用户名: 密码: 验证码:
安徽铜陵凤凰山矽卡岩型铜矿床成矿过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安徽铜陵凤凰山矿田是长江中下游成矿带内具有代表性和典型性的矽卡岩型铜矿田。矿田内构造活动、岩浆作用及成矿作用复杂。大地构造演化经历了活动(基底形成阶段)—稳定(盖层)—再活动(板内变形)3个发展演化阶段。中三叠世以后,板内变形阶段引发大规模的中酸性岩浆侵入活动。
     本文以凤凰山铜矿床为代表,主要采用SHRIMP锆石U-Pb同位素精确定年,辉钼矿Re-Os同位素精确定年,岩体主量、微量和稀土元素分析,流体包裹体均一温度、冰点温度以及拉曼成分分析,氢、氧、碳、硫、铅等同位素组成在空间上的三维成矿流体演化趋势,结合区域成矿背景的研究,运用现代成岩成矿地质地球化学理论,探索矿田岩浆作用及岩浆演化、成岩与成矿关系、成矿流体的时空演化、成矿物理化学场与矿床矿体定位的时空祸合。论文取得了以下主要成果和创新性认识:
     1.凤凰山铜矿床辉铝矿Re-Os等时线年龄为141.1±1.4 Ma,形成于早白垩世,属燕山晚期中酸性岩浆与相关热液上侵定位的产物。成矿物质为壳幔混合型。矿床位于长江中下游多金属成矿带上,长江中下游Cu-Au-Fe-Mo矿床系统形成时正处于地球动力学调整期,即中生代第二期大规模成矿期,地球动力学背景为构造体制大转折,凤凰山铜矿床亦处于中生代第二期大规模成矿期内。
     2. SHRIMP锆石U-Pb同位素精确定年,石英二长闪长岩样品测年获得年龄数据139.4±1.2 Ma;花岗闪长岩样品测年获得年龄数据为141.04±1.1 Ma,形成于晚侏罗世,岩浆侵入活动发生在燕山晚期,和铜陵矿集区主要成矿岩体的形成时代一致。岩浆在上升过程中,由于密度等因素制约,石英二长闪长岩晚于花岗闪长岩而形成,与矽卡岩型矿床有关的成矿主岩体可能为花岗闪长岩。凤凰山矽卡岩型铜矿床与岩体为同期产物,并且在时间上存在很短的时差,成岩成矿有着密切的关系。同位素组成表明幔源岩浆分异的深部流体参与了成矿作用。岩体侵位和岩石圈整体加厚产生伸展作用,软流圈地幔与上覆地壳减压熔融产生玄武岩浆底侵作用,二者密切相关。
     3.凤凰山铜矿床侵入岩的岩石类型主要为石英二长闪长岩和花岗闪长岩。根据岩石化学和地球化学的研究,侵入岩以富钾钙碱性系列岩石为主。其岩浆来源属于幔壳混合型,原始岩浆来源于上地幔碱性玄武岩区,并且与地壳物质混染。岩体成岩过程以混合作用为主,外来物质可能是在地幔部分熔融过程中加入的,也可能是在岩浆上侵过程中加入的。该矿床与新屋里岩体有着密切的时空和成因联系。石英二长闪长岩和花岗闪长岩是控制区内铜矿形成的最主要因素,成矿物质主要来自岩体。铜矿体稍晚于岩浆岩侵入事件形成。矿体分布于岩体与大理岩内矽卡岩带上。成矿热液以岩浆期后热液为主,并经历了从高温矽卡岩阶段到中低温热液阶段的复合型成矿作用。
     4.石榴石、透辉石、石英和方解石中的流体包裹体分别集中于3个区,其流体包裹体的温度和盐度区间代表着成矿流体演化的3个不同阶段。成矿流体经历了从高温度、高盐度向低温度、低盐度的持续演化过程,与成矿作用阶段基本对应,降温、流体沸腾是导致流体中巨量铜元素卸载的主要因素。
     5.氢、氧同位素组成表明成矿流体以岩浆水为主,可能在成矿晚期混有少量大气降水。硫同位素值集中于1.8‰~2.9‰,具岩浆来源的特征,为幔源硫,表明硫来自地幔。铅同位素组成显示该区铅具有岩浆热液物质来源特征,表明成矿期流体中的铅来自上地幔。
The Fenghuangshan ore-field is the typical skarn Copper Ore-Field of the Middle-Lower River metallogenic belt at Tongling, Anhui. The tectonic movement, the magmatism and the mineralization of the ore-field are very complicated. The geotectonic evolution has been through three periods:the movement (the basement formation period), the stability (the cover) and the reprise (the intra-plate distortion). From the Middle Triassic, the intra-plate distortion period induced the large-scale intermediated-acidic magma movement.
     This study takes the Fenghuangshan Copper Deposit as an example adopting SHRIMP U-Pb dating on zircon, Re-Os dating, major elements, trace elements and rare earth elements, microthermometric studies, carbon, hydrogen, oxygen, sulfur and lead isotope compositions to show the spatial three-dimension metallogenic fluid trend. Moreover, combining region metallogenic background studies and utilizing the modern geological and geochemical theories of rock forming and mineralization, this thesis demonstrates the magmatism, the magma revolution, the relationship of the rock forming and mineralization, the space-time revolution of the metallogenic fluid, the metallogenic physical and chemical fields and the space-time combining of the deposit orientation.
     The Re-Os isochronal age is 141.1±1.4 Ma of the Fenghuangshan Copper Deposit forming Early Cretaceous The Fenghuangshan Copper Deposit is the offspring of the Late Yanshanian intermediated-acidic magma and the correlated hydrotherm intruding and locating. The metallogenin material is the crust-mantle mixed type. This deposit lies on the he Middle-Lower River metallogenic belt. The Middle-Lower River Cu-Au-Fe-Mo deposit system formed at the geodynamical adjusting period, the second large-scale metallogenic period of Mesozoic. The geodynamical background is the tectonic system transition. The Fenghuangshan Copper Deposit lies at this period.
     The Fenghuangshan quartz monzodiorite and granodiorite in Tongling, Anhui Province are spatially and temporally associated with Cu mineralization. Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb zircon dating of quartz monzodiorite is from (136.0±2.0) to (143.0±2.4)Ma, and the weighted mean age is (139.4±1.2)Ma (n=15, MSWD=0.76). SHRIMP U-Pb zircon dating of granodiorite is from (136.7±2.0) to (145.3±2.4)Ma, and the weighted mean age is (141.0±1.1)Ma (n=17, MSWD=1.5). The intrusive age is the Late Jurassic, the Late Yanshanian. The molybdenite Re-Os isochronal age is the same to the intrusive age of granodiorite and elder than the age of quartz monzodiorite. The mineralization has the relationship with granodiorite. Isotope compositions indicate that the mineralization relates to deep fluids of mantle magma differentiation. The extensional process which is resulted from the pluton emplacement and the whole thickening of the lithosphere has the relationship with the basaltic magma underplating which is resulted from the aesthenosphere mantle and the upper crust decompression.
     The Xinwuli pluton is the Late Yanshanian high-K, calc-alkaline intrution (144 Ma, U-Pb zircons age), which is composed by quartz monzodiorite envelope and granodiorite inner. Geochemical characteristics of the Xinwuli quartz monzodiorite indicate that the original magma is upper mantle alkli basalt, which is contaminated by crust materials during intrusion. Curst material contamination could be happened during partial melting or magma moving upwards. The Cu mineralization has closed spatial, temporal and genesis relations with the Xinwuli pluton. Orebodies are hosted by both quartz monzodiorite and marble along the contact zone, and endoskarn orebodies are dominanted. Similar trace element features of ore samples and quartz monzodiotite indicate that copper comes from the monzodiorite intrusion. Fluids bimetasomatism between quartz monzodiorite and carbonate rocks cause Cu precipitation. Orebodies are jointly controlled by bimetasomatism and structural deformation on the three dimension distribution, resulting in breccia ores distributed along the contact zones. The whole mineralization history can be classified as high temperature skarn stage and middle-low temperature hydrothermal stage.
     This study takes the Fenghuangshan Copper Deposit as an example to examine the metallogenic mechanism, the nature and origin of ore-forming fluid using the characteristics of metallogenic fluid and C, H and O isotope analysis. The Fenghuangshan deposit contains garnet, quartz and calcite in which fluid inclusions were well developed. Most of the fluid inclusions in garnet, diopside, quartz and calcite are concentrated mainly in three zones and the temperatures and salinity ranges of fluid inclusions represent three different phases of ore-forming fluid evolution, indicating that the fluid experienced a continuous process of evolution, which was well coupled with metellogenic phases of the Fenghuangshan deposit. Temperature decreasing and fluid boiling resulted in the discharge of a large amount of copper from Cu-bearing fluid. Furthermore, H and O isotopic analysis indicates that the ore-forming fluid consisted mainly of magmatic water, with minor meteoric water at the late stage of mineralization of the Fenghuangshan deposit. The value of Isotope S is 1.8%o to 2.9%o. S comes from the mantle. Isotope Pb constitutes show that Pb has the character of the magma material sources and Pb of the metallogenic fluid comes from the upper mantle.
引文
别风雷,侯增谦,李胜荣,苏文超,徐九华.2000.川西呷村超大黑矿型矿床成矿流体稀土元素组成[J].岩石学报,16(4):575~580.
    常印佛,刘湘培,吴言昌.1991.长江中下游铁铜矿成矿带[M].北京:地质出版社,1~359.
    陈骏,王鹤年.2004.地球化学[M].北京:科学出版社,116~117.
    陈绪松,徐九华,谢玉玲,李永兵.2002.山东金青顶金矿床和七宝山金矿床的流体包裹体REE组成[J].矿床地质,21(4):387~392.
    崔彬,李忠.2000.成矿空间初探[J].地质与勘探,36(6):6-8.
    邓晋福,叶德隆,赵海玲,汤德平,等.1992.下扬子地区火山作用深部过程与盆地形成[M].武汉:中国地质大学出版社,1~184.
    邓晋福,赵海玲,莫宣学,吴宗絮,罗照华.1996.中国大陆根柱构造—大陆动力学的钥匙[M].北京:地质出版社,1~110.
    邓晋福,莫宣学,赵海玲,罗照华,赵国春,戴圣潜.1999.中国东部燕山期岩石圈—软流圈系统大灾变与成矿环境[J].矿床地质,18(4):309~315.
    邓晋福,吴宗絮.2001.下扬子克拉通岩石圈减薄事件与长江中下游Cu、Fe成矿带[J].安徽地质,11(2):86~91.
    邓军,王庆飞,黄定华,高帮飞.2004.铜陵矿集区燕山期地壳浅部成矿流体活动的构造控矿[J].矿床地质,23(3):399~404.
    狄永军,赵海玲,张贻全,赵建华,杨龙.2003.安徽铜陵地区燕山期花岗岩类岩石中的岩浆混合结构[J].北京地质,15(1):12~17.
    杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊.1994.辉钼矿的铼—锇同位素地质年龄测定方法研究[J].地质学报,68(4):339~347.
    杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.2001.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼—锇同位素地质年龄[J].岩矿测试,20(4):247~252.
    杜杨松,秦新龙,田世洪.2004.安徽铜陵铜官山矿区中生代岩浆—热液过程:来自岩石包体及其寄主岩的证据[J].岩石学报,20(2):339~350.
    杜杨松,李顺庭,曹毅,秦新龙,楼亚儿.2007.安徽铜陵铜官山矿区中生代侵入岩的形成过程—岩浆底侵、同化混染和分离结晶[J].现代地质,21(1):71~77.
    范建国,倪培.2000.成矿流体的流体包裹体同位素示踪探讨[J].地质找矿论丛,15(3):275~281.
    付明希,胡圣标,汪集.2004.华北东部中生代热体制转换及其构造意义[J].中国科学(D辑),34(6):514~520
    韩吟文,马振东.2003.地球化学[M].北京:地质出版社,248~250.
    何知礼,杜加锋.1996.流体包裹体研究的某些进展与发展趋势[J].地学前缘,3(4):306~312.
    胡受奚,王德滋,王鹤年,张景荣,赵懿英.1998.中国东部金矿地质学及地球化学[M].北京:科学出版社,1~343.
    黎彤,倪守斌.1990.地球和地壳的化学元素丰度[M].北京:地质出版社,10~25.
    李厚民,沈远超,毛景文,刘铁兵,朱和平.2003.石英、黄铁矿及其包裹体的稀土元素特征—以胶东焦家式金矿为例[J].岩石学报,19(2):267~274.
    李进文.2004.铜陵矿集区矿田构造控矿与成矿化学动力学研究[D].导师:裴荣富院士.北京:中国地质科学院,1~141.
    李进文,裴荣富,梅燕雄.2004.铜陵矿集区矿田构造垂直分布[J].矿床地质,23(2):206~215.
    李进文,裴荣福,梅燕雄,朱和平,王莉娟,李铁军,王永磊.2006.安徽铜陵狮子山铜(金)矿田成矿流体地球化学研究[J].矿床地质,25(4):427~437.
    李进文,裴荣福,张德全,梅燕雁雄,臧文栓,孟贵祥,曾普胜,李铁军,狄永军.2007.铜陵矿集区燕山期中酸性侵入岩地球化学特征及其地质意义[J].地球学报,28(1):11~22.
    李锦轶.2004.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论,50(3):304~332.
    刘亮明,彭省临,张宪润.2000.铜陵凤凰山矿区隐伏矿床预测研究的主要策略及初步成效[M].见:戴塔根主编,2000年湖南矿物岩石地球化学论丛.长沙:中南大学出版社,91~94.
    刘亮明,王志超,彭省临.2002.综合信息论在储量危急矿山深部找矿中的应用—以铜陵凤凰山铜矿为例[J].地质科学,37(4):444~452.
    刘文灿,高德臻,储国正.1996.安徽铜陵地区构造变形分析及成矿预测[J].北京:地质出版社,1~133.
    刘英俊,曹励明.1987.元素地球化学导论[M].北京:地质出版社,1~281.
    楼亚儿,杜杨松.2006.安徽繁昌中生代侵入岩的特征和锆石SHRIMP测年[J].地球化学,3(4):333~345.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.流体包裹体[M].北京:科学出版社,2004:1~486.
    陆三明.2007.安徽铜陵狮子山铜金矿田岩浆作用与流体成矿[D].导师:徐晓春.安徽:合肥工业大学.1~158.
    毛景文,华仁民,李晓波.1999.浅议大规模成矿作用与大型矿集区[J].矿床地质,18(4):39~43.
    毛景文,王志良.2000.中国东部大规模成矿时限及其动力学背景的初步探讨[J].矿床地质,19(4):289~296.
    毛景文,张作衡,余金杰,王义天,牛宝贵.2003.华北中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学(D辑),33(4):289~300.
    毛景文,Stein H,杜安道,周涛发,梅燕雄,李永峰,臧文栓,李进文.2004.长江中下游地区铜金矿Re~Os年龄精测及其对成矿作用的指示[J].地质学报,78(1):121~131.
    毛景文,邵拥军,谢桂青,张建东,陈毓川.2009.长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质,28(2):109-119.
    毛政利,赖健清,彭省临,邵拥军.杨斌.2004.安徽铜陵凤凰山铜矿床地球化学特征及其意义[J].地质与勘探,40(2):28~31.
    蒙义峰,杨竹森,曾普胜,徐文艺,王训成.2004.铜陵矿集区成矿流体系统时限的初步厘定[J].矿床地质,23(3):271~280.
    牛宝贵,和政军,宋彪,任纪舜.2003.张家口组火山岩SHRIMP定年及其重大意义[J].地质通报,22(2):140~141.
    裴荣富.2001.难识别及隐伏大矿富矿资源潜力的地质评价[M].北京:地质出版社,17~71.
    裴荣富,梅燕雄.2003.金属成矿省演化与成矿年代学[M].北京:地质出版社,146~156.
    裴荣富,梅燕雄,李进文.2004a.特大型矿床与异常成矿作用[J].地学前缘,11(1~2):323~331.
    裴荣富,李进文,梅燕雄.2004b.金属成矿省等级体制成矿[J].矿床地质,23(2):131~141.
    彭建堂,胡瑞忠.2001.湘中锡矿山超大型锑矿床的碳、氧同位素体系[J].地质论评,7(2):299~320.
    任纪舜,牛宝贵,和政军,谢广连,刘志刚.1998.中国东部的构造格局和动力演化[A].见任纪舜,杨巍然主编.中国东部岩石圈结构与构造岩浆演化[M].北京:地震出版社,1~12.
    邵拥军.2002.安徽铜陵凤凰山矿田成岩成矿机制及隐伏矿体预测分析[D].导师:彭省临.湖南长沙:中南大学.1~90.
    邵拥军,彭省临,刘亮明,吴淦国.2003a.凤凰山矿田成矿地质条件和控矿因素分析[J].中南工业大学学报(自然科学版),34(5):562~566.
    邵拥军,彭省临,吴淦国,张达.2003b.铜陵凤凰山岩体成岩机制探讨[J].地质与勘探,39(5):39~43.
    邵拥军,彭省临,赖健清,刘亮明,张贻舟,张建东.2007.凤凰山铜矿床两类成矿岩体的厘定及其成因分析[J].岩石学报,23(10):2471~2482.
    苏文超,胡瑞忠,漆亮,方维萱.2001.黔西南卡林型金矿床流体包裹体中微量元素研究[J].地球化学,30(6):512~516.
    唐永成,吴昌言,储国正,邢凤鸣,王永敏,槽奋扬,常印佛.1998.安徽沿江地区铜多金属矿床地质[M].北京:地质出版社,1~351.
    王莉娟,王京彬,王玉往,朱和平.2003.蔡家营、大井多金属矿床成矿流体和成矿作用[J].中国科学(D辑),33(10):941~950.
    王莉娟,王京彬,王玉往,朱和平,曲丽丽.2004.新疆准噶尔地区金矿成矿流体稀土元素地球化学特征[J].岩石学报,20(4):977~987.
    王庆飞,邓军,黄定华,张强.2004.铜陵矿集区浅层隐伏岩体预测及其形态分析[J].矿床地质,23(3):405~410.
    王文斌,李文达,谢华光,周华平.1995.长江中下游铜铁多金属矿床铅同位素特征[M].火山地质与矿产,16(2):67~77.
    王彦斌,刘敦一,曾普胜,杨竹森,蒙义峰,田世洪.2004a.铜陵地区小铜官山石英闪长岩锆石 SHRIMP的U-Pb年龄及其成因指示[J].岩石矿物学杂志,23(4):289~304.
    王彦斌,刘敦一,曾普胜,杨竹森,蒙义峰,田世洪.2004b.安徽铜陵新桥铜—硫—铁—金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义[J].中国地质,31(2):169-173.
    王彦斌,刘敦一,曾普胜,杨竹森,田世洪.2004c.安铜陵地区幔源岩浆底侵作用的时代—朝山辉石闪长岩锆石SHRIMP定年[J].地球学报,25(4):423~427.
    王元龙,王焰,张旗,贾秀琴,韩松.2004.铜陵地区中生代中酸性侵入岩的地质地球化学特征及其成矿—地球动力学意义[J].岩石学报,20(2):325~338.
    闻广,吴思本.1983.安徽铜陵凤凰山岩体若干特征与成矿关系[J].中国地质科学院院报,第7号:343~349.
    吴才来,周殉若,黄许陈,张成火,黄文明.1996.铜陵地区中酸性侵入岩年代学研究[J].岩石矿物学杂志,15(4):299~306.
    吴才来,陈松永,史仁灯,郝美英.2003.铜陵中生代中酸性侵入岩特征及成因[J].地球学报,24(1):41~48.
    吴淦国,张达,臧文栓.2003.铜陵矿集区构造滑脱及分层成矿特征研究[J].中国科学(D辑),33(4):300~308.
    吴淦国,张达,狄永军,臧文栓,张祥信,宋彪,张忠义.铜陵矿集区侵入岩SHRIMP锆石U-Pb年龄及其深部动力学背景[J].中国科学(D辑),2008,38(5):630~645.
    徐九华,谢玉玲,杨竹森,蒙义峰,曾普胜.2004.安徽铜陵矿集区海底喷流沉积体系的流体包裹体微量元素对比[J].矿床地质,23(3):344~352.
    徐九华,丁汝福,谢玉玲,钟长华,原旭.2005.阿尔泰山南缘萨热阔布金矿床的纯CO2流体[J].50(4):380~386.
    徐文艺,杨竹森,蒙义峰,曾普胜,史大年,田世洪,李红阳.2004.安徽铜陵矿集区块状硫化物矿床成因模型与成矿流体动力学迁移[J].矿床地质,23(3):353~364.
    徐夕生,范钦成,S. Y. O'Reilly,蒋少涌,W. L. Griffin,王汝成,邱检生.2004.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨[J].科学通报,49(18):1883~1891.
    徐晓春,陆三明,谢巧勤,储国正,熊亚平.2006.铜陵狮子山矿田岩浆岩及金矿床的稀土元素地球化学[J].中国稀土学报,24(10):615~622.
    徐晓春,陆三明,谢巧勤,柏林,储国正.2008.安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义[J].地质学报,82(4):500~509.
    徐兆文,黄顺生,倪培,陆现彩,陆建军,方长泉,华明,蒋少涌.2005.铜陵冬瓜山铜矿成矿流体特征和演化[J].地质论评,51:36~41.
    徐志刚.1985.从构造应立场特征探讨中国东部中生代火山岩成因[J].地质学报,59(2):109~126.
    肖新建,顾连兴,倪培.2002.安徽铜陵狮子山铜、金矿床流体多次沸腾及其与成矿的关系[J].中国科学(D辑)32:199~206.
    谢桂青,毛景文,李瑞玲,张祖送,赵维超,屈文俊,赵财胜,魏世昆.2006.鄂东南地区 Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨:辉钼矿Re-Os同位素年龄[J].矿床地质,25(1):43~52
    谢智,孙卫东,柴之芳,陈江峰,杜安道,李春生,毛雪瑛.2002.辉钼矿的Os-Os法与Re-Os法定年及结果比较[J].核技术,25(12):1013~1018.
    杨小男,徐兆文,张军,王云健,徐夕生,蒋少涌,凌洪飞,刘良根,陈达源.2007.安徽狮子山矿田南洪冲岩体形成时代及成因机制研究[J].岩石学报,2007,23(6):1543~1551.
    杨小男,徐兆文,徐夕生,凌洪飞,刘苏明,张军,李海勇.2008.安徽铜陵狮子山矿田岩浆岩锆石U-Pb年龄意义[J].地质学报,82(4):510~516.
    杨竹森,侯增谦,蒙义峰,曾普胜,李红阳,徐文艺,田世洪,王训诚,姚孝德,姜章平.2004.安徽铜陵矿集区海西期喷流沉积流体系统时空结构[J].矿床地质,23(3):281~297.
    杨中宝,丁美青,银霞.2003.岩浆侵位过程的反演及其在矿体定位预测中的应用—以安徽铜陵凤凰山矿田为例[J].世界地质,22(4):339~343.
    余金杰,毛景文.2002.宁芜武玢岩铁矿钠长石40Ar-39Ar定年及意义[J].自然科学进展,12(10):1059~1063.
    曾普胜,杨竹森,蒙义峰,裴荣富,王彦斌,王训成,徐文艺,田世洪,姚孝德.2004.安徽铜陵矿集区燕山期岩浆流体系统时空结构与成矿[J].矿床地质,23(3):298~319.
    张达,李东旭.1999.铜陵凤凰山岩体侵位构造变形特征[J].地球学报,20(3):405~410.
    张达,吴淦国,李东旭.2001.铜陵凤凰山岩体接触带构造变形特征[J].地学前缘,8(3):223~229.
    张达,吴淦国,狄永军,臧文栓,邵拥军,余心起,张祥信,汪群峰.2006.铜陵凤凰山岩体SHRIMP锆石U-Pb年龄与构造变形及其对岩体侵位动力学背景的制约[J].地球科学—中国地质大学学报,31(6):823~829.
    张旗,简平,刘敦一,王无龙,浅青,王焰,薛怀民.2003.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学(D辑)[J],33(4):309~314.
    翟裕生,姚书振,林新多,姚书振,林新多,周殉若,万天丰,金福全,周宗桂.1992.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社,1~235.
    郑永飞,徐宝龙,周根陶.2000.矿物稳定同位素地球化学研究[J].地学前缘,47(1):34~41.
    朱和平,王莉娟.2001.四极质谱测定流体包裹体中的气相成分[J].中国科学(D辑),31(7):586~590.
    Andreas A, Detlef G, Christoph A H.1998. Formation of a magmatic-hydrothermal ore deposit:Insights with LA-ICP-MS analysis of fluid inclusions [J]. Science,279:2091~2094.
    Barbarin B.1999. A reiview of the relationship between granitoid types, their origins and their geodynamic
    environments [J]. Lithos,6:483~492.
    Berzina A N, Sotnikov V I, Economou-Eliopoulos Maria, Demetrios G E.2005. Distribution of rhenium in molybdenite from porhpyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia [J]. Ore Geology Reviews,26(1~2):91~113
    Bottinga Y and Javoy M.1975. Oxygen isotope partitioning among the minerals in igneous and metamorphic racks [J]. Reviews of Geophysics and Space Physics,13 (2):401~418.
    Brown G C, Thorpe R S, Webb P C.1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources [J]. Journal of the Geological Society,141:413~426.
    Chaussidon M and Lorand J J.1990. Sulphur isotope composition of orogenic spinel Iherzolite massifs from Ariege (North-Eastern Pyrenees, France):An ion microprobe study [J]. Geochimica et Cosmochimica Acta,54(10):2835~2846.
    Chen J F, Yan J, Xie Z, Xu X, Xing F M.2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China:Constraints on sources [J]. Physics and Chemistry of the Earth, 26:719~731
    Chen J F and Zhou T X..1993. Sr and Nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui province [J]. Geochemistry,3:261~268.
    Clayton R N and Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis [J]. Geochimca et Cosmochimica Acta,1963,27:43~52.
    Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water [J]. Journal of Geophysical Research,1972,77:3057~3067.
    Coleman M L, Shepard T J, Durham J J, Rouse J E, Moore G R. Reduction of water with zinc for hydrogen isotope analysis [J]. Analytical Chemistry,1982,54 (6):993~995.
    Di Y J, Wu G G, Zhang D, et al.2005. SHRIMP U-Pb Zircon Geochronology of the Xiaotongguangshang and Shatanjiao intrustions and its petrological implications in the Tongling area, Anhui [J]. Acta Geologica Sinica,79 (6):795~802.
    Du A D, Zhao D M, Wang S X.2001. Precise Re-Os dating for molybdenite by ID-NTIMS with tube sample preparation. Rock and Mineral Analysis,20(4):247~252.
    Friedman I and O'Neil J R.1977. Complication of stable isotope fractionation factors of geochemical interest in data of geochemical interest in data of geochemistry [M]//Fleischer M. Geological Professional Paper. Virginia:U. S. Geological Survey,6:1~440.
    Gradstein F M, Ogg J G, Smith A G, Bleeker W, Lauranse L J.2004. A new geologic time scale, with special reference to Precambrian to Neogene. Episodes,27:83~100.
    Griffiths J B, Peucat J J, Sheppard S, Vidal P H.1985. Petrogenesis of Hercynian Leucogranites from the southern America Massif Contribution of REE and isotope (Cs, Nd, Pb and O) geochemical data to the study of source rock characteristics and ages,72(2~3):235~250.
    Le Mritre R W, Bateman P, Dudek A, Keller J.1989. A classification of igneous rocks and glossary of terms [M]. Blackwell, Oxford,1~24.
    Li Z, Liu S F, Zhang J F, Wang Q C.2004. Typical basin-fill sequences and basin migration in Yanshan, North China-response to Mesozoic tectonic transition [J]. Science in China (Series D),47:181~192.
    Lu S M, Xu X C, Xie Q Q, Lou J W, Chu G Z, Xiong Y P.2007. Chemial and stable isotopic geochemical characteristics of ore-forming fluid of the Shizishan copper and gold ore-field, Tongling, China [J]. Acta Petrologica Sinica,23(1):177~184.
    Ludwig K.1999. Isotope/Ex, version 2.0:A geochrological toolkit for Microsoft Excel. Geochronology Centre, Berkeldy, Special Publication la.
    Mao J W, Zhang Z C, Zhang X H, Du A D.1999. Rhenium-osmium isotope dating of molybdenite in the Xiaoliugou W(Mo) deposit in North Qilianshan Mountains and its geological significance [J]. Geochemica Cosmochemica Acta,63:1815~1818
    Mao J W, Wang Y T, Ding T P, et al. Dashuigou tellurium deposit in Sichuan Province, China:S, C, O and H isotope data and their implications on hydrothermal mineralization [J]. Resource Geology,2002, 52(1):15~23.
    Mao J W, Wang Y T, Lehmann B, Yu J J, Du A D, Mei Y X, Li Y F, Zang W S, Stein H J, Zhou T F.2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metalloenic implications. Ore Geology Reviews,29:307~324.
    Mao J W, Xie G Q, Bierlein F, Qu W J, Du A D, Ye H S, Pirajno F, Li HM, Guo B J, Li Y F.2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochim. Cosmochim. Acta,72:4607~4626.
    McCrea, M. The isotopic chemistry of carbonates and a paleotemperature scale [J]. Journal of Chemical Physics,1950,18:849~857.
    Michard A.1989. Rare earth element systematics in hydrothermal fluids[J]. Geochim. Acta,53:745~750.
    Ohmoto H.1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits [J]. Econ. Geol., 67:551~578.
    O'Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates [J]. Chemistry Geophysics,1969,51 (12):5547~5558.
    Pan Y M, Dong P.1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits [J]. Ore Geology Reviews, 15:177~242.
    Pearce J A.1982. Trace element characteristics of lavas from destructive plate boundaries [M]//Trorpe R S. Andesites:Orogenic Andesites and Related Rocks. Chichester:Wiley,525~548.
    Pei R F, Hong D W.1995. The granites of South China and their metallogeny [J]. Episodes,18:77~86.
    Robert R L and John A M.1999. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions [J]. Science,1999,284:2159~2163.
    Selby D and Creaser RA.2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotope analysis of molybdenite:Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite [J]. Geochim. Cosmochim. Acta,68: 3897~3908.
    Shirey S B and Walker R J.1995. Carius tube digestion for low-blank Rhenium-Osmium analysis [J]. Anal. Chem.,67:2136~2141.
    Stein H J, Markey R J, Morgan J W, Hannah J L, Schersten A.2001. The remarkable Re-Os chronometer in molybdenite:How and why it works [J]. Terra Nova,13:479~486.
    Sun W D, Xie Z, Chen J F.2003. Os-Os dating of copper and molybdenum meposits along the middle and lower reaches of the Yangtze River, China. Economic Geology,98:175~180.
    Suzuki K, Shimizu H, Masuda A.1996. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits [J]. Geochim. Cosmochim. Acta,60:3151~3159.
    Tarney J.1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models [J]. Journal of the Geological Society, London,151:855~868.
    Taylor S R, McLennan S M.1985. The continental crust:its composition and evolution [M]. Blackwell, Oxford:1~311.
    Taylor B E.1986. Magmatic volatiles:Isotope variation of C, H and S reviews in mineralogy [M]//Valley J W, Taylor H P, Clayton R N, O'Neil J R:Stable Isotopes In High Temperature Geological Process. America:Mineralogical Society of America,16:185~226.
    Treuil M and Joron J L.1975. Utilisation des elements hygromagmatophiles pour la semplification de la modalisation quantitative des processus magmatiques:Exemple de l'Afar et de la dorsale medio Atlantique:Soc [J]. It. Mineral. Et Perol.,31:125~174.
    Ulrich T, Gunther D, Heinrich C A.1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits [J]. Nature,399:676~679.
    Veizer J, Holser W T, Wilgus C K.1980. Correlation of 13C/12C and 34S/32S secular variation [J]. Geochim. Cosmochim. Acta,44:579~588.
    Wu C L, Chen S Y, Shi R D, Hao M Y.2003. Origin and features of the Mesozoic intermediate-acid intrusive in the Tongling Area, Anhui, China [J]. Acta Geoscientia Sinica,24(1):41~48.
    Xie X J.1995. Surficial and superimposed geochemical exploration for giant ore deposits [M]//Clark A H: Giant Ore Deposits Ⅱ. Kingston, Canada,475~485.
    Xu G, Zhou J.2001. The Xinqiao Cu-S-Au deposit in the Tongling mineral district, China:Synorogenetic remobilization of a stratiform sulfide deposit [J]. Ore Geology Review,18:77~94.
    Zartman R E and Doe B R.1981. Plubotectonics-the model Tectonophysics [J]. Tectonophysics,75: 135~162.
    Zartman R E and Haines S M.1988. The plumbotectonics for Pb isotopic systematic among major terrestrial reservoirs-a case for bidirectonic transport Geochimical [J]. Cosmochimica Acta, 52:1327~1339.
    Zang W S, Wu G G, Zhang D, Li J W, Zhang X X, Liu A H, Zhang Z Y.2004. Genesis of the Xinqiao gold-sulfide orefield, Anhui Province, China [J]. ACTA Geological Sinica,78 (2):548~557.
    Zhai Y S, Xiong Y Y, Yao S Z, Lin X D.1996. Metallogeny of copper and iron deposits in the Eastern Yangtze Carton, east-central China [J]. Ore Geology Review,11:229~248
    Zhao X and Coe R S.1987. Palaeomagnetic constraints on the collision and rotation of North and South China [J]. Nature,327:141~144
    Zhao Y M, Zhang Y N, Bi C S.1999. Geology of gold-bearing skarn deposits in the Middle and Lower Yangtze River Valley and adjacent regions [J]. Ore Geology Reivew,14:227~240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700