用户名: 密码: 验证码:
新疆西准噶尔萨吾尔地区后碰撞岩浆活动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
后碰撞作用可定义为:主海洋关闭以后,连续的板块会聚导致产生陆内的逆冲、扭动构造和地块的横向挤压或伸展,或沿巨大剪切带附近仍然有大量水平方向块体运动、岩浆活动和侧向增生,以及陆壳的垂向增生的陆内构造环境;时间上发生在主碰撞造山活动之后,后造山作用之前(即板内环境)这段时期内的板块地质作用。后碰撞作用是板块构造学说中整个造山旋回的一个重要阶段,而后碰撞岩浆活动(包括岩浆侵入活动和火山喷出活动)却是该过程中的一个重要地质构造事件。后碰撞岩浆活动的研究对于阐述板块构造活动过程完整性以及建立岩浆岩与板块构造的联系有着非常重要的意义。
     西准噶尔萨吾尔地区地处新疆阿勒泰地区吉木乃县及塔城地区和丰县,位于哈萨克斯坦—准噶尔板块北缘。本文基于野外地质研究开展了萨吾尔地区岩浆岩的常量元素、微量元素、稀土元素、同位素地球化学测试分析以及同位素精确定年工作,探讨了萨吾尔地区二叠纪火山-侵入岩浆活动规律,包括岩浆岩的地质特征及时空分布规律、岩石学、岩石化学、地球化学特征以及形成的地球动力学背景等。探讨了晚古生代侵入岩及二叠系火山岩形成的构造环境及其对中亚造山带演化的指示意义,以期对中亚造山带古生代地壳双向增生过程和大陆动力学背景提供有力的支持。
     区内广泛发育晚古生代后碰撞岩浆岩,侵入岩年龄在328.2—290.7Ma之间,时代上属于晚石炭世至早二叠世,区内侵入岩由早到晚(森塔斯岩体、沃肯萨拉岩体→塔斯特岩体→喀尔交岩体→阔依塔斯岩体、恰其海岩体)具有明显的地球化学演化特征。哈尔加乌组、卡拉岗组火山岩年龄在296.7—280Ma之间,为早二叠世火山活动产物。哈尔加乌组火山岩具有弱双峰式特征,卡拉岗组火山岩具有典型的双峰式特征,均形成于拉张的构造背景。据此认为晚石炭世至早二叠世,萨吾尔地区处于后碰撞构造背景,并逐渐由挤压—拉张过渡阶段演化到拉张阶段。
     区内侵入岩由I型花岗岩和A型花岗岩组成。其中,恰其海岩体、阔依塔斯岩体的岩石学和地球化学特征具有A型花岗岩的特征,属于A_2型花岗岩,侵位于板块碰撞后或造山后期(后碰撞阶段)的张性构造环境中。岩体具轻稀土富集的右倾稀土元素配分模型,δEu较低,Nd、Sr、Pb同位素显示出其幔源特征,O同位素组成δ~(18)O值由于与大气水的同位素交换而较低。锆石SHRIMP U-Pb年龄分析表明,恰其海岩体结晶年龄为290.7±9.3Ma(1σ),阔依塔斯岩体结晶年龄为297.9±4.6Ma(1σ),时代上均属于早二叠世初。A_2型花岗岩恰其海岩体和阔依塔斯岩体的产出,表明西准噶尔萨吾尔地区在早二叠世初处于后碰撞阶段的伸展期。西准噶尔萨吾尔地区的A型花岗岩可以归入乌伦古富碱火成岩带。研究区早二叠世后碰撞A型花岗岩的确定为区域早二叠世地壳的垂向增生提供了新的证据。
     I型花岗岩有森塔斯、沃肯萨拉和塔斯特等岩体组成。其中,森塔斯岩体中二长花岗岩锆石SHRIMP U-Pb年龄为328.2±5.7Ma(1σ),沃肯萨拉岩体中二长花岗岩锆石SHRIMPU-Pb年龄为323.8±6.2 Ma(1σ),塔斯特岩体全岩~(40)Ar/~(39)Ar年龄为313.6±3.2Ma(1σ),均形成于晚石炭世。岩石偏碱性,具轻稀土富集的右倾稀土元素配分模型,森塔斯、沃肯萨拉岩体δEu较小,而塔斯特岩体δEu中等,Nd、Sr、Pb同位素显示出其幔源特征,具正常O同位素组成。森塔斯岩体、沃肯萨拉岩体和塔斯特岩体均属于后碰撞花岗岩,其形成表明晚石炭世萨吾尔地区乃至西准噶尔地区处于后碰撞构造环境,说明它们是后碰撞阶段伸展期或挤压—伸展转变期的产物。
     喀尔交岩体岩性以钠长花岗斑岩、钾长花岗斑岩为主,属过渡类型花岗岩。岩体锆石SHRIMP U-Pb年龄为302.6±7.6 Ma(1σ),时代上属于晚石炭世末。岩石偏碱性,具轻稀土富集的右倾稀土元素配分模型,δEu较小,Nd、Sr、Pb同位素显示出其幔源特征,O同位素组成由于与大气水的同位素交换而较低,成岩构造环境判别显示其形成于造山晚期(后碰撞阶段)挤压构造环境中。
     萨吾尔地区两类花岗岩(A型、I型)的稀土元素特征研究表明,两类花岗岩的稀土元素地球化学特征明显不同,这与其所处的不同后碰撞构造演化阶段密切相关。森塔斯岩体和沃肯萨拉岩体为形成于后碰撞阶段晚期挤压体制下的I型花岗岩,稀土元素特征显示其岩浆演化过程中分离结晶作用不发育,具幔源特征。阔依塔斯岩体和恰其海岩体为形成于后碰撞结束阶段拉张体制下的A型花岗岩,稀土元素特征显示其岩浆演化过程中分离结晶作用发育,其稀土元素显示一定的壳源特征,应为幔源岩浆受地壳物质混染所致。
     I型花岗岩和A型花岗岩的Nd、Sr、Pb同位素特征相似,均显示出幔源特征,它们是同源岩浆不同演化阶段的产物。两类花岗岩在O同位素以及稀土元素特征上存在明显差异。对比研究表明,可以将西准噶尔萨吾尔地区的A型花岗岩归入东准噶尔乌伦古富碱火成岩带。
     区内自泥盆纪至二叠纪均有火山活动,其中二叠纪火山作用尤其强烈。二叠纪火山岩地层包括哈尔加乌组和卡拉岗组,哈尔加乌组为一套陆相中基性—中性火山岩及火山碎屑岩,卡拉岗组为一套陆相中基性—中酸性火山岩及火山碎屑岩。哈尔加乌—卡拉岗旋回火山岩主要岩性包括橄榄玄武岩、玄武岩、粗玄岩、安山岩、粗安岩、流纹岩、火山碎屑岩等。根据火山岩地层综合剖面以及火山岩的岩石学、岩相学特征,萨吾尔地区二叠纪火山活动由早至晚可分为5个阶段:中性喷发阶段、间歇性基性喷发阶段、酸性爆发及喷溢阶段、小规模中性间歇性爆发及喷溢阶段、基性喷发阶段;火山岩为陆相火山岩,具有双峰式特征。对萨吾尔地区哈尔加乌组和卡拉岗组火山岩岩石Sm、Nd、Rb、Sr同位素测试结果显示,其成岩物质来源具有幔源特征,形成于伸展的构造背景下。
     通过研究该区火山岩的稀土元素特征,并利用稀土元素与常量元素相关关系以及稀土元素协变关系判别图解,结合其区域地质背景和岩石学、岩石化学特征,判断该地区二叠纪基性、中性火山岩成岩过程以平衡部分熔融作用为主,分离结晶作用不明显,而中酸性火山岩成岩过程则受到部分熔融作用和分离结晶作用的共同影响。
Post-collision can be defined as: Continuous plate convergences will result in intracontinental thrusting, wrench structure, the block transverse compression or extention, or the inner-plate tectonic environment of significant block lateral movement, magmatism and the horizontal accretion, and vertical accretion of continental crust along horizontal direction following gigantic shear zone after major oceans shut down. Post-collision is a plate interaction which has taken place in a period between after the major orogenic movement and before the post orogeny (the tectonic environment of inner-plate). Post-collision is an important stage of the whole orogenic cycle in plate tectonics, while post-collisional magmatic activities (including intrusive and extrusive magmatism) are important tectonic events. The study on post-collisional magmatic activities has very important meanings for both clarifying the integrity of plate tectonic activities and establishing relationships between magmatic rocks and plate tectonics.
     Sawu'er region is located in West Junggar, Jimunai County of Altay District and Hefeng County of Tacheng District, Xinjiang of China. It is along the north margin of Kazakstan-Junggar plate. Based on the field study, this work has carried out macroelements, microelements, rare earth elements, isotope geochemical analysis and isotope precise dating of the magmatic rocks in Sawu'er region, as well as studies on the rules of Permian volcanic-intrusive rocks in Sawu'er Region, including the geological characteristics and spatial and temporal distributions of magmatic rocks, petrology, petrochemistry, geochemical characteristics and geodynamic backgrounds etc. The forming tectonic environment of both the late Paleozoic intrusive rocks and the Permian volcanic rocks and their implications to the evolution of the Central Asian Orogenic Belt are discussed so as to furnish forceful supports for the reseach of Palaeozoic two-dimensional crustal growth in the Central Asian Orogenic Belt and the continental dynamic background.
     The post-collisional magmatic rocks of late Paleozoic is widespread in Sawu'er. The intrusions formed from 328.2 Ma to 290.7 Ma (from late Carboniferous to early Permian). The geochemical evolvement characteristics of the intrusions from early to late (Sentasi intrusion, Wokensala intrusion→Tasite intrusion→Ka'erjia intrusion→Kuoyitasi intrusion, Qiaqihai intrusion) are obviously. The volcanic rocks in Haerjiawu Group and Kalagang Group formed from 296.7Ma to 280Ma (early Permian). The volcanic rocks in Ha'erjiawu Group have weak bimodal characteristics and those in Kalagang Group have typical bimodal characteristics, indicating that they formed in an extensional setting. Based on the time frame, geochemical evolvement characteristics and tectonic setting of the late Paleozoic magmatic rocks, we think that the Sawu'er region was in a post-collisional setting from late Carboniferous to early Permian, that evolved from an compression-extension translational stage to an extensional stage gradually.
     The intrusions in the region consist of I granite and A ones, in which Qiaqihai and Kuoyitasi intrusions are important in the region with the characteristics of A-type granite, they belong to A2-type granite that were formed in an extensional tectonic setting of post-collision. The REE chondrite-normalized patterns of the intrusions show LREE enrichment and theδEu values are lower. The Nd, Sr, Pb isotope compositions of the intrusions indicate a mantle source, while the lowδ~(18)O values resulted from the isotope exchange with meteoric water. According to SHRIMP U-Pb age dating results, the crystallization age of Qiaqihai intrusion is 290.7±9.3 Ma(1σ),and that of Kuoyitasi intrusion is 297.9±4.6 Ma(1σ),corresponding to the beginning of early Permian.The A_2-type granites indicate that the region was in the extensional period of the post-collisional stage at the beginning of early Permian in the Sawu'er region. The A-type granites in the Sawu'er region in west Junggar discovered from this work is analogous to the A-type granites found in east Junggar of the Ulungur alkali granites belt. The confirmatiom of post-collisional A-type granites of early Permian in the Sawu'er region provides new evidence for the regional vertical continental crust growth in early Permian. The former proposed Ulungur alkali granites belt may extend from the east Ulungur through the west Ulungur and to the Zhaisang in Kazakstan westwards.
     The I-type granites consist of Sentasi, Wokensala and Tasite intrusions. According to the SHRIMP U-Pb age analysis results, the crystallization age of Sentasi intrusion is 328.2±5.7 Ma(1σ) and that of Wokensala intrusion is 323.8±6.2 Ma(1σ). According to ~(40)Ar/~(39)Ar age analysis result, the crystallization age of Tasite intrusion in the Sawuer region is 313.6±3.2 Ma(1σ), which is corresponding to the productions of late Carboniferous. The intrusions are the partial alkali rock, whose REE distribution patterns are of the LREE rich type andδEu values in Sentasi, Wokensala intrusions are lower, whileδEu values are middle. The Nd, Sr, Pb isotope compositions of three intrusions indicate a mantle source, while theδ~(18)O values are normal. These intrusions belong to post-collisional granite, indicating that the Sawu'er region indeed as well as the west Junggar was in the post-collisional setting in late Carboniferous. They might form in the extension period or from compressional to extensional period during the post-collisional stage.
     The Kaejiao intrusion in the Sawu'er region is mainly albite granite porphyry, potassium feldspar granite porphyry, it belongs to the transitional type of granite. The intrusion formed at the telophase of late carboniferous as its SHRIMP U-Pb zircon age is 302.6±7.6Ma(1σ) .The intrusion is the partial alkali, whose REE distribution patterns are of the LREE enrichment type,δEu value is low and Nd、Sr、Pb isotope reflects a mantle source characteristic. The O isotope of intrusion is low for the isotope exchange with meteoric water. Diagenetic distinguishing shows it formed in compressing structuring setting of the late orogenic period (post-collisional phase).
     The characteristics of A-type and I-type granites in the Sawu'er region are obviously different, because the A-type and I-type granites formed at different stages of the post-collisional period. The Sentasi intrusion and Wokensala intrusion are the I type granites that formed at the late of the post-collisional period, and there was compressional stress. The characteristics of rare earth elements show that the fractional crystallization of the I-type granites is indistinct, and the sources of the I-type granites come from the mantle. The Kuoyitasi intrusion and Qiaqihai intrusion are the A-type granites, they were formed at the end of the post-collisional period in tensional setting. The characteristics of rare earth elements show that the fractional crystallization of the A-type granites is distinct. The sources of the A-type granites came from the mantle but contaminated by the crust.
     The Nd、Sr、Pb isotope characteristics of the I-type granites are similar to those of A-type granites. The I-type and A-type granites came from the mantle magma. They were the results of different evolusional phases of the same magma source. The O isotope and the REE characteristics of the I-type and the A-type granites were distinctly different. The A-type granites in the west of Zhungaer Sawu'er region should belong to the Ulungur alkali granites belt in East Zhungaer.
     The volcanic activities occurred in Sawu'er region during the middle Devonian to early Permian. Volcanic rocks are in the Haerjiawu Group and Kalagang Group of early Permian. The Haerjiawu Group consists of a series of basic to neutral continental volcanic rocks and pyroclastic rocks, and the Kalagang Group consists of a series of basic to acidic volcanic rocks and pyroclastic rocks. The volcanic rocks include olivine basalt, basalt, dolerite, andesite, trachyandesite, rhyolite, pyroclastic rock and so on. According to the characteristics of section, lithology and lithfacies, the Permian volcanic activity in Sawu'er Region can be grouped to five phases from early to late, neutral volcanic activity phase, intermadiate basic volcanic activity phase, acidic volcanic activity phase, small-scale intermadiate neutral volcanic activity phase and basic volcanic activity phase. The Permian volcanic rocks belong to continental volcanic rocks and have the characteristics of typical bimodal volcanic rock characteristics. This study indicates that they formed in an extensional tectonic setting.
     Based on the analysis of the REE's geochemical characteristics of the volcanic rocks in the Sawu'er region, the correlativity of REE and major elements and diagrams of covariant relation of REE, and the research results of the regional geological setting, petrology and petrochemistry characteristics, it is inferred that the mechanism for formation of Premian basic and intermediate volcanic rocks is mainly the equilibrium partial melting, and the magmatic fractional crystallization is not significant, while the rock-foming processes of intermediate-acidic volcanic rocks were influenced by both the partial melting and the fractional crystallization. The REE geochemical research has provided the important evidence for the mechanism of magmatism of the Premian post-collision stage and the geodynamical evolution process.
引文
[1] 王京彬,徐新.新疆北部后碰撞构造演化[J].地质学报,2006,80(1):23~31.
    [2] Liegeois J. P. Preface-some words on the post-collisional magmatism. Lithos, 1998,45:15~17.
    [3] 肖庆辉.花岗岩构造环境判别方法,见肖庆辉,等,著.花岗岩研究思维与方法[M].北京:地质出版社,2002,12~52.
    [4] 王广瑞.新疆北部及邻区地质构造单元与地质发展史[J].新疆地质,1996,14(1):12~27.
    [5] 王广瑞.新疆北部及邻区构造—建造图说明书[M].武汉:中国地质大学出版社,1996.
    [6] 吴庆福.论准噶尔中间地块的存在及其在哈萨克斯坦板块构造演化中的位置[A].中国北方构造文集,第2集[C],北京:地质出版社,1987,29~38.
    [7] 江远达.关于准噶尔盆地基底问题的探讨[J].新疆地质,1984,2(1):11~16.
    [8] 江远达.利用区域地球物理资料研究天山和准噶尔地区的深部构造[J].新疆地质,1985,3(4):51~57.
    [9] Coleman R G. Comtinental growth of Northwest China[J].Tectonics,1989,8(3):621~635.
    [10] 洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):217~230.
    [11] Dobretsov NL, Berzin NA and Buslov MM. Opening and tectonic evolution of the Paleo-Asian ocean[J].International Geol. Rev.,1995,37:335~360.
    [12] Khain EV, Bibikova EV, Kroner A, et al. The most ancient ophiolite of the central Asian fold belt:U-Pb and Pb-Pb zircon ages for the Dunzhugur Comples, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet.Sci.Lett.,2002,199:311~325.
    [13] Sengor A. M.C., Natal'In B.A., Burtman V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 1993,364: 299~307.
    [14] Hsu K J. Relict back-arc basins: Principles of recognition and possible new examples from China[A]. in: K.L.Kleinspehn and C.Paola(Eds.), Frontiers in Sedimentary Geology. New Perspectives in Basin Analysis[C].Springer-Verlag, N.Y., 1995,245~263.
    [15] 陈衍景.中国西北地区中亚型造山—成矿作用的研究意义和进展[J].高校地质学报,2000,6(1):17~22.
    [16] 肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992,1~169.
    [17] 何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,香港:香港文化教育出版社,1994,1~437.
    [18] 韩宝福,何国琦,王式洸.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学(D辑),1999,29(1):16~21.
    [19] 韩宝福,何国琦,王式洸,等.新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J].地质论 评,1998,44(4):396~406.
    [20] 周涛发,袁峰,范裕,等.西准噶尔萨吾尔地区A型花岗岩的地球动力学意义—来自岩石地球化学和锆石SHRIMP定年的证据[J].中国科学(D辑),2006,36(1):39~48.
    [21] 周涛发,袁峰,范裕,等.新疆萨吾尔地区晚古生代岩浆作用的时限、地球化学特征及地球动力学背景[J].岩石学报,2006,22(5):1225~1237.
    [22] 袁峰,周涛发,谭绿贵,等.西准噶尔萨吾尔地区Ⅰ型花岗岩锆石SHRIMP年龄及其意义[J].岩石学报,2006,22(5):1238~1248.
    [23] 袁峰,周涛发,杨文平,等.新疆萨吾尔地区两类花岗岩Nd、Sr、Pb、0同位素特征[J].地质学报,2006,80(2):264~272.
    [24] 赵振华,王中刚,邹天人,等.阿尔泰花岗岩类REE及0,Pb,Sr,Nd同位素组成及成岩类型.见:涂光炽主编.新疆北部固体地球科学新进展[M].北京:科学出版社,1993.239~266.
    [25] 赵振华,王中刚,邹天人,等.新疆乌伦古富碱侵入岩成因探讨[J].地球化学,1996,25(3):205~220.
    [26] Kwon S-T, Tilton GR, Coleman RG, et al. Isotopic studies bearing on the tectonices of the West Junggar region, Xinjiang, China. Tectonics, 1989,(8):719~727.
    [27] 周泰禧,陈江峰,李学明.新疆阿拉套山花岗岩类高ε_(Nd)值的成因探讨[J].地质科学,1996,31(1):71~79.
    [28] 伍建机,陈斌.西准噶尔庙尔沟后碰撞花岗岩微量元素和Nd-Sr同位素特征及成因[J].新疆地质,2004,22(1):29~35.
    [29] 李宗怀,韩宝福,李辛子,等.新疆准噶尔地区花岗岩中微粒闪长质包体特征及后碰撞花岗质岩浆起源和演化[J].岩石矿物学杂志,2004,23(3):214~226.
    [30] 熊小林,赵振华,白正华,等.西天山阿吾拉勒adakite型钠质中酸性岩及地壳垂向增生[J].科学通报,2001,281~287.
    [31] 周肃,莫宣学,赵志丹,等.西藏南部羊应乡后碰撞火山岩~(40)Ar/~(39)Ar年龄及其地质意义[J].自然科学进展,2004,14(12):1411~1418.
    [32] 刘成东,周肃,莫宣学.东昆仑造山带后碰撞花岗岩岩石地球化学和~(40)Ar/~(39)Ar同位素年代学约束[J].华东地质学院学报,2003,26(4):301~305.
    [33] 刘俊来,王安建,曹殿华,等.三江造山带后碰撞断裂构造带的结构与演化:以新生代剑川—兰坪盆地为例[J].高校地质学报,2004,10(4):488~499.
    [34] 张成立,刘良,张国伟,等.北秦岭新元古代后碰撞花岗岩的确定及其构造意义[J].地学前缘,2004,11(3):33~42.
    [35] Qiu Jian sheng, Hua Renmin. The spatial and temporal distribution of Mesozoic volcanic rocks in East China. In: Wang D and Ren Q(eds.), The Mesozoic Volcanic-Intrusive Complexes and Their Metallogenic Relations in East China, Beijing:Science Press, 1996,6~14.
    [36] 邱检生,等.浙闽沿海晚中生代A型花岗岩.见:中国东南部晚中生代花岗质火山一侵入杂岩成因和地壳演化[M].北京:科学出版社,2002.160~188.
    [37] Liegeois J P, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids; the use of sliding normalization.Lithos, 1998,45:1~28.
    [38] 刘新秒.后碰撞岩浆岩的大地构造环境及特征[J].前寒武纪研究进展,2000,23(2),121~127.
    [39] 何国琦,刘德权,李茂松,等.新疆主要造山带地壳发展的五阶段模式及成矿系列专辑[J].新疆地质,1995,13(2):99~194.
    [40] Windley B F, Kroner A, Guo J H, et al. Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China:New Zircon Age Data and Tectonic Evolution. The Journal of Geology, 2002, 110:719~737.
    [41] 涂光炽.初议中亚成矿域[J].地质科学,1999,34(1):397~404.
    [42] Groves D. I. ,Goldfarb R. J., Gebre-Mariam M. et. al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 1998, 13:7~26.
    [43] Brookfield M. E . Geological development and Phanerozoic crustal accretion in the western segment of the southern Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan). Tectonophysies, 2000, 328:1~14.
    [44] Jahn B. M. , Wu F., and Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans. R. Soc. Edinburgh Earth Sci. 2000, 91:181~193.
    [45] Heinhorst J., Lehmann B., Ermolov P., Serykh V., and Zhurutia S. Palaeozoic crustal growth and metallogeny of Central Asia: Evidence from magmatic-hydrothermal ore systems of Central Kazakhstan.Tectonophysics, 2000,328: 69~88.
    [46] Hu A.Q., Jahn B. M., and Zhang Y. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part Ⅰ. Isotopic characterization of basement rocks. Tectonophysics, 2000,328:15~52.
    [47] Chert B., Jahn B. M., Wilde S., and Xu B. Two contrasting Palaeozoic magmatic belts in northern Inner Mongolia, China:Petrogenesis and tectonic implications. Tectonophysics ,2000,328:157~182.
    [48] Chen B. and Jahn B. M. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications.Geol. Mag. 2002,139:1~13.
    [49] Chen Bin, Jahn Bor-ming .Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence.Journal of Asian Earth Sciences, 2004,23:691~703.
    [50] Chen B., Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt(NW China), with implications for Phanerozoic continental growth.Geochimica et Cosmochimica Acta, 2005,59:1307~1320.
    [51] Han Bao-fu, Wang Shi-guang, Jahn Bor-ming, Hong Da-wei, HirooKagami, Sun Yuan-lin. Depleted-mantal source for Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidences, and implications for Phanerozoic crustal growth. Geochemical Geology, 1997,138:135~159.
    [52] 韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)—后碰撞深成岩浆活动的时限[J].岩石学报,2006,22(5):1077~1086.
    [53] 韩宝福,何国琦,吴泰然,等.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J].新疆地质,2004,22(1):4~11.
    [54] 杨天南,李锦轶,孙桂华,等.中天山早泥盆世陆弧:来自花岗质糜棱岩地球化学及SHRIMP-U/Pb定年的证据[J].岩石学报,2006,22(1):41~48.
    [55] Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos,2004,78(1-2):1~24.
    [56] 新疆地质局区调大队第十分队.1∶20万区域地质调查报告,吉木乃幅、布尔津幅,1981.
    [57] Fyfe W S, et al. Ancient metamorphic-migmatite belts of the Brazilian African coasts. Nature, 1973, 224: 501.
    [58] 金振民,高山.底侵作用(underplating)及其壳.幔演化动力学意义[J].地质科技情报,1996,15(2):1~7.
    [59] 马昌前.莫霍面,下地壳与岩浆作用[J].地学前缘,1998,5(4):201~209.
    [60] 邓万明,钟大赉.壳-幔过渡带及其在岩石圈构造演化中的地质意义[J].科学通报,1998,42:2474~2482.
    [61] 杜杨松,刘金辉,秦新龙,等.岩浆底侵作用研究进展[J].自然科学进展,2003,13(3):237~242.
    [62] Price K C, Cooper A F, Woodhead J D, Cartwnght Ⅰ Phonolitic diatremes within the Dunedin. Volcano, South Island, New Zealand. J. Petrol., 2003, 49(11):2053~2080.
    [63] Tamura Y, Yuhara M, Irino N, Shukuno H. Andesites and dacites from Daisen volcano, Japan. Patual-to-total remelting of an andesite magma body. J. Petrol., 2003.44(12):2243~2260.
    [64] McCarthy T C, et al. Experimental evidence for high-temperature felsic melts formed during basaltic intrusion of the deep crust. GeoloEV. 1997.25(5):463.
    [65] 吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181~189.
    [66] Wu F, et al. Yhanerozoic crust growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 2000, 328: 89.
    [67] Wu Fu-yuan, Sun De-you, Li Hui-min, Jahn Bor-ming, Wilde S. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology,2002, 187:143~173.
    [68] 李武显,周新民.古太平洋岩石圈消减与中国东南部晚中生代火成岩成因—岩石圈消减与玄武岩底侵相结合模式的补充证据[J].大地构造与成矿学,2001,25(1):55~63.
    [69] 周新民,李武显.中国东南部晚中生代火成岩成因:岩右圈消减和玄武岩底侵相结合的模式[J].自然科学进展,2000,(10):240~247.
    [70] 楼法生,舒良树,于津海,等.江西武功山弯窿花岗岩岩石地球化学特征与成因[J].地质论评,2002.48(1):80~87.
    [71] 樊祺诚,刘若新,李惠民,等.汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学[J].科学通报,1998,43:133~137.
    [72] 邵济安,韩庆军,张履桥,等.陆壳垂向增生的两种方式:以大兴安岭为例[J].岩石学报,1999,15(4):600~606.
    [73] 陈立辉.陆壳的垂向增生[J].矿物岩石地球化学通报,2001,20(1):26~29.
    [74] 赵俊猛,张先康,赵国泽,等.不同构造环境下的壳.幔过渡带结构[J].地学前缘,1999,6(3):165~172.
    [75] 樊祺诚,隋建立,刘若新,等.汉诺坝榴辉岩相石榴辉石岩—岩浆底侵作用新证据[J].岩石学报,2001,17(1):1~6.
    [76] 高山,金振民.拆沉作用(delemination)及其壳.幔演化动力学意义[J].地质科技情报,1997,16:1~9.
    [77] 吕庆田,侯增谦,杨竹森,等.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束[J].中国科学(D辑),2004,34(9):783~794.
    [78] Bird P. Lateral extrusion of lower crust from under high topography in the isostatic limit. J Geophys Res, 1991, 96:10275~10286.
    [79] Kay R W, Kay SM. Delamination and delarnination magmatism[J].Tectonophysics, 1993, 219:177~189.
    [80] Taylor S R, Mclennan SM. The continental crust:Its composition and evolution[M]. Oxford: Blackwell, 1985.
    [81] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Rev.Geophys., 1995,33:241~265.
    [82] Rudnick R L. Making continental crust[J]. Natrue, 1995,378:571~578.
    [83] Gao S, Wedepohl K H. The negative Eu anomaly in Archean sedimentary rocks:implications for decompositin, age and importance of their granitic source[J]. E.P.S.L., 1995,133: 89~94.
    [84] 吴福元.壳-幔物质交换的岩浆岩石学研究[J].地学前缘,1998,5(3):95~103.
    [85] Gao S,et al. Howmafic isthe lower continental crust? [J]. E.P.S.L, 1998,161: 101~117.
    [86] 张旗,钱青,王二七,等.燕山中晚期的“中国东部高原”:埃达克岩的启示[J].地质科学,2001,36:248~255.
    [87] 张旗,金惟俊,王元龙,等.大陆下地壳拆沉模式初探[J].岩石学报,2006,22(2):265~276.
    [88] 赵俊猛,刘国栋,卢造勋,等.天山造山带与准噶尔盆地壳幔过渡带及其动力学含义[J].中国科学(D辑):2001,31(4):272~282.
    [89] 李锦轶,肖序常.对新疆地壳结构与构造演化几个问题的简要评述[J].地质科学,1999,34(4):405~419.
    [90] 李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评,2004,50(3):304~322.
    [91] Jahn BM, Capdevila D, Liu D, Vernon A and Badarch G. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. J. Asian Earth Sci., 2004,23:629~654.
    [92] 肖文交,韩春明,袁超,等.新疆北部石炭纪-二叠纪独特的构造-成矿作用:对古崖州洋构造域南部大地构造演化的制约[J].岩石学报,2006,22(5):1062~1076.
    [93] 李曰俊,王招明,买光荣,等.塔里木盆地艾克提克群中放射虫化石及其意义[J].新疆石油地质,2002,23(6):496~500.
    [94] 李曰俊,孙龙德,吴浩若,等.南天山西端乌栢塔尔坎群发现石炭-二叠纪放射虫化石[J].地质科学,2005,40(2):220~226.
    [95] 张立飞,艾永亮,李强,等.新疆西南天山超高压变质带的形成与演化[J].岩石学报,2005,21(4):1029~1038.
    [96] 牛贺才,许继峰,于学元,等.新疆阿尔泰富镁火山岩系的发现及其地质意义[J].科学通报,1999,109:1002~1004.
    [97] 洪大卫,王式洸,韩宝福,等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑),1995,25(4):418~426.
    [98] 顾连兴,张遵忠,吴昌志,等.关于东天山花岗岩与陆壳垂向增生的若干认识[J].岩石学报,2006,22(5):1103~1120.
    [99] 王强,赵振华,白正华,等.新疆阿拉套山石炭纪埃达克岩、富Nb岛弧玄武质岩:板片熔体与地幔橄榄岩相互作用及地壳增生[J].科学通报,2003,48(12):1342~1349.
    [100] 熊小林,蔡志勇,牛贺才,等.东天山晚古生代埃达克岩成因及铜金成矿意义[J].岩石学报,2005,21(3):967~976.
    [101] 赵振华,王强,熊小林,等.新疆北部的两类埃达克岩[J].岩石学报,2006,22(5):1249~1265.
    [102] Han Baofu, He Guoqi, Wang Shiqing. Post collision mantle genesis magma activity, battom uplifting and character of Zhungeer basin basement. Science in China(Series D), 1999, 299(1):16~21
    [103] 成守德,王元龙.新疆大地构造演化基本特征[J].新疆地质,1998,16(2):97~107.
    [104] 肖序常,汤耀庆.古中亚复合巨型缝合带南缘构造演化[M].北京:科学出版社,1991:10.
    [105] 高俊,肖序常,汤耀庆,等.新疆西南天山蓝片岩的变质作用P-T-t轨迹及构造演化[J].地质论评,1994,40(6):544~553.
    [106] 胡霭琴,张国新,李启新,等.新疆北部地质演化及其与成矿的关系[J].新疆地质,1994,12(1):32~39.
    [107] 舒良树,卢华复,印栋浩,等.新疆北部古生代大陆增生构造[J].新疆地质,2001,19(1):59~63.
    [108] 许继峰,梅厚钧,于学元,等.准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩:消减板片部分熔融的产物[J].科学通报,2001,46(8):684~688.
    [109] 何国琦,李茂松,韩宝福.中国西南天山及邻区大地构造研究[J].新疆地质,2001,19(1):7~11.
    [110] 新疆地质矿产勘查局第四地质大队.1:5万区域地质调查报告,托斯特(南半)幅、喀尔交(南半)幅、肯杰巴库勒幅、布尔克斯岱幅、舍木乃库热(北半) 幅、和丰国营牧场(北半) 幅,1998.
    [111] 李华芹,陈富文,蔡红.新疆西准噶尔地区不同类型金矿床Rb-Sr同位素年代研究[J].地质学报,2000,74(2):181~192.
    [112] 周刚,秦纪华,何立新,等.新疆萨吾尔山花岩类的形成时代[J].岩石矿物学杂志,1999(3):237~242.
    [113] 丁天府.新疆火山岩分区及其地质意义[J].新疆地质,1998,16(1):39~48.
    [114] 张季生,洪大卫,王涛.由航磁异常判断准噶尔盆地基底性质[J].地球学报,2004,25(4):473~478.
    [115] 费鼎,张新初.准噶尔地区磁场解释及区域构造特征[J].地球物理学报,1987,(5):495~467.
    [116] 肖序常,汤耀庆,李锦轶.试论新疆北部大地构造演化[J].新疆地质科学,1990,(1):47~68.
    [117] 胡霭琴,韦刚健.关于准喝尔盆地基底时代问题的讨论—据同位素年代学研究结果[J].新疆地质,2003,21(4):398~406.
    [118] Feng Y, Coleman R G, Tilton G, Xiao X. Tectonic Evolution of the West Junggar region,Xinjiang,China Tectonics,1989,8(4):729~752.
    [119] 洪大卫,王式洸,谢锡林,等.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441~456.
    [120] 赵举孝,等.西准噶尔地区区域物化探资料数字图像处理及模式识别应用研究(专题代号:85—902—07—07),1995.12.
    [121] 新疆地矿局物探大队.西准噶尔地区地球物理研究,1989.
    [122] 周刚.吉木乃县塔斯特岩体地质地球化学特征及含矿性评价[J].新疆地质,2000,(1),79~87
    [123] Streckeisen A and Le Maitre RW. A chemical approximation to the model QAPF classification of igneous rocks Neues Yahrb. Mineral .Abh., 1979,136:169-206.
    [124] Ewart A. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks with special reference to the andesitic-basaltic compositional range. In: R S Thorpe(Editor),Andesites. Wiley, Chichester, 1982, 25~87
    [125] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 1995, 36: 891~931.
    [126] 刘伟,赵振华,张福勤.新疆塔斯嘎克碱性花岗岩体矿物-大气水相互作用的氢、氧同位素制约[J].科学通报,1999,44(7):704~710.
    [127] 苏玉平,唐红峰,侯广顺,等.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学,2006,35(1):55~67.
    [128] DePaolo D.J. and Wasserburg G.J. Petrogenetic mixing models and Nd-Sr isotopic patterns.Geochim.Cosmochim.Acta. 1979, 43:615~627.
    [129] Zartman R. E., Doe B. R.Plumbotectonucs the model.Tectonophysics, 1981,75:135~162.
    [130] 刘翔.新疆塔斯特花岗岩体特征及金成矿作用[J].华东地质学院学报,1994,17(4):320~329.
    [131] 宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):26~30.
    [132] Williams I S, Buick I S, Cartwright I. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reylolds Range, central Australia. J Metamorphic Geol, 1996, 14: 29~47.
    [133] 陈文,刘新宇,张思红.连续激光阶段升温~(40)Ar/~(39)Ar地质年代测定方法研究[J].地质论评,2002,48(增刊):127~134.
    [134] Chen Wen, Zhang Yan, Ji Qiang, wang Songshan, Zhang Jianxin.The magmatism and deformation times of the Xidatan rock series, East Kunlun Mountain. Science in China, Series B, 2002, 45(Sup) :20~27.
    [135] Pearce J.A. Sources and settings of granitic rocks. Episodes, 1996, 19:120~125.
    [136] 袁峰,周涛发,谭绿贵,等.新疆萨吾尔地区两类花岗岩稀土元素特征[J].中国稀土学报,2005,23(5):631~635.
    [137] 吴堑虹,潘传楚.新疆塔斯特花岗岩的碱交代及其地质意义的探讨[J].大地构造与成矿学,1993,17(4):345~356.
    [138] 刘伟,赵志忠.新疆乌伦古-斋桑泊构造带晚古生代花岗岩类的稀土元素分布模式[J].大地构造与成矿学,1995,19(2):133~144.
    [139] 刘洪福,尹凤娟.新疆三塘湖盆地卡拉岗组时代问题商榷[J].西北大学学报(自然科学版),2001,31(6),496~499.
    [140] 林克湘,李艺斌,龚文平,等.新疆三塘湖盆地晚古生代火山岩地球化学特征及构造环境[J].高校地质学报,1997,3(2),202~211.
    [141] 李正华等,戴幢谟,蒲志平.~(40)Ar、~(39)Ar释气特征与过剩氩的甄别及年代学意义[J].地质科学,1995,30(1):40~45.
    [142] 赵振华,白正华,熊小林,等.西天山北部晚古生代火山—浅侵位岩浆岩~(40)Ar/~(39)Ar同位素定年[J].地球化学,2003,32(4):317~327.
    [143] 周肃,莫宣学,董国臣,等.西藏林周盆地林子宗火山岩~(40)Ar/~(39)Ar年代格架[J].科学通报,2004,49(20):2095~2103.
    [144] 闫升好,陈文,王义天,等.新疆额尔齐斯金成矿带的~(40)Ar/~(39)Ar年龄及其地质意义[J].地质学报,2004,(4):500~506.
    [145] 周涛发,袁峰,杨文平,等.西准噶尔萨吾尔地区二叠纪火山活动规律[J].中国地质,2006,33(3):553~558.
    [146] LeBas, M.J. et al.. A chemical classification of volcanic rocks based on the total alkati-silicon diagram. J. Petro.,1986,27,745~750.
    [147] 木合塔尔·扎日,张旺生,韩春名,等.新疆沙尔布尔山卡拉岗组火山岩岩石化学及其构造环境分析[J].地质科技情报,2002,21(2),19~28.
    [148] Turner S., Sandiford M. and Foden J..Some geodynamic and compositional constraints on "postorogenic" magmasim. Geology,1992, 20:931~934.
    [149] 谭绿贵,周涛发,袁峰,范裕,岳书仓,新疆萨吾尔地区二叠纪火山岩成岩机制:来自稀土元素的约[J].中国稀土学报,2007,25(1)(出版中)
    [150] 谭绿贵,周涛发,袁峰,等.新疆萨吾尔地区二叠纪火山岩地球动力学背景[J].合肥工业大学学报(自然科学版),2006,29(7):868~874.
    [151] Mcculloch M T., Chappell B W..Nd isotopic characteristics of S-and Ⅰ-type granites. Earth planet.Sci.Lett., 1982,58,51-64.
    [152] Faure G. Principles of Isotope Geology. John wiley and sons. 1986.
    [153] Pearce TH, Gorman BE and Birkett TC. The TiO_2-K_2O-P_2O_5 Diagram: a method of discriminating between oceanic and non-oceanic basalts. Earth and Planetary Science Letters,1975,24:419-426.
    [154] Pearce JA and Cann JR. Tectonicsetting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 1973,19:290-300.
    [155] 钱青,王焰.不同构造环境中双峰式火山岩的地球化学特征[J].地质地球化学,1999,27(4):29~32.
    [156] Jean-Paul Liegeois, Jacques, Jan Hertogen, et al..Contrasting origin of post-collisional high calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids : The use of sliding normalization.Lithos. 1998,45:1~28.]
    [157] MacCaskie D R. Identification of petrogenetic processes using covariance plots of trace-element data[J]. Chemical Geology, 1984,40:325~341.
    [158] 中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,1998,174~183.
    [159] 袁峰,周涛发,岳书仓.北阿尔泰火山岩形成机制的稀土判别[J].中国稀土学报,2003,21(3):343~347.
    [160] 黄锦江.相容元素-不相容元素协变图在岩石成因研究中的意义[J].现代地质,1988,2(4):474.
    [161] 杨浩.论痕量元素协变关系的应用[J].地质论评,1990,36(1):66.
    [162] Tan Lugui, Zhou Taofa ,Yuan Feng, et al.. Mechanism of Formation of Premian Volcanic Rocks in Sawu'er Region, Xinjiang: Constraints from REE, Journal of Rare Earths,2006, 24(5): 626~632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700