用户名: 密码: 验证码:
秀山寒武系海相碳酸盐的锶同位素组成及主要控制因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究重庆市秀山溶溪寒武系海相碳酸盐的锶同位素组成及主要控制因素。
     通过较系统地研究重庆秀山溶溪寒武系剖面的地层学、沉积岩石学、沉积相及环境,本文对该剖面进行了重新认识。岩石学特征表明,主要岩石类型包括砂岩、泥岩、碳酸盐岩及其过渡类型。碎屑岩主要分布在下寒武统;下寒武统上部和中、上寒武统主要由碳酸盐岩构成。碳酸盐的沉积环境主要为台地相。
     有关海相碳酸盐对海水信息保存性的评估研究近年来得到了越来越多的重视,已成为古海洋学研究一个不可缺少的重要前提,其发展对古海洋学及其他相关学科研究水平的提高至关重要。通过对重庆市秀山寒武系剖面海相碳酸盐的阴极发光性和Mn,Sr,Fe,Mg等元素分析,评估了寒武纪地层中各种碳酸盐结构组分对海水信息的保存性及主要控制因素。有如下3个主要控制因素:a)原始矿物组成;b)岩石的原生孔隙度;c)碳酸盐岩中陆源碎屑矿物的含量。在碳酸盐的阴极发光性、Sr含量和Mn/Sr比值三个判断成岩蚀变性的标准中,阴极发光性和Sr含量不能单独作为判断标准来检测海相碳酸盐矿物的成岩蚀变性。Mn/Sr比值在考虑了控制碳酸盐阴极发光性的Mn含量的同时,兼顾了海相和陆相元素的相对含量,因而是一种较全面的成岩蚀变性判断标准。按照碳酸盐结构组分的Mn/Sr比值,秀山溶溪剖面寒武系海相碳酸盐的各种结构组分中有28%的样品具有较强的成岩蚀变性,其组成不能代表海水。作者还强调了成岩过程中由长石等铝硅酸盐溶解提供壳源Sr所造成的碳酸盐矿物成岩蚀变可能表现为较高的Sr含量;因此,在用全岩样品进行旨在反映海水组成的各种分析时,应回避碳酸盐脉,选择含陆源碎屑低、颗粒数量少、缺乏方解石胶结物的样品,微晶灰岩或微—粉晶白云岩是较为理想的全岩样品。
     论文还对锶同位素的分析的实验室流程作了简单的论述。
     本文评述了国际上已有的寒武系海相碳酸盐的锶同位素演化曲线,公布了重庆秀山寒武系海相碳酸盐的锶同位素分析结果。尽管对样品进行了成岩蚀变检测和必要的筛选,但样品仍可能不同程度地经历了成岩蚀变,锶同位素组成与地层累积厚度投点图显得较为离散。笔者主要利用~(87)Sr/~(86)Sr比值较低的样品建立的寒武纪海水
    
    的锯同位素演化曲线在长期旋回上与国际上己公布的同时代腮同位素演化曲线仍具
    有较好相似性和可对比性,说明全球事件是海水锯同位素组成的主要控制因素,海
    水的USr/肠Sr比值在盆内对比、盆间对比、以及全球对比中都具有潜在价值。控制
    寒武纪海水锻同位素组成的全球事件主要有:从新元古代开始的泛非洲一巴西利亚
    造山运动造成硅质碎屑岩风化和侵蚀的速率增加,中寒武世沿着威德尔海一冈瓦纳
    古陆的古太平洋边缘的南非和劳伦古陆西部边缘的广泛裂谷作用,以及晚寒武世一
    奥陶纪的淹没事件、广阔陆表海和有关的沉积物对放射性成因银的封存作用等。根
    据锯同位素地层学的基本原理,利用已有的锯同位素演化曲线,笔者确定重庆秀山
    寒武系剖面寒武系底界、下一中寒武统界线和中一上寒武统界线都应适当下移;另
    外尝试确定了重庆秀山寒武纪剖面一些关键点的年龄,累积厚度1380m处的年龄为
    503—509Ma,累积厚度 1900m处的年龄约为 500Ma,这对秀山寒武系剖面下、中寒
    武统和中、上寒武统界线的确定具有参考价值。
The key point of this thesis is the Strontium Isotope Composition and Control Factors of Cambrian Marine Carbonate, Upper Yangtze Platform, which the samples were collected from Xiushan section in Chongqing.
    The section of the Cambrian in Xiushan of Chongqing has been well re-appraised over again by studying its stratigraphy, sedimentary petrology, sedimentary facies and environment in this thesis. Characteristics of its petrology reveal rock types mainly involve sandstone, mudstone, carbonate rock and their transitional types. The clastic rocks distribute mainly in the Lower Cambrian and the carbonate rocks in the upper part of the Lower Cambrian and middle and Upper Cambrian. The sedimentary environment of carbonate is platform facies.
    Evaluation on the diagenetic alteration of marine carbonate and its preservation for information of sea water have been paid more attention recently and become an important premise of the research on Palaeo-oceanography, whose development is very important for the improvement of the research level in Palaeo-oceanography and relative other subjects. Based on the test of cathodolummescence and the analyses of Mn, Sr, Fe and Mg of the marine carbonate samples collected from the sedimentary section of Cambrian in Xiushan of Chongqing, Southwest China, this paper assesses the preservation of different structural components for the information of Cambrian sea water. The main control factors of carbonate of preservation for information of seawater are: a) the components of original minerals; b) the primary porosity of rock; c) the content of terrigenous elastics of carbonate rocks. Among the discrimination criterion controlling the alteration of carbonate, neither cathodoluminescence of the carbonate minerals nor t
    he content of Sr can act solely as discrimination criterion for controlling the alteration of marine carbonate. The Mn/Sr value considers the Mn content for control factors of cathodoluminescence and the relative content of the marine versus terrigenous elements. So the Mn/Sr ratio is the relatively comprehensive discrimination criterion for controlling the alteration of marine carbonate. By the analysis for Cambrian stratum in Xiushan of Chongqing, according to the Mn/Sr value of the marine carbonate of different structural components, the 28% samples that
    
    
    can't stand for the original seawater in different structural components of the marine carbonate had strongly undergone diagenetic alteration. This paper emphasizes the effect of the dissolution of aluminosilicate during diagenesis may provide more radiogenic strontium which would result in a high content of strontium in carbonate rocks. So we should avoid the vein of carbonate and select the samples with less terrigenous clastic, less grain content and lacking calcite cementation collected as analysis samples. The microcrystalline limestone and micro- to fine-crystalline dolomite are rather fairly whole rock samples.
    The experimental process of the strontium isotope measurement was discussed in brief here.
    This paper also discusses the strontium isotope evolution curve published over the world, present strontium isotope results of the section of Cambrian in Xiushan of Chongqing. Samples studied here were collected from the sedimentary section of Cambrian in Xiushan of Chongqing, Southwest China. Samples for strontium isotopic screened were selected by way of the test of cathodoluminescence, observation of thin sections, and analysis of Sr and Mn. The Mn/Sr value of all samples presented in this paper are less than 2, and the cathodoluminescence is dull, however, the samples from the Cambrian underwent diagenetic alteration to a certain degree, and the plotted points of the thickness and 87Sr/86Sr value are somewhat discrete. The strontium isotope evolution curve drawn from the data with relatively low 87Sr/86Sr value are consistent with other curves based on samples from different areas of the world, supporting the notion of global consistency of strontium isotope composition of marine carbonates. The stronti
引文
1. Allegre C J, Gaillardet J, Meynadier L. The evolution of sea water strontium isotope in the last hundred million years: reinterpretation and consequence for erosion and climate models [J]. Eos, Transactions, American Geophysical Union, 1996, 77, 46, Suppl. 325.
    2. Azmy K, Veizer J, Wenzel B, et al. Silurian strontium isotope stratigraphy [J]. GSA Bull, 1999,111(4): 475-483.
    3. Bailey T R, McArthur J M, Prince H, et al. Dissolution methods for strontium isotope stratigraphy: whole rock analysis [J]. Chem. Geol., 2000, 167:313-319.
    4. Banner J L, and Kaufman J. The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri [J]. Geol. Soc. Am. Bull. 1994, 106:1074-1082.
    5. Barron E J, Washington W M. The role of geographic variables in explaining palaeoclimates: results from Cretaceous climate model sensitivity studies [J]. J. Geophys. Res., 1984, 89: 1267-1279.
    6. Barron E J. A warm equable Cretaceous: the nature of the problem [J]. Earth-Sci. Rev., 1983,19: 305-338.
    7. Berner R A. GEOCARB Ⅱ: A revised model of atmospheric CO2 over Phanerozoic time [J]. Am. J. Sci., 1994, 294:56-91.
    8. Berner R A. The carbon cycle and CO2 over Phanerozoic time: The role of land plants [J]. Royal Society Philosophical Transactions, ser. B, 1998, 353: 75-82.
    9. Bertram C I, Elderfield H, Aldridge R J and Conway Morris S. ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd and REEs in Silurian phosphatic fossils [J]. Earth Planet. Sci. Lett. 1992, 113: 239-249.
    10. Blatt H, Middleton G, Murray R. Origin of sedimentary, second edition. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980, 510-537.
    11. Bralower T J, Fullagar P D, Paull C K, et al. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections [J]. Geol. Soc. Am. Bull, 1997, 109: 1421-1442.
    12. Burke W H, Denison R E, Hetherington E A, Koepnick R B. Nelson H F, Otto J B. Variation of 87Sr/86Sr throughout Phanerozoic time [J], Geology, 1982,10:516-519.
    13. Carpenter S J, Lohmann K C, Holden P, et al. δ~(18)O values, ~(87)Sr/~(86)Sr and Sr/Mg ratios of Late Devonian abiotic calcite: implications for the composition of ancient seawater [J]. Geochimica et Cosmochimica Acta, 1991, 55:1991-2010.
    14. Cummins D I, Elderfield H, The strontium isotopic composition of Brigantian (late Dinantian) seaweater [J]. Chem. Geol., 1994, 118: 255-270.
    15. Denison R E, Kirkland D W, Evans R. Using strontium isotopes to determine the age and origin of gypsum and anhydrite beds [J]. Journal of Geology, 1998a, 106:1-17.
    16. Denison R E, Koepnick R B, Burke W H, et al. Construction of the Cambrian and Ordovician seawater ~(87)Sr/~(86)Sr curve [J]. Chem. Geol., 1998b, 152: 325-340.
    17. Denison R E, Koepnick R B, Burke W H, Hetherington E A, et al. Constrction of the Silurian and Devonian seawater ~(87)Sr/~(86)Sr curve[J]. Chem. Geol., 1997, 112: 145-167.
    18. Denison R E, Koepnick R B, Burke W H, Hetherington E A, Fletcher A. Construction of the Mississippian, Pennsylvanian and Permian seawater ~(87)Sr/~(86)Sr curve [J]. Chem. Geol. 1994,112:
    
    145-167.
    19. Derry L A, Brasier M D, Corfleld R M, et al. Sr and C isotopes in lower Cambrian carbonates from the Siberian craton: a palco-environmental record during the "Cambrian" explosion [J]. Earth Planet. Sci. Lett., 1994, 128: 671-681.
    20. Derry L A, Kaufman A J, Jacobsen S B. Sediment cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta., 1992, 56: 1317-1329.
    21. Derry L A, Keto L, Jacobsen S. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland [J]. Geochimica et Cosmochimica Acta, 1989, 53:2331-2339.
    22. Dia A N, Cohen A S, O'Nions R K, et al., Seaweater Sr isotope variation over the past 300 Kyr and influence of global climate cycles [J]. Nature, 1992,356:786:788.
    23. Diener A, Ebneth S, Veizer J and Buhl D. Strontium isotope stratigraphy of the Middle Devonian: brachiopods and conodonts [J]. Geochimica et Cosmochimica Acta, 1996, 60:639-652.
    24. Dingle R V, McArthur J M, Vroon P. Oligocene and Pliocene interglacial events in the Antarctic Peninsula dated using strontium isotope stratigraphy [J]. Journal of the Geological Society of London, 1997,154: 257-264.
    25. Ebers M L and Kopp O C. Cathodoluminescent Microstratigraphy in Gangue Dolomite, the Mascot-Jefferson City District, Tennessee [J]. Econ,Geol., 1979,74: 908-918.
    26. Ebneth S, Diener A, Buhl D, Veizer J. Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany [J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 1997, 132: 79-96.
    27. Fairchild I J. Chemical controls of natural dolomites and calcites: new data and reviews [J]. Sedimentology, 1983,30(4):579-583
    28. Fisher A G.. Climatic rhythms recorded in strata [J]. Ann. Rev. Earth Planet. Sci., 1986, 14: 351-376.
    29. Fisher A G.. The two phanerozoic supercycles. In: Berggren W.A. and van Couvering J.A., Catastrophes and earth history [M]. Princeton University Press, 1984, 129-149.
    30. Gao G, Land L S. Geochemistry of Cambro-Ordovician Arbuckle limestone, Oklahoma: implications for diagenetic δ~(18)O alteration and secular δ~(13)C and ~(87)Sr/~(86)Sr variation [J]. Geochim. Cosmochim. Acta., 1991, 55: 2911-2920.
    31. Hemming N G, Meyers W J and Grams J C. Cathodoluminescence in diagenetic calcites: the role of Fe and Mn as deduced from electron probe and spectrophotometric measurements [J]. J. Sediment. Petrol., 1989. 59:404-411
    32. Hess J, Bender M L. Schilling J G. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to Present [J]. Science, 1986, 231: 979-984.
    33. Hodell D A, Variations in the strontium isotopic composition of seawater during the Neogene [J]. Geology, 1991, 19: 24-27.
    34. Howarth R J, McArthur J M. Statistics for strontium isotope stratigraphy: a robust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation for numeric age [J]. J. Geol., 1997, 105: 441-456.
    35. Ingram B L, Coccioni R, Montanari A, Richter F M, Strontium isotopic composition of Mid-Cretaceous seawater [J]. Science, 1994, 264: 546-550.
    36. Irving E, North F K, Couillard R. Oil, climate and tectonics [J]. Can. J. Earth Sci., 1974, 11: 1-17.
    37. Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater [J].
    
    Chem. Geol., 1999 161: 37-57.
    38. Jadoul F, Berra F, Garzanti E, The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet) [J]. Journal of Asian Earth Sciences, 1998, 16:173-194.
    39. Jasper T. Strontium-, Kohlenstoff- and Sauerstoff-isotopeische Entwicklung des Meerwassers: Perm RNDr. Thesis, Ruhr-Universitat, Bochum, Germany.
    40. Jenkyns H C. Cretaceous anoxic events: from continents to oceans [J]. J. Geol. Soc. London, 1980, 137: 171-188.
    41. Jones C E, Jenkyns H C, Coe A L, Hesselbo S P. Strontium isotopic variations in Jurassic and Cretaeous seawater [J]. Geochimica et Cosmochimica Acta, 1994, 58: 3061-3074.
    42. Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous [J]. American Journal of Science, 2001, 301: 112-149.
    43. Kato-Susumu, Tazawa Kouichi, Nakano Takanori, Cenozoic strontium isotope stratigraphy in the MITI Soma-oki Well, northeastern Japan [J]. Journal of the Geological Society of Japan. 1997, 103: 1046-1052.
    44. Kaufman A J, Hayes J M, Knoll A H, et al. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism [J]. Precambrian Research, 1991, 49:301-327
    45. Kaufman A J, Jacobsen S B and Knoll A H. The Vendian record of Sr- and C-isotopic variations in seawater: implications for tectonics and paleoclimate [J]. Earth Planet. Sci. Lett., 1993, 120: 409-430.
    46. Kaufman A J, Knoll A H and Awramik S M. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case [J]. Geology, 1992, 20: 181-185.
    47. Kaufman A J, Knoll A H, Semikhatov M A, et al. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia [J]. Geol. Mag., 1996, 133: 509-533.
    48. Keto L S, Jacobsen S B. Nd and Sr isotopes variations of Early Paleozoic oceans [J]. Earth Planet. Sci. Lett, 1987, 84:27--41.
    49. Klemme H D, Ulmishek G F. Effect petroleum rocks of the world: stratigraphic distribution and controlling depositional factors [J]. AAPG Bull., 1991, 75: 667-689.
    50. Koepnick R B, Burke W H, Denison R E, Hetherington E A, Nelson H F, Otto J B, Waite L E. Construction of the seawater ~(87)Sr/~(86)Sr curve for the Cenozoic and Cretaceous: supporting data[J]. Chem. Geol. (Isotope Geosci. Section), 1985, 58: 55-81.
    51. Koepnick R B, Denison R E, Burke W H, et al. Construction of the Triassic and Jurassic portion of the Phanerozoic crrve of seawater ~(87)Sr/~(86)Sr [J]. Chem. Geol. (Isotope Geosci. Section), 1990, 80: 327-349.
    52. Lippmann F. Sedimentary carbonate minerals. Spring-Verlag Berlin, Heidelberg, New York, 1974, 134-147
    53. Liu CT, Einsele G. Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous, Tibet) [J]. Sedimentary Geology, 1996, 104: 203-226.
    54. Lynch F L, Land L S. Diagenesis of calcite cement in Frio formation sandstones and its relationship to formation water chemistry [J]. Journal of Sedimentary Research, 1996, 66(3): 439-446
    
    
    55. Martin E E, Macdougall J D. Sr and Nd isotopes at the Permian/Triassic boundary: a record of climate change [J]. Chem. Geol., 1995, 125: 73-99.
    56. McArthur J M, Crame J A, Thirlwall M F. Definition of Late Cretaceous Stage Boundaries in Antarctica Using Strontium Isotope Stratigraphy [J]. J. Geol., 2000b, 108: 623-640.
    57. McArthur J M, Howarth R J, and Bailey T R. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0-509 Ma and Accompanying Look-up Table for Deriving Numerial Age [J]. J. Geol., 2001, 109:155-170.
    58. McArthur J M, Kennedy W J, Chen M, Thirlwall M F, Gale A S. Strontium isotope stratigraphy for the Late Creataceous: direct numerical age calibration of the Sr-isotope curve for the U.S. Western interior Seaway [J]. Palaeogeogr. Palaeoclim. Palaeoecol. 1994, 108: 95-119.
    59. McArthur J M, Crame A J, Thirlwall M F. Major revision of Late Cretaceous stratigraphy of Antarctica using strontium stratigraphy [J]. J.Geol., 2000c. 108:623--640.
    60. McArthur J M, Donovan D T, Thirlwall M F, Fouke B W, Mattev D. Strontium isotope profile of the early Toarcian (JurassZc) Oceanic Anoxic Event, the duratzon of ammonite biozones, and belemnite paleotemperatures [J]. Earth Planet. Sci. Lett., 2000a, 179:269-285.
    61. McArthur J M. Recent trends in strontium isotope stratigraphy [J]. Terra Nova, 1994, 6:331-358.
    62. Mead G A, Hodell D A. Late Eocene to present strontium isotope stratigraphy: the search for controls. Eos, Transactions, American Geophysical Union. 1994,75(16, Suppl.): 203.
    63. Miller K G, Feigenson M D, Wright J D, Clement B M. Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution [J]. Paleoceanography, 1991, 6: 33-52.
    64. Montanez I P, Banner J L, Oslcger D A et al. Integrated Sr isotope variations and sea-level history of middle to upper Cambrian Platform carbonates: implications for the evolution of the evolution of Cambrian seawater ~(87)Sr/~(86)Sr [J]. Geology, 1996, 24:917-920.
    65. Montanez I P, Olseger D A, Banner J L, et al. Evolution of the Sr and C isotope composition of Cambrian oceans [J]. GSA Today, 2000, 10: 1-7.
    66. Oslick J S, Miller K G, Feigenson M D, et al. Oligocene-Miocene strontium isotopes: Stratigraphic revisions and correlations to an inferred glacioeustatic record [J]. Paleoceanography, 1994, 9: 427-443.
    67. Palmer M R, EIderfield H. Sr isotope composition of sea water over the past 75 Myr [J]. Nature, 1985, 314: 526-528.
    68. Palmer, M R, Edmond J M. The strontium isotope budget of the modern ocean [J]. Earth Planet. Sci. Lett. 1989, 92: 11-26.
    69. Paytan A, Kastner M, Martin E E, et al. Marine barite as a monitor of seawater strontium isotope composition [J]. Nature, 1993, 366: 445-449.
    70. Pierson B J. The control of cathodouminescence in dolomite by iron and manganese [J]. Sedimentology, 1981,28(5): 601-610
    71. Popp B N, Anderson T F and Sandberg P A. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones [J]. GSA Bull. 1986a, 97:1262-1269
    72. Popp N B, Podosek F A, Brannon J C, et al. ~(87)Sr/~(86)Sr in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells. Geochimica et Cosmochimica Acta, 1986b, 50: 1321-1328
    73. Qing H, Barnes C R, Buhl D and Veizer J. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: relationships to geological events and implications for coeval
    
    seawater [J]. Geochimiea et Cosmochimica Acta, 1998, 62:1721-1723
    74. Reinhardt E G, Cavazza W, Patterson R T, et al. Differential diagenesis of sedimentary components and the implications for strontium isotope analysis of carbonate rocks [J]. Chem. Geol., 2000, 164:331-343.
    75. Remane J, Faure-muret A, Odin G S, et al. International Stratigraphic Chart [J].地层学杂志,2003,27(2): 162.
    76. Richter F M, Rowley D B, DePaolo D J. Sr isotope evolution of seawater: The role of tectonics [J]. Earth and Planetary Science Letters, 1992,109:11-23.
    77. Ruppel S C, James E W, Barrick J E, et al. High-resolution ~(87)Sr/~(86)Sr chemostratigraphy of the Silurian: implications for event correlation and strontium flux [J]. Geology, 1996, 24:831-834.
    78. Sanderg P. Aragonite cements and their occurrence in ancient limestone. In: Nahum S and Paul M H, ed. Carbonate Cements [J]. Society of Economic Paleontologists and Mineralogists, Special Publication,1985, 36: 33-57.
    79. Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: cause and consequence [J]. Geol. Mijnbown, 1976, 55: 179-184.
    80. Smalley P C, Higgins A C, Howarth R J, Nicholson H, Jones C E, Swinburne N H M, Bessa J. Seawater Sr Isotope Variations Through Time: A Procedure for Constructing a Reference Curve to Date and Correlate Marine Sedimentary Rocks [J]. Geology, 1994, 22:431-434.
    81. Taylor K G, Gawthorpej R L, Curtis C D, et al. Carbonate cementation in a sequence-stratigraphic framework: Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado [J]. Journal of sedimentary research, 2000, 70(2):360-372
    82. Tissot B. Effects on prolific petroleum source rocks and major coal deposits caused by sea-level changes [J]. Nature, 1979, 277: 463-465.
    83. Veizer J, Buhl D, Diener A, Ebneth S, Podlaha O G, et al. Strontium isotope stratigraphy: potential resolution and event correlation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997,132: 65-77.
    84. Veizer J, Davin A, Azmy K, Bruckschen P, Buhl D, et al. ~(87)Sr/~(86)Sr, δ~(13)C and δ~(18)O evolution of Phanerozoic seawater [J]. Chem. Geol., 1999, 161: 59-88.
    85. Weedon G P, Jenkyns H C. Cyciostratigraphy and the Early Jurassic timescale: data from the Belemnite Marls, sourthern England [J]. Geol. Soc. Am. Bull., 1999, 111: 1823-1840.
    86. Wickman F E. Isotope ratios: a clue to the age of certain marine sediments [J]. J. Geol, 1948, 56: 61-66.
    87. Yang Jiedong, Chen Jun, An Zhisheng, Shields G, Tan Xiancong, et al. Variations in ~(87)Sr/~(86)Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 157:151-159.
    88. Yang Jiedong, Sun Weiguo, Wang Zongzhe, et al. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater [J]. Precambrian Research, 1999, 93:215-233.
    89. Zachos J C, Opdyke B N, Quinn T M, et al,. Early Cenozoic glaciation, Antarctic weathering, and seawater ~(87)Sr/~(86)Sr: is there a link? [J] Chem. Geol., 1999,161:165-180.
    90.陈骏,仇纲,杨杰东,黄土碳酸盐Sr同位素组成与原生和次生碳酸盐识别,自然科学进展,1997,7(6):731-734。
    91.陈小明,王银喜,巢湖二叠系剖面碳、氧、锶同位素和稀土元素地球化学研究,南京大学学报(地球科学),1992,4(2):36-44。
    
    
    92.崔秉荃,卢武长,杨绍全,龙门山地区泥盆纪锶、碳同位素与海平面变化,成都地质学院学报,1993a,20(2):1-8。
    93.贵州省地质矿产局108地质队,1:20万沿河幅区域地质调查报告,1969。
    94.湖北省地质矿产局区测队,1:20万咸丰幅区域地质调查报告,1971。
    95.黄思静,川西北甘溪中、上泥盆统海相碳酸盐岩的碳、锶同位素组成及其地质意义,岩石学报,1993,9(增刊):214-221。
    96.黄思静,海相碳酸盐矿物的阴极发光性与其成岩蚀变的关系,岩相古地,1990,(4):9-15。
    97.黄思静,上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究,地质学报,1997,71(1):45-53。
    98.黄思静,石和,刘洁,沈立成,锶同位素地层学研究进展,地球科学进展,200la,16(2):194-200。
    99.黄思静,石和,毛晓冬,张萌,沈立成,武文慧,早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性,成都理工大学学报(自然科学版),2003,30(1):9-18。
    100.黄思静,石和,毛晓冬,张萌,沈立成,武文慧,重庆秀山寒武系锶同位素演化曲线及全球对比,地质论评,2002a,48(5):509-519。
    101.黄思静,石和,张萌,沈立成,刘洁,武文慧,上扬子石炭—二叠纪海相碳酸盐的锶同位素演化与全球海平面变化,沉积学报,2001b,19(4):481-487。
    102.黄思静,石和,张萌,武文慧,沈立成,龙门山泥盆纪锶同位素演化曲线的全球对比及海相地层的定年,自然科学进展,2002b,12(9),945-951。
    103.黄思静,碳酸盐矿物的阴极发光性与其Fe、Mn含量的关系,矿物岩石,1992,12(4):74-79。
    104.黄思静.上扬子二叠系—三叠系初海相碳酸盐岩的碳同位素组成与生物绝灭事件.地球化学,1994,23(1):60-68。
    105.江茂生,朱井泉,陈代钊,张任祜,乔广生,塔里要盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应,中国科学(D辑),2002.1,32(1):36-42。
    106.金玉玎,王向东,王玥 译,Remane J,Faure-muret A,Odin G S,et al.国际地层表,地层学杂志,2003,27(2):161。
    107.李华芹,蔡红,秦正永,刘波,蓟县中上元古界典型剖面锶同位素组成特征及其地层意义,地球学报(中国地质科学院院报),1994,(1-2):232-244。
    108.刘宝珺,沉积岩石学,北京,地质出版社,1980。
    109.刘传联,成鑫荣,渤海湾盆地早第三纪非海相钙质超微化石的锶同位素证据,科学通报,1996,41(10):908-910。
    110.刘丛强,张劲,李春来,黄土中CaCO_3含量及其Sr同位素组成变化与古气候波动记录,科学通报,1999,44(10):1088-1092。
    111.卢武长,崔秉荃,杨绍全,张平,二叠纪海相碳酸盐的锶同位素演化及其意义,矿物岩石,1992a,12(4):80-87。
    112.卢武长,崔秉荃,杨绍全,张平,甘溪剖面泥盆系海相碳酸盐岩的同位素地层曲线,沉积学报,1994,12(3),12-20。
    113.卢武长,崔重荃,张平,杨绍全,石炭纪海相碳酸盐岩的锶同位素演化及其意义,矿物岩石,1992b,12(2):86-93。
    114.马宗晋,杜品仁,卢苗安,地球的多圈层相互作用,地学前缘,2001,8:3-8.
    115.孟祥化,葛铭,内源盆地沉积研究,北京:石油工业出版社,1993。
    116.穆恩之,尹集祥,文世宣,王义刚,章炳高,中国西藏南部珠穆朗玛峰地区的地层,中国科学,1973,16(1):59-71.
    117.瑞曼等编(Remane J,Faure-muret A,Odin G S.),国际地层表,金玉玎,王向东,王玥 译,地层学杂志,2000,24(增刊):插页。
    
    
    118.石和,黄思静,沈立成,张萌,川黔上古生界锶同位素演化曲线的地层学意义,地层学杂志,2002,26(2):106-110。
    119.石和,黄思静,沈立成,张萌,重庆秀山寒武纪海相碳酸盐的锶同位素组成及其地层学意义,地层学杂志,2003,27(1):71-76。
    120.四川省地质矿产局,四川省区域地质志[M],北京:地质出版社,1991。
    121.四川省地质矿产局107地质队,1:20万黔江幅区域地质调查报告,1974。
    122.四川省地质矿产局编,中华人民共和国地质矿产部地质专报——四川省区域地质志,北京:地质出版社,1991。
    123.四川省地质矿产局川东南地质大队,1:5万溶溪幅区域地质调查报告,1987。
    124.四川省区域地层表编写组编著,西南地区区域地层表——四川省分册,北京:地质出版社,1978。
    125.孙志国,刘宝柱,刘健,蓝先洪,吴建政,周墨清,韩春瑞,业渝光,西沙珊瑚礁锶同位素特征及其古环境意义,科学通报,1996,41(5):434-437。
    126.田景春,贵州早二叠世海相碳酸盐岩稳定同位素组成与玄武岩浆喷发热事件的关系,矿物岩石,1993,13(2):67-70。
    127.田景春,曾允孚,中国南方二叠纪古海洋锶同位素演化,沉积学报,1995,13(4):125-130。
    128.王长生,龚黎明,邓忠让,钱爱霞,杜永碧,四川省酉阳和秀山地区的寒武系,重庆:科学技术文献出版社重庆分社,1987。
    129.王世杰,董丽敏,林文祝,李春来,汪品先,赵泉鸿,吴锡浩,泥河湾组有孔虫化石群的锶同位素研究,科学通报,1995,40(22):2072-2074。
    130.王忠诚,储雪蕾,早寒武世重晶石与毒重石的锶同位素比值,科学通报,1993,38(16):1490-1492。
    131.谢渊,罗建中,张哨楠,杨宝星,刘家铎,李永铁,羌塘盆地那底岗日地区中侏罗世碳酸盐岩碳、氧、锶同位素与古海洋沉积环境,矿物岩石,2000,20(1):80-86。
    132.杨杰东,王宗哲,新疆柯坪地区早古生代地层的碳、氧和锶同位素,地质论评,1994,40(4):377-385。
    133.杨杰东,张俊明,陶仙聪,王宗哲,末元古系—寒武系底Sr、C同位素对比,高校地质学报,2000,6(4):533-545。
    134.杨杰东,郑文武,王宗哲,陶仙聪,Sr、C同位素对苏皖北部上前寒武系时代的界定,地层学杂志,2001,25(1):44-47。
    135.尹观,王成善,西藏南部中白垩世的锶,硫同位素组成及其古海洋地质意义,沉积学报,1998,16(1):107-111。
    136.尹赞勋,尹赞勋文集,北京:科学出版社,1984。
    137.曾允孚,夏文杰主编,沉积岩石学,北京:地质出版社,1986。
    138.张廷山,俞剑华,边立曾,S.Kershaw,陈晓慧,兰光志,万云,四川盆地南北缘志留系的锶和碳、氧同位素演化及其地质意义,岩相古地理,1998,18(3):41-49。
    139.张文堂,袁克兴,周志毅,钱逸,王宗哲,西南地区的寒武系,见:中国科学院南京地质古生物研究所编,西南地区碳酸盐生物地层,北京:科学出版社,1979,39-107。
    140.张志军,尹观,张其春,碳酸盐岩Sr同位素比值的选择性溶解及测定技术,地质地球化学,2002,30(4):80-84。
    141.张自超,我国某些元古宙及早寒武世碳酸盐岩石的锶同位素组成,地质论评,1995,41(4):349-354。
    142.赵娟,锶、钕、铅同位素样品准备方法介绍,岩石矿物学杂志,2003,22(1):97-98。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700