用户名: 密码: 验证码:
添加剂MPS、PEG、Cl~-对铜电沉积的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝是传统的集成电路的互连介质,由于铜比铝具有更低的电阻率和较高的抗电迁移性,是较铝更理想的材料。要实现铜在芯片上微米或亚微米级刻槽中的超等角电沉积填充,必须借助添加剂。铜超等角电沉积填充镀液中通常采用的添加剂有3-巯基-1-丙烷磺酸钠(MPS)或者聚二硫二丙烷磺酸钠(SPS)、聚乙二醇(PEG)和氯离子(Cl~-)。论文采用循环伏安(CV)、线性电位扫描(LSV)、计时安培(CA)和交流阻抗(AC impedance)电化学方法结合扫描电镜(SEM)方法研究了在CuSO4-H2SO4体系中,添加剂MPS、PEG、Cl~-及其协同作用对铜在玻碳电极(GCE)上的电沉积过程的影响。
     CV、LSV和电化学阻抗谱(EIS)实验结果一致表明:MPS单独作用时,阻化铜的电沉积,并且随着MPS浓度的增加,其阻化作用增强;在电解液中存在添加剂MPS和Cl~-(MPS-Cl~-)时,CV曲线上铜的沉积峰电位正移程度比只含有Cl~-更大,LSV曲线正移程度也更大,反应电阻比只含有Cl~-更小,这些表明MPS-Cl~-对铜的电沉积过程有强烈的促进作用,并且比只含有相同浓度Cl~-的促进作用更强,并且随着MPS浓度的增加,促进的作用增强;MPS和PEG(MPS-PEG)的协同作用对铜的电沉积具有抑制作用,并且比MPS或者PEG单独作用下的阻化作用更强,当保持溶液中的PEG浓度不变时,随着MPS浓度的增加,对铜电沉积的阻化作用也增大;添加剂MPS、PEG和Cl~-同时存在(MPS-PEG-Cl~-)对铜的电沉积具有促进作用,并且随着MPS浓度的增加,促进的作用增强。
     CA和SEM研究结果表明:MPS可以提高铜的成核数密度,对铜的电结晶表现为促进作用,并且成核数目随着MPS浓度的增大而增加,铜离子的扩散系数没有明显变化;MPS-Cl~-可以提高铜的成核数密度和铜离子的扩散系数,并且成核数密度随着MPS浓度的增大而增加;MPS-PEG作用下会减小铜的成核数密度,成核数密度随着MPS浓度的增大有减小的趋势,对铜离子的扩散系数没有明显影响;MPS-PEG-Cl~-会提高铜的成核数密度,并且成核数密度随着MPS浓度的增大而增加。
     用CA实验对铜成核机理的研究表明:在CuSO4-H2SO4电解液中,没有添加剂时,铜在玻碳电极上的电结晶符合三维瞬时成核机理;添加剂MPS或MPS-PEG不改变Cu的电结晶成核机理,仍然按瞬时成核和三维生长方式进行;MPS-Cl~-或MPS-PEG-Cl~-作用下,在电结晶刚开始时成核机理符合三维瞬时成核,但是过一段时间后,成核机理逐渐转变为连续成核,与Cl~-的成核机理基本一致。SEM的表征结果可以证明MPS或者MPS-Cl~-作用下,铜的电结晶仍符合三维瞬时成核机理。
     EIS的实验结果表明随着极化电位的增加,会减小MPS或者MPS-PEG对铜电沉积的阻化作用,增大MPS-Clˉ或MPS-PEG-Clˉ对铜电沉积的促进作用。不同添加剂作用下的EIS都显示在增加极化电位的情况下,高频端的容抗弧直径减小,反应电阻减小。
Copper is a preferred material for the fabrication of interconnect structures in integrated circuits because of its lower resistivity and superior electromigration properties than aluminium. Electrochemical deposition is a simple technique to realize copper superfilling in the micron- or submicron-size trench of chip due to the presence of organic and inorganic additives in the electrolyte. The most commonly additives employed are 3-mercapto-1-propanesulfonate sodium salt (MPS) or bis-(3-soldiumsulfopropyl disulfide) (SPS), polyethylene glycol (PEG) and chloride ions (Cl~-). In this work, the influence of MPS, PEG, Cl~- and their synergistic effect on the copper electrodeposition on a glass carbon electrode (GCE) from CuSO4-H2SO4 electrolytes were studied by using cyclic voltammetry (CV), linear sweep voltammetry(LSV), chronoamperometry(CA), AC impedance and scanning electron microscopy (SEM) techniques.
     The experiment results of CV, LSV and EIS indicated that MPS inhibited copper electrodeposition. And the inhibition effect became stronger with the increase of MPS concentration. In the presence of MPS-Cl~-, the cathodic potential peak of CV curves shifted to positive direction. The LSV curves positive shifted and the charge transfer resistance became smaller compared to with Cl~- ions alone. These results indicated that MPS-Cl~- had a significant acceleration on copper electrodeposition and the acceleration was greater than the Cl~- ions. Moreover, the accelerated effect of MPS-Cl~- became stronger with the increase of MPS concentration. MPS-PEG had a stronger inhibition than either MPS or PEG. The inhibition effect of MPS-PEG became stronger with the increase of MPS concentration. The copper electrodeposition was accelerated in the presence of MPS-PEG-Cl~-. And the acceleration effect of MPS-PEG-Cl~- became stronger with the increase of MPS concentration.
     The experiment results of CA and SEM indicated that MPS accelerated the electrocrystallization process of copper and the nuclear number density was increased with the increase of MPS concentration. MPS-Cl~- could increase both the nuclear number density and Cu2+ diffusion coefficient. However, the nuclear number density decreased with the increase of the concentration of MPS in electrolytes with MPS-PEG. The nuclear number density increased with the increase of MPS concentration in electrolytes with MPS-PEG-Cl~-. The diffusion coefficient of Cu2+ did not changed observably in solution with MPS and MPS-PEG.
     The experiment results of CA demonstrated that copper electrocrystallization from the 0.05 M CuSO4-0.5 M H2SO4 electrolytes either with or without MPS followed instantaneous nucleation with three-dimensional growth. The addition of MPS-PEG did not change the nucleation mechanism, and still followed the instantaneous nucleation with three-dimensional growth. In the presence of MPS-Cl~- or MPS-PEG-Cl~-, the nucleation mechanism was 3-dimentional instantaneous nucleation during the early short time of electrocrystallization, and then it changed to 3-D progressive nucleation gradually in the late stage of electrocrystallization. The experiment results of SEM demonstrated that copper electrocrystallization from the 0.05 M CuSO4-0.5 M H2SO4 electrolytes with MPS or MPS-Cl~- followed 3-D instantaneous nucleation.
     EIS results showed the inhibition effect of MPS or MPS-PEG on copper electrodeposition was reduced with the increase of polarization potential. Whereas the promoting function of MPS-Cl~- or MPS-PEG-Cl~- on copper electrodeposition was enhanced with the increase of polarization potential. The reaction resistance of copper in electrolytes with any additive packages decreased with the increase of polarization potential.
引文
[1]辜敏,杨防祖,黄令,姚士冰,周绍民.超大规模集成电路中的电沉积铜[J].电镀与精饰, 2004, 26(1):13-17.
    [2] Chia Hao Chan, Jem Kun Chen, Feng Chih Chang. In situ characterization of Cu CMP slurry and defect reduction using IR thermal camera [J]. Microelectronic Engineering, 2004, 75:257–262.
    [3]张国海,夏洋等. ULSI中铜互连线技术的关键工艺[J].微电子学, 2001, 31(2): 146-149.
    [4] P. C. Andricacos, C. J. Uzoh, O. Dukovic, et al. Damascene copper electrodeposition for chip inter-connects [J]. IBM J Res Develop, 1998, 42(5):567-673.
    [5] T. P. Moffat, J. E. Bonevich, W. H. Huber, et al. Superconformal electrodeposition of copper in 500-90 nm feature [J]. Electrochem Soc, 2000, 147(12):4524-4535.
    [6] J. J. Kelly, C. Y. Tian, A. C. West. Leveling and macrostructure effects of additive for copper electrodeposition [J]. Electrochem Soc, 2001, 146(7):2540-2545.
    [7] P. M. Vereecken, R. A. Binstead, H. Deligianni, P. C. Andricacos. The chemistry of additives in damascene copper plating [J]. IBM J.Res.&Dev, 2005, 49(1):3-18.
    [8] C. Gabrielli, P. Mocoteguy, H. Perrot, D. Nieto-Sanz, A. Zdunek. A model for copper deposition in the damascene process [J]. Electrochim. Acta, 2006, 51:1462-1472.
    [9] M. Tan, C. G. Guymon, D. R. Wheeler, J. N. Harb. The Role of SPS, MPSA, and Chloride in Additive Systems for Copper Electrodeposition [J]. Electrochem. Soc, 2007, 154:D78-D81.
    [10] M. A. Pasquale, L. M. Gassa, A. J. Arvia. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives [J]. Electrochim. Acta, 2008, 53:5891-5904.
    [11] C. G. Guymon, J. N. Harb, R. L. Rowley, D. R. Wheeler. MPSA effects on copper electrodeposition investigated by molecular dynamics simulations [J]. Chem. Phys, 2008, 128:044717 1-12.
    [12]覃奇贤,郭鹤桐等.电镀原理与工艺[M].第二版.天津:天津科学技术出版社, 1993, 1.
    [13]洪波.电沉积铜薄膜中织构与内应力的研究[D].上海:上海交通大学材料科学与工程学院, 2008.
    [14]李荻.电化学原理[M].修订版.北京:北京航空航天大学出版社, 1999:419-420.
    [15] Kazuo Kondo, Taichi Nakamura, Naoki Okamoto. Correlation between Cu (I)-complexes and filling of via cross sections by copper electrodeposition [J]. Appl Electrochem, 2009, 39:1789-1795.
    [16] R. Kaischew, B. Mutaftschiev, Z. Phys. Chem, 1955, 204:334-345.
    [17]李强.添加剂PEG、Clˉ、SPS作用下铜电结晶过程研究[D].重庆:重庆大学, 2007.
    [18]郭鹤桐,刘淑兰.理论电化学[M].北京:宇航出版社, 1984, 233-244.
    [19] Darko Grujicic, Batric Pesic. Electrodeposition of copper: the nucleation mechanisms [J]. Electrochimica Acta, 2002, 47:2901-2912.
    [20] E. Budevski, G. Staikov, W. J. Lorenz. Electrocrystallization Nucleation and growth Phenomena [J]. Electrochim Acta, 2000, 45:2559-2574.
    [21] T. E. Gruz, M. Z. Volmer. Physik. Chem, 1930, 150A:203-212.
    [22] G. I. Finch, A. G. Quarrell, H. Wilman. Electron diffraction and surface structure [J]. Trans. Faraday Soc, 1935, 31:1051-1080.
    [23] G. I. Finch, H. Wilman, L. Yang. Disc.Faraday Soc, 1947, 1:144-158.
    [24] R. Kaischew, B. Mutaftschiev, Z. Phys. Chem, 1955, 204:334-345.
    [25] H. Fischer. Electrochim.Acta, 1960, 2:50-64.
    [26] W. Lorenz. Oscillographic overvoltage measurements [J]. Z. Electrochem, 1954, 58:912-918.
    [27] M. Fleischmann, H. R. Thirsk. Advances in Electrochemistry and Electrochemical Engineering, 1963, 3:123-156.
    [28] R. D. Armstrong, J. A. Harrison. Electrochem.Soc, 1969, 116:328-333.
    [29] Milchev, S. Stoyanov, R. Kaischew. Thin Solid Films, 1974, 22:255-267.
    [30] E. Budevski, V. Bostanov, G. Staikov. Electrocrystallization [J]. Ann.Rev.Mat.Sci, 1980, 10:85-112.
    [31] A. I. Danilov, E. B. Molodkina, I. V. Pobelov, et al. Russ. J. Electrochem, 2002, 38(7): 743-754.
    [32] M. Ilieva, V. Tsakova. Electrochim. Acta, 2005, 50:1669-1674.
    [33] Ji C, OskamG, Searson P C. Surf. Sci., 2001, 492:115-124.
    [34] M. Fleishmann, H. R. Thirsk. The potentiostatic study of the growth of deposits on electrodes [J]. Electrochim.Acta, 1959, 1:146-160.
    [35] Bewick, M. Fleshmann, H. R. Thirsk. Trans. Faraday. Soc., 1962, 58:2200-2216.
    [36] B. Scharifker, G. Hills. Theoretical and experimental studies of multiple nucleation [J]. Electrochim.Acta, 1983, 28(7):879-889.
    [37]李权.聚二硫二丙烷磺酸钠对铜电沉积过程的表面作用机理研究[J].四川师范大学学报, 1999, 22(1):71-73.
    [38]冉鸣.表面活性剂对铜电成核动力学行为的影响[J].四川师范大学学报(自然科学版), 1997, 20(3):100-104.
    [39]邓文,刘昭林,项民,郭鹤桐.酸性镀铜体系的交流阻抗研究[J].电化学, 1998,4(2):152-158.
    [40]许家园,杨防祖,谢兆雄,周绍民.酸性镀铜液中Clˉ离子的作用机理研究[J].厦门大学学报(自然科学版), 1994, 33(5):647-651.
    [41]周绍民,张瀛洲等.某些光亮酸性镀铜添加剂的作用机理[J].厦门大学报, 1980, 19(1):54-70.
    [42]张瀛洲,方加福,周绍民.酸性溶液中2-四氢噻唑硫酮等添加剂对铜电沉积过程的影响[J].厦门大学学报(自然科学版), 1980, 19(2):63-73.
    [43]辜敏,杨防祖,黄令,姚士冰,周绍民.氯离子对铜在玻碳电极上电结晶的影响[J].化学学报, 2002, 60(11):1946-1950.
    [44]刘烈炜,吴曲勇,卢波兰,杨志强.氯离子对酸性镀铜电沉积的影响[J].电镀与环保2004, 24(5):7-9.
    [45]刘烈炜,郭沨,田炜,赵志祥,杨志强.酞菁染料与氯离子协同效应在酸性镀铜中的作用[J].材料保护, 2002, 35(5):22-24.
    [46] M. Gu, L. Huang, F. Z. Yang, S. B. Yao, S. M. Zhou. Influence of Chloride and PEG on Electrochemical nucleation of copper [J].Trans.Inst.Metal Finishing, 2002, 80(6):168-171.
    [47]辜敏,鲜晓红. (110)晶面全择优取向Cu镀层的制备及其条件优化[J].物理化学学报, 2006, 22(3):378-382.
    [48]辜敏,李强,鲜晓红,卿胜兰,刘克万. PEG-Cl-添加剂存在下的铜电结晶过程研究[J].化学学报, 2007, 65(10):881-886.
    [49]李强,辜敏等.添加剂PEG/Cl-/SPS对铜在玻碳电极上电结晶的影响[C].第14次全国电化学会议论文集.扬州, 2007:720-721.
    [50] V. D. Jovic, B. M. Jovic, J. Serb. Chem. Soc., 2001, 66:935.
    [51] M. A. Pasquale, D. P. Barkey, A. J. Arvia. Electrochem. Soc, 2005, 152:C149.
    [52] Jae Jeong Kim, Soo-Kil Kim, Yong Shik Kim. Catalytic behavior of 3-mercapto-1-propane sulfonic acid on Cu electrodeposition and its effect on Cu film properties for CMOS device metallization [J]. Electroanalytical Chemistry, 2003: 61-66.
    [53] Jeong Han Kim, Ryoung Hee Kim, Hyuk Sang Kwon. Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition [J]. Electrochemistry Communications, 2008: 1148–1151.
    [54] Miguel A. Pasquale, Agustín. E. Bolzán, J. A. Güida, et al. A new polymeric [Cu(SO3(CH2)3SeS(CH2)3SO3)(H2O)4]n complex molecule produced from constituents of a super-conformational copper plating bath: Crystal structure, infrared and Raman spectra and thermal behaviour [J]. Solid State Sciences, 2007, 9:862-868.
    [55] Z. D. Schultz, Z. V. Feng, M. E. Biggin, A. Gewirth. Electrochem, 2006.
    [56] W. P. Dow, H. S. Huang, M. Y. Yen, H. H. Chen. Electrochem, 2005.
    [57] M. Tan, Ph. D. thesis, Brigham Young University, 2004.
    [58] K. R. Hebert, S. Adhikari, J. E. Houser. Chemical Mechanism of Suppression of Copper Electrodeposition by Poly (ethylene glycol) [J].Electrochem. Soc., 2005, 152(5):C324-C329.
    [59] J. J. Kelly, A. C. West. Copper Deposition in the Presence of Polyethylene Glycol [J]. Electrochem. Soc., 1998, 145(10):3477-3481.
    [60] Jin Y, Kondo K, Suzuki Y, Matsumoto T, Barkey D. Surface Adsorption of PEG and Cl– Additives for Copper Damascene Electrodeposition [J]. Electrochem Solid-State Lett, 2005, 8(1):C6-C8.
    [61] T. P. Moffat, D. Wheeler, D.J. Josell. Electrodeposition of Copper in the SPS-PEG-Cl Additive System [J]. Electrochem. Soc, 2004, 151(4):C262-C271.
    [62] T. P. Moffat, D. Wheeler, D. J. Josell. Electrochem Soc Interface, 2004, 13:46.
    [63] Min Tan, John N.Harb. Additive Behavior during Copper Electrodepositon in Solution Containing Clˉ, PEG and SPS [J]. 2003, 150(6):C420-C425.
    [64] K. Kondo, N. Yamakawa, Z. Tanaka, K. Hayashi. Copper damascene electrodeposition and additives [J]. Journal of Electroanalytical Chemistry, 2003, 559:137-142.
    [65] S. Wu, J. Lipkowski, T. Tyliszczak, A. P. Hitchcock. Effect of Anion Adsorption on early Stages of Copper Electrocrystallization at Au(111) Surface [J]. Progress in Surface Science, 1995, 50:227-236.
    [66] D. Stoychev. On the role of Poly(ethylene glycol) in deposition of galvanic copper coatings [J]. Trans.Inst.Metal Finishing, 1998, 76(2):73-80.
    [67] M. R. H. Hill, G. T. Rogers. Electroanal.Chem, 1978, 86:179.
    [68] L. Huang, F. Z. Yang, S. K. Xu, S. M. Zhou. Electrochemical nucleation and growth of copper on HOPG in presence of PEG and chloride ions as additives [J]. Trans.Inst.Metal Finishing, 2006, 84(1):47-51.
    [69]上海辰华仪器公司.仪器使用说明书. 2005.
    [70]郑洪波.镁与铝合金的电化学行为研究[D].重庆:重庆大学硕士论文, 2007.
    [71]查全性等著.电极过程动力学导论[M].第三版.北京:科学出版社, 2002, 213-235.
    [72]曹楚南,张鉴清,电化学阻抗谱导论[M].第一版.北京:科学出版社, 2002.
    [73]王琪.有机农药噻嗪酮的电化学行为[D].重庆:重庆大学, 2006.
    [74]夏熙,刘洪涛,刘洋. Ce4+/Ce3+氧化还原体系线性极化与交流阻抗研究[J].化学学报, 2002, 60(9):1630~1636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700