. Journal of Materials Chemistry,2005,15(41):4385-4398.
    [130]Lewis J. Superwash wool part 2:Continuous shrinkproofing processes[J]. Wool Sci Rev,1978,55:23-42.
    [131]吴红玲.羊毛织物防毡缩整理的理论与实践[J].染整技术,2006(1):11-15.
    [132]Wang H E. Research on Anti-Felting Finishing Process of Wool Knitted Fabric with Protease[J]. Advanced Materials Research,2012,383:5492-5495.
    [133]蒋少军,吴红玲,李志忠,李伟.毛织物蛋白酶防毡缩整理的研究[C].第九届全国染料与染色学术研讨会暨信息发布会,2004(11).
    [134]Riva A, Algaba I, Prieto R. Enzymatic finishing of wool fabrics:Effects of different treatments with a protease on physical and chemical parameters of the fabric[J]. Journal of Natural Fibers,2006,3(2-3):209-227.
    [135]李霞,高卫东,卢雨正.羊毛防缩整理工艺的现状及展望[J].纺织导报,2006(9):64-67.
    [136]Ciampi L, Forster O, Haefely H R, et al. Enzymatic treatment of wool[J]. Biotechnology Advances,1997,15(1):219-219.
    [137]裴晋昌.低温等离子体对高分子材料变性的应用[J].纺织学报,1986,(9):71-21.
    [138]Kan C W, Chan K, Yuen C W M,et al. Surface properties of low-temperature plasma treated wool fabrics[J]. Journal of Materials Processing Technology,1998, 83(1):180-184.
    [139]Molina R, Jovancic P, Comelles F, et al. Shrink-resistance and wetting properties of keratin fibres treated by glow discharge[J]. Journal of adhesion science and technology,2002,16(11):1469-1485.
    [140]王科林,徐娜.超声波在羊毛染整加工中的应用研究及进展[J].印染助剂,2010(27):7-10.
    [141]薛迪庚.织物的功能整理[M].北京:中国纺织出版社,2000.
    [142]平建明.羊毛纤维的防缩处理方法[J].毛纺科技,2002,(6):37-39.
    [143]Cortez J, Bonner P L R, Griffin M. Application of transglutaminases in the modification of wool textiles[J]. Enzyme and Microbial Technology,2004,34(1): 64-72.
    [144]Gaffar Hossain K H M, Juan A R, Tzanov T. Simultaneous protease and transglutaminase treatment for shrink resistance of wool[J]. Biocatalysis and Biotransformation,2008,26(5):405-411.
    [145]侯雪峰.谷氨酰胺转氨酶在修复和降低羊毛纤维损伤中的应用研究[D].天津工业大学,2007.
    [146]平建明.羊毛纤维的防缩处理方法[J].毛纺科技,2002,(6):37-39.
    [1]Julia M R,Col M R,Col M,et al. The use of chitosan hydrogenperoxide pretreated wool[J]. TCC,1998,(8):78-83.
    [2]Erra P. Shrinkag e p operties of wool treated with low temperature plasma and chitosan biopolymer[J]. Textile Research Journal,1999,69(11:811-816.
    [3]JovancicP, Jocic D, Molina R,et al. Shrinkage properties ofperoxide enzyme biopolymer treated wool[J]. Textile ResearchJournal,2001, (11):948-953.
    [4]黄玉丽.羊毛防毡缩处理工艺的探讨[J].北京联合大学学报,1999,13(2):73-77.
    [5]花兆辉,杨丹,孙卫国.等离子体/壳聚糖联合处理对羊毛防缩性能的影响[J].西安工程大学学报,2011,25(3):144-149.
    [6]Onar N, Sariisik M. Application of enzymes and chitosan biopolymer to the antifelting finishing process[J]. Journal of applied polymer science,2004,93(6): 2903-2908.
    [7]Chung-Yang Shih, Kuo-Shien Huang. Synthesis of a polyurethane-chitosan blended polymer and a compound process for shrink-proof and antimicrobial woolen Fabrics[J].Journal of applied polymer science,2002, (7):2-6.
    [8]http://wenku.baidu.com/view/354e0fbdfd0a79563cle7291.html.
    [9]寇晓亮,王琛.壳聚糖及其降解产物黏均分子质量的测定[J].化纤与纺织技术.2010,39(001):43-46.
    [10]http://wenku.baidu.com/view/354e0fbdfd0a79563c1e7291.html.
    [11]http://wenku.baidu.com/view/6dl2d35dbe23482fb4da4cd4.html.
    [12]周建萍,陈晟.KES织物风格仪测试指标的分析及应用[J].现代纺织技术,2005(6):37-40.
    [13]Qin CQ, Du YM, Xiao L. Effect of hydrogen peroxide treatmenton the molecular weight and structure of chitosan. Polymer Degradation and Stability,2002,76:211-8.
    [14]Galema SA. Microwave chemistry. Chemistry Society Reviews,1997;26(3):233-8.
    [15]刘松,邢荣娥等.微波辐照对不同介质均相壳聚糖的降解研究[J].食品科学,2005,26(10):30-34.
    [16]Shao J, Yang Y, Zhong Q. Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation[J]. Polymer Degradation and Stability,2003,82(3):395-398.
    [17]蒋挺大.甲壳素[M].北京:化学工业出版社,2003.
    [18]李珺,钟耀广,刘长江.肉昧香精制备的研究进展[J].食品工业科技,2010(1):429432.
    [19]赵希荣.壳聚糖与葡萄糖发生美拉德反应的条件及产物的抗氧化性能[J].中国食品添加剂.2004,NO.1:63-66.
    [20]赵国骏,孙龙生.不同来源壳聚糖的基本特性及其红外光谱研究[J].功能高分子学报,1998,11(3):403-407.
    [21]Hughes J, Ramsden D K, Symes K C. The flocculation of bacteria using cationic synthetic flocculants and chitosan[J]. Biotechnology techniques,1990,4(1):55-60.
    [22]Pearson F. G., Marchessault R. H., Liang C. Y.. Infrared spectra of crystalline polysaccharides. V. Chitin. [J]. Polymer Science, 1960,43(141):101-116.
    [23]董炎明,王勉.壳聚糖衍生物的红外光谱分析[J].纤维素科学与技术.2001,9(2):42-56.
    [24]季莉,施亦东,任元元,童薇.采用壳聚糖对羊毛进行防毡缩整理探讨[J].纺织科技进展,2004(5):27-28.
    [25]赵孝彬,杜磊.聚氨酯弹性体及其微相分离[J].高分子材料科学与工程,2002,18(2):16-20.
    [26]赵孝彬,杜磊.聚氨酯的结构与微相分离[J].聚氨酯工业,2001,16(1):4-8.
    [27]段杉,彭喜春,彭志英.低聚壳聚糖的制备及应用[J].中国食品添加剂,2002,(5):66-71.
    [28]覃彩芹,肖玲,杜予民等.过氧化氢氧化降解壳聚糖的可控性研究[J].武汉大学学报,2000,46(2):196-198.
    [29]韩晓,史吉华,阎克路.壳聚糖与水性聚氨酯的复配及其性能研究[J].毛纺科技,2013,41(5):39-44.
    [30]董炎明,王勉.壳聚糖衍生物的红外光谱分析[J].纤维素科学与技术.2001,9(2):42-56.
    [31]查刘生,吴明元,杨建军.热反应型聚氨酯羊毛防缩剂的防缩机理探讨[J].纺织学报,1996(6):152-155.
    [1]王爱勤.甲壳素化学[M].科学出版社,2008:121-125.
    [2]Ravi Kumar M N V. A review of chitin and chitosan applications[J]. Reactive and functional polymers,2000,46(1):1-27.
    [3]陈建,左武松.壳聚糖的应用研究综述[J].淮北煤炭师范学院学报:自然科学版,2004,25(2):42-46.
    [4]唐星华,沈明才.壳聚糖及其衍生物应用研究进展[J].日用化学工业,2005,35(1):40-44.
    [5]Shih C Y, Chen C W, Huang K S. Adsorption of color dyestuffs on polyurethane-chitosan blends[J]. Journal of applied polymer science,2004,91(6):3991-3998.
    [6]Xu D, Meng Z, Han M, et al. Novel blood-compatible waterborne polyurethane using chitosan as an extender[J]. Journal of Applied Polymer Science,2008,109(1): 240-246.
    [7]Silva S S, Menezes S M C, Garcia R B. Synthesis and characterization of polyurethane-g-chitosan[J]. European Polymer Journal,2003,39(7):1515-1519.
    [8]Lin Y H, Chou N K, Wu W J, et al. Physical properties of waterborne polyurethane blended with chitosan[J]. Journal of Applied Polymer Science,2007,104(4): 2683-2689.
    [9]Gong P, Zhang L, Zhuang L, et al. Synthesis and characterization of polyurethane-chitosan interpenetrating polymer networks[J]. Journal of applied polymer science, 1998,68(8):1321-1329.
    [10]Yang J M, Yang S J, Lin H T, et al. Chitosan containing PU/Poly (NIPAAm) thermosensitive membrane for wound dressing[J]. Materials Science and Engineering: C,2008,28(1):150-156.
    [11]Dong K, Guo X, Xu J, et al. Preparation, characterization and dye decolorization application of chitosan/polyurethane foam material[J]. Polymer-Plastics Technology and Engineering,2012,51(7):754-759.
    [12]Ryabov S V, Boiko V V, Kobrina L V, et al. Study and characterization of polyurethane composites filled with polysaccharides[J]. Polymer Science Series A, 2006,48(8):841-853.
    [13]Barikani M, Honarkar H, Barikani M. Synthesis and characterization of chitosan-based polyurethane elastomer dispersions[J]. Monatshefte fur Chemie-Chemical Monthly,2010,141(6):653-659.
    [14]Nikje M M A, Tehrani Z M. Synthesis and characterization of waterborne polyurethane-chitosan nanocomposites[J]. Polymer-Plastics Technology and Engineering,2010,49(8):812-817.
    [15]Oprea S. Preparation and characterization of the agar/polyurethane composites[J]. Journal of Composite Materials,2011,45(20):2039-2045.
    [16]Nikje M M A, Tehrani Z M. Synthesis and characterization of waterborne polyurethane-chitosan nanocomposites[J].Polymer-Plastrics Technology and Engineering,2010,49(8):812-817.
    [17]彭志平.壳聚糖、甲壳素/聚氨酯复合材料的研究[D].湘潭大学,2004.
    [18]杨丑伟,王香梅,张晶,郭燕鸿.壳聚糖/聚氨酯复合材料研究进展[J].化学推进剂与高分子材料,2011,04:34-38.
    [19]陈玉波,徐卫林,左丹英.壳聚糖微粉对聚氨酯多孔膜结构和性能的影响[J].高分子材料科学与工程,2009,(7):49-52.
    [20]赵孝彬,杜磊.聚氨酯弹性体及其微相分离[J].高分子材料科学与工程,2002,18(2):16-20.
    [21]Nair P A, Ramesh P. Synthesis and characterization of calcium-containing polyur ethane using calcium lactate as a chain extender[J]. Polymer journal,2012,44(10): 1009-1014.
    [1]Courtaulds L, Robert L W. Improvement in and relating to production of artificial protein threads, yarns and the like:GB,667115[P],1952-02-27.
    [2]Timmons S F, Blanchard C R, Smith R A. Method of making and cross-linking keratin-based films, sheets and bulk materials [P]. WO Patent/9926570,1999.
    [3]朱磊,朱赛,陈维国.羊毛角蛋白质溶液的制备及其在织物整理中的应用[J].丝绸,2005(2):26-27.
    [4]C Barba, S Scott, A Roddick-Lanzilotta, etc. Resroring important hair properties with wool keratin proteins and p eptides[J]. Fibers and Polymers,2010(11): 1055-1061.
    [5]徐恒星.羊毛角蛋白的提取及其应用[D].东华大学硕士论文,2012.
    [6]王丽静,史吉华,周奥佳,阎克路.新型羊毛角蛋白提取技术研究[J].毛纺科技,2013,41(5):1-6.
    [7]沈小林.电晕辐照改善羊毛织物的防毡缩性能[D].西安科技学院,2005.
    [8]张茜.羊毛织物生态防毡缩整理的研究[D].天津工业大学,2006.
    [9]F J Douthwaite, D M Lewis, U S Hamedat. Reaction of cystine residues in wool with peroxy compounds [J]. Textile Research Journal,1993 (63):177-183.
    [10]W E Savige, J A Maclaren. The chemistry of organic sulfur compounds.1966 (2).
    [11]E G Bendit. A quantitative X-ray diffraction study of the alpha-beta transformation in wool keratin [J]. Textile Research Journal,1960 (30):547-555.
    [12]W S Simpson, G H Crawshaw. Wool:Science and technology [M]. Woodhead Publishing Ltd and CRC Press LLC,2002.
    [13]水谷裕,野村邦羲,田岛正範.蛋白纎维品の処理方法[P]. JP Patent 2003-278080.
    [1]徐恒星.羊毛角蛋白的提取及其应用[D].东华大学硕士论文,2012.
    [2]Tanabe T, Okitsu N, Tachibana A, et al. Preparation and characterization of keratin-chitosan composite film[J]. Biomaterials,2002,23(3):817-825.
    [3]Sionkowska A, Skopinska-Wisniewska J, Planecka A, et al. The influence of UV irradiation on the properties of chitosan films containing keratin[J]. Polymer Degradation and Stability,2010,95(12):2486-2491.
    [4]Saravanan S, Sameera D K, Moorthi A, et al. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering[J]. International journal of biological macromolecules,2013,62:481-486.
    [5]Staroszczyk H, Sztuka K, Wolska J, et al. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films:FT-IR study[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,117:707-712.
    [6]徐恒星,史吉华,周奥佳,阎克路.羊毛角蛋白的提取及其成膜性研究[J].纺织学报.2012,33(6):41-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700